1
|
Ramezan M, Arzhang P, Shin AC. Milk-derived bioactive peptides in insulin resistance and type 2 diabetes. J Nutr Biochem 2025; 138:109849. [PMID: 39870329 DOI: 10.1016/j.jnutbio.2025.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Diabetes is a global health issue affecting over 6% of the world and 11% of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs). Taken from casein or whey fractions of various milks, MBAPs exhibit diverse health-promoting properties. Specific interactions between these peptides and enzymes involved in glucose digestion and metabolism have been examined, leading to the identification of some key peptides exerting the effects. This review emphasizes the positive impact of MBAPs on glycemic control through various mechanisms. Different cell lines have been used to investigate MBAPs' effects on insulin signaling, inflammation, and oxidative stress. Preclinical in vivo studies have also shown that MBAPs lower glucose, stimulate insulin, and reduce inflammation. Human trials further substantiate these findings and suggest the potential utility of milk protein hydrolysates containing MBAPs in individuals with insulin resistance or T2D to improve insulin action and glucose homeostasis.
Collapse
Affiliation(s)
- Marjan Ramezan
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Andrew C Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
2
|
Mutumba R, Mbabazi J, Pesu H, Lewis JI, Mølgaard C, Ritz C, Olsen MF, Briend A, Nabukeera-Barungi N, Wells JC, Friis H, Grenov B, Mupere E. Effect of lipid-based nutrient supplements on morbidity among children with stunting: secondary analysis of a randomized trial in Uganda. Eur J Clin Nutr 2025:10.1038/s41430-025-01611-3. [PMID: 40164777 DOI: 10.1038/s41430-025-01611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Children with stunting are at risk of infections. We assessed the effect of lipid-based nutrient supplement (LNS) on morbidity in children with stunting. METHODS This was a secondary analysis of a randomized, 2×2 factorial trial among 12-59 months-old, stunted children in Uganda. Children were randomized to LNS containing milk or soy protein and whey permeate or maltodextrin, or no supplementation, for 12 weeks. The outcomes were caregiver-reported morbidity after 2, 4, 8 and 12 weeks, serum C-reactive protein (S-CRP), α1-acid glycoprotein (S-AGP), and phase-angle (PhA) by bioimpedance. RESULTS Of 750 children, mean (SD) age was 32.0 (11.7) months, 55% (n = 412) were male. LNS increased diarrhoea prevalence (18.1% vs 7.3%, P = 0.001) during the first two weeks, but not thereafter. There was no effect of LNS on cough or fever. LNS resulted in greater decline in S-AGP (-0.10 g/L, 95% CI: -0.17, -0.03, P = 0.003) but not S-CRP (25%, 95% CI: -11, 74, P = 0.193), and greater increase in PhA (0.10 degrees, 95% CI: 0.01, 0.18, P = 0.030), explained by greater fat-free mass. Milk compared to soy protein in LNS resulted in higher PhA (0.10 degrees, 95% CI: 0.02, 0.17, P = 0.013), not explained by fat-free mass. CONCLUSION LNS supplementation in children with stunting had no effect on morbidity but resulted in a small reduction in sub-acute systemic inflammation. The possible effect of LNS supplementation on inflammation in stunted children requires further evaluation. ( www.isrctn.com : ISRCTN13093195).
Collapse
Affiliation(s)
- Rolland Mutumba
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda.
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | - Joseph Mbabazi
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Pesu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jack I Lewis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ritz
- The National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Mette F Olsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Andre Briend
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Tampere Centre for Child Health Research, Tampere University, Tampere, Finland
| | - Nicolette Nabukeera-Barungi
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jonathan C Wells
- Childhood Nutrition Research Centre, Population Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Benedikte Grenov
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
3
|
Li X, Zhang W, Yu W, Yu Y, Cheng H, Lin Y, Feng J, Zhao M, Jin Y. Cutaneous wound healing functions of novel milk-derived antimicrobial peptides, hLFT-68 and hLFT-309 from human lactotransferrin, and bLGB-111 from bovine β-lactoglobulin. Sci Rep 2025; 15:9965. [PMID: 40121253 PMCID: PMC11929754 DOI: 10.1038/s41598-025-90685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
The absence of multi-functional antimicrobial agents in clinical settings hinders cutaneous wound healing. Milk-derived antimicrobial peptides (MAPs) may be the imperative solution to wound repair, combining the dermatic curative properties of antimicrobial peptides with the biological activity of milk. Three novel MAPs, which were hLFT-68 (IAENRADAV) and hLFT-309 (GSPSGQKDLLF) identified in human milk and bLGB-111 (LDTDYKKY) identified in bovine milk in our previous work, were initially investigated for their function in wound healing. In vitro, the antibacterial activity and cellular mechanism of the MAPs were examined. It was found that they presented inhibition for Staphylococcus aureus and Escherichia coli, decreased the secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), and promoted fibroblast and keratinocyte proliferation. An infected wound model was established to evaluate the in vivo anti-inflammatory and regeneration properties of the MAPs. The wound area shrank more rapidly, and the wound inflammation was reduced by MAP treatment. Especially on days 3-5 after mouse modeling, the wound repair rate increased by up to 35%. Furthermore, it was suggested that they encouraged collagen synthesis and deposition, and tissue regeneration. The presented results indicated that MAPs accelerated the recovery of infected wounds, possessing the potential for developing wound-healing therapy.
Collapse
Affiliation(s)
- Xixian Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wanning Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Huiyuan Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Jingwen Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China.
| |
Collapse
|
4
|
Fernandes J, Gomes S, Reboredo FH, Pintado ME, Amaral O, Dias J, Alvarenga N. Clean Label Approaches in Cheese Production: Where Are We? Foods 2025; 14:805. [PMID: 40077507 PMCID: PMC11899541 DOI: 10.3390/foods14050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The Clean Label concept has gained significant traction in the cheese industry due to consumer preferences for minimally processed cheeses free from synthetic additives. This review explores different approaches for applying Clean Label principles to the cheese industry while maintaining food safety, sensory quality, and shelf life. Non-thermal technologies, such as high-pressure processing (HPP), pulsed electric fields (PEF), ultra-violet (UV), and visible light (VL), are among the most promising methods that effectively control microbial growth while preserving the nutritional and functional properties of cheese. Protective cultures, postbiotics, and bacteriophages represent microbiological strategies that are natural alternatives to conventional preservatives. Another efficient approach involves plant extracts, which contribute to microbial control, and enhance cheese functionality and potential health benefits. Edible coatings, either alone or combined with other methods, also show promising applications. Despite these advantages, several challenges persist: higher costs of production and technical limitations, possible shorter shelf-life, and regulatory challenges, such as the absence of standardized Clean Label definitions and compliance complexities. Further research is needed to develop and refine Clean Label formulations, especially regarding bioactive peptides, sustainable packaging, and advanced microbial control techniques. Addressing these challenges will be essential for expanding Clean Label cheese availability while ensuring product quality and maintaining consumer acceptance.
Collapse
Affiliation(s)
- Jaime Fernandes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sandra Gomes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Olga Amaral
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - João Dias
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - Nuno Alvarenga
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Cheng L, Wang F, Guo Y, Du Q, Zeng X, Wu Z, Guo Y, Tu M, Pan D. Potential prebiotic properties and proliferation mechanism of fermented milk-derived polypeptides. Food Chem 2025; 463:141335. [PMID: 39316909 DOI: 10.1016/j.foodchem.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The purpose of this paper is to investigate the potential prebiotic properties and proliferation mechanism of fermented milk-derived peptides. In this study, fermented milk-derived polypeptides were obtained by extraction, separation, and purification. The purified peptides were used to culture fecal flora in vitro, and the relative abundance and composition of the flora were analyzed by high-throughput 16S rRNA sequencing technology. The results showed that peptides can promote the proliferation of beneficial bacteria Lactococcus in the intestine and inhibit the proliferation of harmful bacteria Escherichia coli-Shigella. The amino acid sequence of polypeptide components was determined and synthesized in vitro to verify the proliferation of intestinal flora; the proliferation mechanism of peptides on Lactococcus lactis was studied using non-targeted LC-MS metabolomics technology. Five important peptides with molecular weights of 1000-2000 Da were identified by LC-MS: GRP1 (LTEEEK), GRP2 (ENDAPSPVM*K), GRP3 (ITVDDK), GRP4 (EAM*APK) and GRP5 (LPPPEK). The results showed that the peptides could affect the arginine biosynthesis pathway and the amino sugar and nucleotide sugar metabolism of Lactococcus lactis. In addition, the peptides increased the expression of organic acids and their derivatives in Lactococcus lactis. This study provides a research basis for expanding the potential sources of new prebiotics and also opens up a new idea for discovering new prebiotics in vitro.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuqiao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| |
Collapse
|
6
|
Ros E, Pérez-Martínez P, Estruch R, López-Miranda J, Ferrer CS, Delgado-Lista J, Gómez-Delgado F, Solà R, Pascual V. Recommendations of the Spanish Arteriosclerosis Society: The diet in cardiovascular prevention - 2024 Update. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100741. [PMID: 39578128 DOI: 10.1016/j.arteri.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Emilio Ros
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Pablo Pérez-Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Ramón Estruch
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Interna, Hospital Clínic, Universidad de Barcelona, Barcelona, España
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Cristina Soler Ferrer
- Servicio de Medicina Interna, Unidad de Lípidos y Riesgo Vascular, Hospital de Santa Caterina de Salt, Salt, Girona, España
| | - Javier Delgado-Lista
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Francisco Gómez-Delgado
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario, Jaén, España
| | - Rosa Solà
- Grupo de Nutrición Funcional, Oxidación y Enfermedades Cardiovasculares (NFOCSalut), Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Hospital Universitario Sant Joan, Reus, Tarragona, España
| | - Vicente Pascual
- Centro Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| |
Collapse
|
7
|
Kapoor DU, Gaur M, Kumar A, Ansari MN, Prajapati B. Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges. Curr Protein Pept Sci 2025; 26:41-56. [PMID: 39171470 DOI: 10.2174/0113892037319188240806074731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Department of Pharmaceutics, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302017, Rajasthan, India
| | - Akash Kumar
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Bhupendra Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| |
Collapse
|
8
|
Yao X, Cao X, Chen L, Liao W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System. Nutrients 2024; 17:97. [PMID: 39796531 PMCID: PMC11722916 DOI: 10.3390/nu17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect. In addition, artificial intelligence has improved the efficiency of ACE inhibitory peptide identifications. Moreover, the inhibition of renin and blockade or down-regulation of angiotensin type I receptor (AT1R) have also been demonstrated to be effective intervention strategies. With the identification of the ACE2/Ang (1-7)/MasR axis, activation or up-regulation of angiotensin-converting enzyme 2 (ACE2) has also emerged as a new intervention pathway. This review summarizes the research progress of antihypertensive peptides in intervening with hypertension from the perspective of their properties, sources, and key factors. The objective of this review is to provide theoretical references for the development of antihypertensive peptides and the explorations of the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Yao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| |
Collapse
|
9
|
Almasri RS, Bedir AS, Ranneh YK, El-Tarabily KA, Al Raish SM. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024; 16:3848. [PMID: 39599634 PMCID: PMC11597306 DOI: 10.3390/nu16223848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The nutritional composition, antimicrobial properties, and health benefits of camel milk (CAM), cow milk (COM), and goat milk (GOM) have been extensively studied for their roles in managing diabetes and cardiovascular diseases (CVD). This review compares these milk types' nutritional and therapeutic properties, emphasizing their applications in chronic disease management. CAM is rich in insulin-like proteins, vitamins, minerals, and bioactive compounds that benefit glycemic control and cardiovascular health. It also exhibits potent antioxidants, anti-inflammatory, and lipid-lowering effects, which are crucial for managing diabetes and reducing CVD risk factors. While COM and GOM provide essential nutrients, their impact on metabolic health differs. GOM is known for its digestibility and antihypertensive properties, whereas COM's higher lactose content may be less suitable for diabetic patients. CAM's unique nutritional profile offers distinct therapeutic benefits, particularly for diabetes and CVD management. Further research is needed to clarify its mechanisms of action and optimize its clinical application for chronic disease prevention and management.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Yazan K. Ranneh
- Department of Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
10
|
Sato S, Ochi D, Nabeshima K, Sakiyama R, Somoto Y, Nakano M, Tanaka M, Nakamura M. Effects of Casein-Derived Peptide Met-Lys-Pro on Systolic and Diastolic Blood Pressure: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2024; 16:2975. [PMID: 39275290 PMCID: PMC11397617 DOI: 10.3390/nu16172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Hypertension is defined as a systolic blood pressure (SBP) of over 140 mmHg or diastolic blood pressure (DBP) of over 90 mmHg. Hypertension is widely known to be a factor affecting human health, so its prevention is considered important. We investigated the effect of casein-derived tripeptide Met-Lys-Pro (MKP) on blood pressure in a randomized, placebo-controlled, parallel-group study. Participants were healthy adults with SBP between 120 and 139 mmHg, and/or DBP between 80 and 89 mmHg. A total of 121 participants were randomly assigned to the MKP group or placebo group. Participants received either a test powder containing 100 μg of MKP or a placebo powder without MKP for 12 weeks. As a result, SBP and DBP were significantly lower in the MKP group than in the placebo group. No adverse events associated with the MKP intake were observed. This study showed that MKP has a beneficial effect on lowering blood pressure in healthy adults with high-normal and elevated blood pressure and can be safely used for continuous intake.
Collapse
Affiliation(s)
- Soichiro Sato
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Daisuke Ochi
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Kazumi Nabeshima
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Ryo Sakiyama
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Yuki Somoto
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Manabu Nakano
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Masahiko Nakamura
- Department of Neurosurgery, Matsumoto City Hospital, 4417-180, Hata, Matsumoto 390-1401, Japan
| |
Collapse
|
11
|
Hwang S, Ha AW. Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults. Nutrients 2024; 16:2959. [PMID: 39275274 PMCID: PMC11397032 DOI: 10.3390/nu16172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Dairy and soy products are healthy food. However, studies have reported conflicting results associating their intake with coronary heart disease (CHD). Thus, this study determined the association between intake of dairy or soy products and 10-year CHD risk. Participants aged 40~69 years were grouped into those who consumed dairy products (more or less than twice a week) and those who consumed soy products (more or less than twice a week). Ten-year CHD risk (%), atherogenic index (AI), and atherogenic index of plasma (AIP) were calculated. The CHD risk, according to the level of dairy and soy product intake, was expressed as an odds ratio (OR) and a confidence interval (CI). Significant differences were observed in sex, age, education, income, and living area according to dairy intake frequencies, whereas only age showed significant differences according to soy products' intake frequencies. Relative effects of Framingham Risk Score (FRS) factors on 10-year CHD risk in Korean adults were found to be significant in the order of age, high-density lipoprotein cholesterol (HDL-C), smoking, blood total cholesterol (TC), systolic blood pressure (SBP), diabetes, and sex. Overall, participants who consumed dairy products ≥2/week had a significantly lower OR of 10-year CHD risk compared to those who consumed dairy products <2/week after adjusting for confounding factors (OR: 0.742, 95% CI: 0.619 to 0.890). Otherwise, intake of soy products ≥2/week tended to decrease the OR of 10-year CHD risk, although the decrease was not statistically significant. In conclusion, Korean adults who consumed dairy products ≥2/week had higher HDL-C and lower 10-year CHD risk than those who consumed dairy products <2/week. However, these results did not appear when consuming soy products.
Collapse
Affiliation(s)
- Sinwoo Hwang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ae Wha Ha
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
12
|
Thakur R, Biswal P, Sari TP, Kumar D, Sagar NA, Bhardwaj S, Pandey HO, Chandratre GA, Tarafdar A. Therapeutic effect of goat milk and its value-addition: current status and way forward. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1621-1631. [PMID: 39049908 PMCID: PMC11263276 DOI: 10.1007/s13197-023-05923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 07/27/2024]
Abstract
Goats are important livestock mainly recognized for their low rearing costs and adaptability to harsh climate making them suitable for small farmers. Goat's milk has been tagged as highly consumed milk in many parts of the world and also carry essential substances as minerals, vitamins, enzymes, proteins, electrolytes and fatty acids which are easily metabolised by the body. The unique health benefits of goat milk make it a remedy for various disease conditions. Additionally, the low allergenicity and high digestibility of goat milk make it a popular dairy product for infants and immunocompromised individuals. This review summarizes the efforts and achievements made in analyzing goat milk's nutritional, therapeutic, and functional properties and its current applications in the food and nutraceuticals sector. Also, the article provides insights into the diverse range of food and cosmetics applications of goat milk-derived components. Besides the long history of the use of goat milk for human nutrition, the scientific literature concerning various bioactive components and their beneficial therapeutic effects with respect to modern science are also reviewed in detail.
Collapse
Affiliation(s)
- Rajneesh Thakur
- Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, Kishanganj, Bihar India
| | - Prachurya Biswal
- Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, Kishanganj, Bihar India
| | - T. P. Sari
- National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonipat, Haryana 131 028 India
| | | | - Narashans Alok Sagar
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab India
| | - Sonam Bhardwaj
- Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Hari Om Pandey
- Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Gauri A. Chandratre
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Ayon Tarafdar
- Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| |
Collapse
|
13
|
Wang W, Liang Q, Zhao B, Chen X, Song X. Functional Peptides from Yak Milk Casein: Biological Activities and Structural Characteristics. Int J Mol Sci 2024; 25:9072. [PMID: 39201758 PMCID: PMC11354251 DOI: 10.3390/ijms25169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.
Collapse
Affiliation(s)
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (W.W.); (B.Z.); (X.C.); (X.S.)
| | | | | | | |
Collapse
|
14
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
15
|
Kumar M, Muthurayar T, Karthika S, Gayathri S, Varalakshmi P, Ashokkumar B. Anti-Diabetic Potentials of Lactobacillus Strains by Modulating Gut Microbiota Structure and β-Cells Regeneration in the Pancreatic Islets of Alloxan-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10221-7. [PMID: 38329697 DOI: 10.1007/s12602-024-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus, a most common endocrine disorder of glucose metabolism, has become a global epidemic and poses a serious public health threat with an increased socio-economic burden. Escalating incidence of diabetes is correlated with changes in lifestyle and food habits that cause gut microbiome dysbiosis and β-cells damage, which can be addressed with dietary interventions containing probiotics. Hence, the search for probiotics of human origin with anti-diabetic, anti-AGE, and anti-ACE potentials has gained renewed interest for the effective management of diabetes and its associated complications. The present study used an alloxan (AXN)-induced diabetic rat model to investigate the effects of potential probiotic Lacticaseibacillus casei MKU1, Lactiplantibacillus pentosus MKU3, and Lactiplantibacillus plantarum MKU7 administration individually on physiochemical parameters related to diabetic pathogenesis. Experimental animals were randomly allotted into six groups viz. NCG (control), DCG (AXN), DGM (metformin), DGP1 (MKU1), DGP2 (MKU3), and DGP3 (MKU7), and biochemical data like serum glucose, insulin, AngII, ACE, HbA1c, and TNF-α levels were measured until 90 days. Our results suggest that oral administration with MKU1, MKU3, or MKU7 significantly improved serum insulin levels, glycemic control, glucose tolerance, and body weight. Additionally, β-cell mass was increased by preserving islet integrity in Lactobacillus-treated diabetic rats, whereas TNF-α (~40%), AngII (~30%), and ACE levels (~50%) were strongly inhibited and enhanced sIgA production (5.8 folds) abundantly. Furthermore, Lactobacillus administration positively influenced the gut microbiome with a significant increase in the abundance of Lactobacillus species and the beneficial Bacteroides uniformis and Bacteroides fragilis, while decreased the pathogenic Proteus vulgaris and Parabacteroides distasonis. Among the probiotic treatment groups, L. pentosus MKU3 performed greatly in almost all parameters, indicating its potential use for alleviating diabetes-associated complications.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Tharmar Muthurayar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
16
|
Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25:507-526. [PMID: 38561605 DOI: 10.2174/0113892037275221240327042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Urvashi Soni
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, India
| |
Collapse
|
17
|
Stastna M. Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis 2024; 45:101-119. [PMID: 37289082 DOI: 10.1002/elps.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Milk is a rich source of biologically important proteins and peptides. In addition, milk contains a variety of extracellular vesicles (EVs), including exosomes, that carry their own proteome cargo. EVs are essential for cell-cell communication and modulation of biological processes. They act as nature carriers of bioactive proteins/peptides in targeted delivery during various physiological and pathological conditions. Identification of the proteins and protein-derived peptides in milk and EVs and recognition of their biological activities and functions had a tremendous impact on food industry, medicine research, and clinical applications. Advanced separation methods, mass spectrometry (MS)-based proteomic approaches and innovative biostatistical procedures allowed for characterization of milk protein isoforms, genetic/splice variants, posttranslational modifications and their key roles, and contributed to novel discoveries. This review article discusses recently published developments in separation and identification of bioactive proteins/peptides from milk and milk EVs, including MS-based proteomic approaches.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
18
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
20
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Bellaver EH, Kempka AP. Potential of milk-derived bioactive peptides as antidiabetic, antihypertensive, and xanthine oxidase inhibitors: a comprehensive bibliometric analysis and updated review. Amino Acids 2023; 55:1829-1855. [PMID: 37938416 DOI: 10.1007/s00726-023-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Bioactive peptides consist of small protein fragments, which are inactive in their original conformation, and they become active when released from these through enzymatic hydrolysis or fermentation processes. The bioactivity of such peptides has been extensively reported in the literature as contributors to organic homeostasis processes, as well as in immunomodulation, organism defense against oxidative processes, among others. In this study, reports of the activity of BPs isolated from milk with the potential glycemic control, antihypertensive activity, and inhibitors of uric acid formation were compiled. A systematic literature review and bibliometric analysis were conducted, using the PICO strategy for the research. The temporal analysis of publications revealed a growing interest in the investigation of bioactive peptides with potential antidiabetic, antihypertensive, and xanthine oxidase inhibitory activities, using dairy sources as products for their extraction. The literature analysis also revealed an increase in research involving non-bovine dairy products for bioactive peptide extraction. The collaboration network among authors exhibited weaknesses in scientific cooperation. Regarding the analysis of keywords, the usage of terms such as "bioactive peptides", "antioxidant", "antihypertensive", and "diabetes" was evident, constituting the main research clusters. Peptides with low molecular weight, typically < 10 kDa, of hydrophobic nature with aliphatic and aromatic chains, have significant implications in molecular interactions for the required activities. Although there is a growing interest in the industry regarding the utilization of bioactive peptides as potential drugs, there is a need to address gaps related to elucidating their interactions with cellular targets and their use in human therapy.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil
| | - Aniela Pinto Kempka
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil.
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
22
|
Barenie MJ, Escalera A, Carter SJ, Grange HE, Paris HL, Krinsky D, Sogard AS, Schlader ZJ, Fly AD, Mickleborough TD. Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial. J Diet Suppl 2023; 21:344-373. [PMID: 37981793 DOI: 10.1080/19390211.2023.2282470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.
Collapse
Affiliation(s)
- Matthew J Barenie
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
- Center for the Study of Obesity, College of Public Health, University of AR for Medical Sciences, Little Rock, Arkansas, USA
| | - Albaro Escalera
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Hope E Grange
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, California, USA
| | - Danielle Krinsky
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, Ball State University, Muncie, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| |
Collapse
|
23
|
Middelkoop A, Segarra S, Molist F. Porcine digestible peptides as alternative protein source in weaner diets: effects on performance and systemic cytokine profile in pigs followed from weaning to slaughter. Animal 2023; 17:100998. [PMID: 37897869 DOI: 10.1016/j.animal.2023.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/30/2023] Open
Abstract
Porcine digestible peptides (PDP) are high-quality hydrolysed proteins obtained from porcine intestinal mucosa as a by-product of the heparin manufacturing process. PDP contain bioactive peptides and are used as alternative protein sources in several animal species, including pigs. We aimed to explore the (carry-over) effects of feeding PDP to weaned piglets on performance and systemic cytokine levels of pigs followed until slaughter. A total of 192 piglets were allocated to one of two dietary treatments: control (CON) or PDP weaner diets. PDP was included at 5.0% until day 13 post-weaning at the expense of skimmed milk powder and partial replacement of soybean meal, and at 2.5% between days 13 and 34 post-weaning at the expense of soy protein concentrate. Grower-finishers were fed commercial diets according to a 3-phase feeding scheme until slaughter, when carcass traits were determined. Six pigs were housed per weaner pen and eight per grower-finisher pen with 16 and 10 pens per treatment, respectively. Pigs were weighed at the start and at the end of each phase, and feed intake was recorded. Faecal consistency was recorded twice a week in the weaner facility. Ten pigs per treatment were sampled for blood at days 13, 34 and 69 post-weaning. We found that PDP-fed piglets had a higher feed intake in the first two weeks post-weaning compared to CON-fed piglets (+32 g/pig per day; P = 0.02). Moreover, piglets in the PDP group showed improved feed conversion between days 13 and 34 versus the CON group (1.36 vs 1.43; P = 0.03). Piglets that were fed with PDP in the weaner diets tended to grow faster in the grower-finisher period (+32 g/pig per day; P = 0.07), tended to reach slaughter age earlier (129.9 vs 131.5 days; P = 0.07) and had a lower dressing percentage at slaughter (76.3 vs 76.7%, P = 0.045) than piglets previously fed with CON. Additionally, PDP-fed piglets showed higher serum levels of pro-inflammatory cytokines interleukin (IL)-12 (P = 0.02), tumour necrosis factor-alpha (P = 0.02), interferon-gamma (P = 0.03) and IL-8 (at day 34 post-weaning, P = 0.06) as well as anti-inflammatory cytokines transforming growth factor-beta (P = 0.02), IL-4 (P = 0.04) and IL-10 (at day 34 post-weaning, P = 0.02). No significant differences among dietary treatments were observed regarding faecal consistency of weaned piglets and carcass weight, lean meat percentage, muscle depth, and back fat thickness at slaughter. We conclude that feeding PDP, as an alternative to conventional milk and soy protein sources, showed positive effects on pig performance, not only during the provisioning period but also thereafter into the grower-finisher phase.
Collapse
Affiliation(s)
- A Middelkoop
- R&D, Schothorst Feed Research B.V, PO Box 533, 8200 AM Lelystad, The Netherlands.
| | - S Segarra
- R&D Animal Health, Bioiberica S.A.U, 08950 Esplugues de Llobregat, Spain
| | - F Molist
- R&D, Schothorst Feed Research B.V, PO Box 533, 8200 AM Lelystad, The Netherlands
| |
Collapse
|
24
|
Takeuchi A, Ye Y, Takada K, Mori R, Nakamura T, Oda N, Mijiti M, Banno A, Nagaoka S. Pentapeptide IIAEK ameliorates cholesterol metabolism via the suppression of intestinal cholesterol absorption in mice. Biosci Biotechnol Biochem 2023; 87:1345-1353. [PMID: 37667492 DOI: 10.1093/bbb/zbad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Dietary protein-derived peptides are effective in improving dyslipidemia and hypercholesterolemia. We previously identified a novel cholesterol-lowering pentapeptide IIAEK from milk beta-lactoglobulin. However, it remains unclear whether IIAEK affects the micellar solubility of cholesterol and the bile acid-binding ability to lower cholesterol. Moreover, there is no direct evidence that IIAEK inhibits intestinal cholesterol absorption and affects hepatic cholesterol and fecal steroid excretion in vivo. Herein, we showed that IIAEK did not affect the micellar solubility of cholesterol and the bile acid-binding ability. However, we found that IIAEK decreased serum and liver cholesterol levels and increased fecal steroid excretion in mice. Interestingly, IIAEK markedly suppressed the intestinal absorption of [3H]-cholesterol in mice. In conclusion, we found that IIAEK ameliorated cholesterol metabolism by suppressing intestinal cholesterol absorption without affecting in vitro micellar solubility of cholesterol and the bile acid-binding ability in mice.
Collapse
Affiliation(s)
- Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Keigo Takada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ryosuke Mori
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Toma Nakamura
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Natsuki Oda
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
25
|
Cicchi C, Paoli P, Modesti A, Mannelli F, Scicutella F, Buccioni A, Fontanarosa C, Luti S, Pazzagli L. Effect of Bovine Milk Peptides on Cell Inflammation, Proliferation and Differentiation: Milk Potential Benefits Are Preserved in an Unconventional Cow Feeding Strategy. BIOLOGY 2023; 12:1162. [PMID: 37759562 PMCID: PMC10525111 DOI: 10.3390/biology12091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Animal feeding through the reuse of agro-industrial by-products in one of the ultimate goals of sustainable agriculture. Olive oil pomace (OOP) produced as a waste product during olive oil milling has been used as an ingredient in the diet for Holstein lactating cows. Recent findings have shown no decrease in animal performance, feed intake or detrimental effect on rumen microbiota. In contrast, an improvement in C18 polyunsaturated fatty acids has been observed. In this work, the milk protein content from cows fed a commercial diet (CON) or an experimental one supplemented with OOP was determined and compared, and the peptides derived from the simulated gastrointestinal digestion of raw milk were analyzed. After fractionation via RP-HPLC, peptides were characterized for their biological activity on different cell lines. The ability to reduce both the intracellular ROS content and the expression of inflammatory markers, such as Cyclooxygenase, isoenzyme 2 (COX-2) and inducible Nitric Oxide Synthase (iNOS), as well as the remarkable properties to induce cell differentiation and to slow down the proliferation of human intestinal cancer cells, enable us to define them as bioactive peptides. In spite of there being no observed significant difference between the healthy activity of CON and OOP peptides, the results allow us to broaden the knowledge about the biological activity of these bioactive peptides and to confirm that agro-industrial by-products may be successfully incorporated into the feeding strategy of dairy cows.
Collapse
Affiliation(s)
- Costanza Cicchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Federica Mannelli
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Federica Scicutella
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Arianna Buccioni
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy;
- Consorzio Interuniversitario I.N.B.B., Viale Medaglie D’Oro, 00136 Rome, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| |
Collapse
|
26
|
Li J, Bollati C, Aiello G, Bartolomei M, Rivardo F, Boschin G, Arnoldi A, Lammi C. Evaluation of the multifunctional dipeptidyl-peptidase IV and angiotensin converting enzyme inhibitory properties of a casein hydrolysate using cell-free and cell-based assays. Front Nutr 2023; 10:1198258. [PMID: 37284652 PMCID: PMC10240083 DOI: 10.3389/fnut.2023.1198258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
The objective of the study was the evaluation of the potential pleiotropic effect of a commercial casein hydrolysate (CH). After an analysis of the composition, the BIOPEP-UWM database suggested that these peptides contained numerous sequences with potential inhibitory activities on angiotensin converting enzyme (ACE) and dipeptidyl-peptidase IV (DPP-IV). The anti-diabetic and anti-hypertensive effects of these peptides were thus assessed using either cell-free or cell-based assays. In the cell-free system, CH displayed inhibitory properties against DPP-IV (IC50 value equal to 0.38 ± 0.01 mg/mL) and ACE (IC50 value equal to 0.39 ± 0.01 mg/mL). Further, CH reduced the DPP-IV and ACE activities expressed by human intestinal Caco-2 cells by 61.10 ± 1.70% and 76.90 ± 4.47%, respectively, versus untreated cells, after 6 h of treatment at the concentration of 5 mg/mL. This first demonstration of the multifunctional behavior of this material suggests that it may become an anti-diabetic and/or anti-hypertensive ingredient to be included in the formulation of different functional food or nutraceutics.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Oh Y, Mun S, Choi YB, Jo H, Lee DG, Han K. Genome-Wide Pathway Exploration of the Epidermidibacterium keratini EPI-7 T. Microorganisms 2023; 11:870. [PMID: 37110293 PMCID: PMC10143877 DOI: 10.3390/microorganisms11040870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.
Collapse
Affiliation(s)
- Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - HyungWoo Jo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Gasan Digital 1-ro, Geumcheon-gu, Seoul 08507, Republic of Korea
| |
Collapse
|
28
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
29
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|