1
|
Zhu M, Liu W, Su S, Gong M, Liao G, Fu F, Chen G, Rao Z, Cheng J, Liu J, Lu Y, Chen Y. Reprogramming of lipids and amino acids metabolism is an early event in myocardium of type 1 diabetic rhesus monkeys. J Pharm Biomed Anal 2025; 258:116699. [PMID: 39914331 DOI: 10.1016/j.jpba.2025.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/10/2025]
Abstract
Diabetic cardiomyopathy (DC) refers to the abnormal myocardial structure and performance induced by diabetes. Although numerous studies have been carried out, the pathophysiological mechanisms of cardiovascular disorders during diabetes have not been fully clarified. Here, we compared the cardiomyopathy of healthy rhesus monkeys and rhesus monkeys with a history of streptozocin induced type 1 diabetes (T1D) over 7 years. Through comparing the cardiac function using echocardiography, and detecting the serum biochemical indexes, and changes of left ventricle (LV), we found that decreased systolic function, higher blood glycosylated hemoglobin A1c (HbA1C) level, hyperglycemia, and hyperlipidemia were early events in diabetic rhesus monkeys. In addition, cardiac histological analysis showed mildly fibrosis and early myocardial hypertrophy, as evidenced by increased Sirius red stained area and cross-sectional area of left ventricle. Transcriptome results revealed that the nutrients metabolism and extracellular matrix related pathways were markedly changed in the left ventricle of diabetic monkeys. Targeted metabolomics and targeted lipid metabolomics further revealed that disturbed amino acid metabolism and lipid accumulation in the LV of diabetic monkeys manifested by accumulated branched chain amino acids (BCAAs) and triglycerides (TAGs), and reduced contents of sphingolipids, glycerophospholipids, cholesteryl esters and carnitines. In conclusion, we reported here for the first time that diabetes lasting for more than 7 years leads to some early pathological changes of myocardium in rhesus monkeys. The cardiac function is mildly compromised and the reprogramming of lipids and amino acids metabolism might play important roles in the progression of DC.
Collapse
Affiliation(s)
- Min Zhu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wen Liu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shan Su
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Meng Gong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China; Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, PR China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Gen Chen
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co. Ltd., Sichuan 644600, PR China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jingqiu Cheng
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jingping Liu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanrong Lu
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Younan Chen
- Department of Clinical Nutrition and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| |
Collapse
|
2
|
Li F, Luo J, Xie Q, He L, Li W, Yang R, Li M. Differential effects of ellagic acid on non-alcoholic fatty liver disease in mice: grouped by urolithin A-producing capacity. Food Funct 2025; 16:3166-3179. [PMID: 40171675 DOI: 10.1039/d5fo00440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Ellagic acid (EA) exhibits protective effects on non-alcoholic fatty liver disease (NAFLD). However, the ability to produce urolithins and the health benefits associated with EA consumption differ considerably among individuals. Therefore, the different effects of EA on high-fat and high-fructose diet (HFFD)-induced NAFLD, considering variability in urolithin-producing ability, were explored. Our results showed that EA could effectively reduce body weight, lipid accumulation and insulin resistance, and improve oxidative stress and inflammation in NAFLD mice. The metabolomics analysis indicated that liver metabolism disorder induced by HFFD was obviously improved by EA mainly through the regulation of unsaturated fatty acid biosynthesis and amino acid metabolism. In particular, the improvement effect of EA on NAFLD in mice with high urolithin A production was better than that in their low counterparts. Moreover, EA treatment reshaped the gut microbiota imbalance caused by HFFD. Specifically, compared to the model group, the lower abundances of Faecalibaculum (by 95.11%), Ruminococcus_torques_group (by 208.14%), Clostridium_sensu_stricto_1 (by 449.37%), and Ileibacterium (by 172.64%), while higher abundances of Verrucomicrobia and Akkermansia (by 425.0%) were observed in the high-UroA-producing group (p < 0.05). This study provided new insights into EA's anti-NAFLD effectiveness and suggested that the response capacity of the gut microbiota to EA greatly determined the performance of EA in alleviating the development of NAFLD.
Collapse
Affiliation(s)
- Fengping Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhuang Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liangqian He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Qin W, Zheng S, Zhou L, Liu X, Chen T, Wang X, Li Q, Zhao Y, Wang D, Xu G. High-Coverage Metabolomics Reveals Gut Microbiota-Related Metabolic Traits of Type-2 Diabetes in Serum. J Proteome Res 2025; 24:1649-1661. [PMID: 40130449 DOI: 10.1021/acs.jproteome.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic perturbations of the gut microbiome have been implicated in the pathogenesis of multiple human diseases, including type-2 diabetes (T2D). However, our understanding of the global metabolic alterations of the gut microbiota in T2D and their functional roles remains limited. To address this, we conducted a high-coverage metabolomics profiling analysis of serum samples from 1282 Chinese individuals with and without T2D. Among the 220 detected microbiota-associated compounds detected, 111 were significantly altered, forming a highly interactive regulatory network associated with T2D development. Pathway enrichment and correlation analyses revealed aberrant metabolic pathways, primarily including the activation of pyrimidine metabolism, unsaturated fatty acid biosynthesis, and diverse amino acid metabolisms such as Tryptophan metabolism, Lysine metabolism, and Branched-chain amino acid biosynthesis. A microbiota-dependent biomarker panel, comprising pipecolinic acid, methoxysalicylic acid, N-acetylhistamine, and 3-hydroxybutyrylcarnitine, was defined and validated with satisfactory sensitivity (>78%) for large-scale, population-based T2D screening. The functional role of a gut microbial product, N-acetylhistamine, was further elucidated in T2D progression through its inhibition of adenosine monophosphate-activated protein kinase phosphorylation. Overall, this study expands our understanding of gut microbiota-driven metabolic dysregulation in T2D and suggests that monitoring these metabolic changes could facilitate the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ying Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ren QX, Wang R, Mu QR, Chen L, Chen M, Wang LJ, Li P, Yang H, Gao W. Molecular networking and Paterno-Büchi reaction guided glycerides characterization and antioxidant activity assessment of Ganoderma lucidum spore oil. Food Chem 2025; 468:142500. [PMID: 39700810 DOI: 10.1016/j.foodchem.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ganoderma lucidum spore oil (GLSO) is a dietary supplement, with glycerides (GLs) recognized as its important active component. However, comprehensive profiling and accurate structural characterization of GLs in GLSO remain underexplored. In this study, 59 GLs from GLSO were identified by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) and molecular networking (MN). The double bond isomers of these compounds were further resolved by the Paterno-Büchi (PB) reaction coupled with UPLC-Q-TOF MS, resulting in the identification of 36 unsaturated GLs, including 5 pairs of positional isomers. In summary, 64 GLs were characterized, consisting of 9 diacylglycerols (DGs) and 55 triacylglycerols (TGs). Additionally, the compositional variations, antioxidant activities, and relative isomer ratios of CC positional isomers of GLSO from eight different manufacturers were revealed, with 11 GLs correlating with antioxidant activity. This study enhances the understanding of the nutritional value of GLSO and lays a foundation for future quality standard formulation.
Collapse
Affiliation(s)
- Qing-Xuan Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qin-Ru Mu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jiang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
6
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
7
|
Sha P, Feng X, Wang Y, Meng J, Deng L, Ma Z, Li D, Wang J, Zhou Z, Zhu J, Xu M, Wang Y, Shi H, Lin Y, Xiong Y. Ablation of LKB1 gene changes the lipid profiles of goat intramuscular fat and enhances polyunsaturated fatty acids deposition. Int J Biol Macromol 2024; 285:138268. [PMID: 39631610 DOI: 10.1016/j.ijbiomac.2024.138268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The content and composition of intramuscular fat (IMF) affect the cooked meat palatability such as tenderness and juiciness. Thus, elucidation of lipid deposition and its composition in goat IMF is necessary. Here, Jianzhou big-ear goats with higher IMF content is associated with lower mRNA level of LKB1 gene, compared with those of Chuannan black goats. Functionally, knockdown of LKB1 promoted intramuscular adipocyte lipid accumulation. Next, LC-MS/MS based pseudo target analysis found that 409 lipids existed in goat intramuscular adipocytes, of which polyunsaturated fatty acids accounted for most lipids. Compared with the control, 78 differential lipids were screened in the siLKB1 group, enriched in the triacylglycerols and fatty acids subclasses. The combined analysis between lipidomic and published transcriptomic data showed that siLKB1 enhanced polyunsaturated fatty acids synthesis through upregulation expression of HACD4. Finally, the promotion of lipid accumulation and polyunsaturated fatty acids synthesis in the LKB1 knockdown cells were partly rescued by ablation of HACD4. Collectively, these data provide a genetic target to produce PUFA enriched functional goat meat and expand new insights into improvement of meat quality.
Collapse
Affiliation(s)
- Peiran Sha
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xinxin Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Chongxin county animal husbandry and veterinary center, Pingliang city, Gansu, 744200, China
| | - Yingtong Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jiayu Meng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Li Deng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Zhongmao Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Dandan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jianmei Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Zili Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiangjiang Zhu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haitao Shi
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
8
|
Bednarczyk M, Dąbrowska-Szeja N, Łętowski D, Dzięgielewska-Gęsiak S, Waniczek D, Muc-Wierzgoń M. Relationship Between Dietary Nutrient Intake and Autophagy-Related Genes in Obese Humans: A Narrative Review. Nutrients 2024; 16:4003. [PMID: 39683397 PMCID: PMC11643440 DOI: 10.3390/nu16234003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Nicola Dąbrowska-Szeja
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Dariusz Łętowski
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
9
|
Li H, Pan C, Wang F, Li Z, Shahzad K, Huang Y, Zhao W. Multi-omics reveals the effects of dietary supplementation with Bupleuri radix branch powder on gut microbiota and lipid metabolism: insights into gut microbial-muscle interactions. Microbiol Spectr 2024; 12:e0145724. [PMID: 39436132 PMCID: PMC11619355 DOI: 10.1128/spectrum.01457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Improving livestock growth and raising the quality of livestock products have attracted much attention owing to the market's growing need for livestock products. Bupleuri Radix branches powder (BR) has a variety of health characteristics, but its effects on ruminant growth and animal product quality are still uncertain. This study explored the effects of BR on growth performance, health status, gut microbiota, and muscle lipid metabolism of Shaanxi fine-wool sheep (SFS), and examined the interaction between gut microbiota and lipid metabolism through correlation analysis. The results indicated that BR can regulate the immune function, intestinal VFAs, and enzyme activity of FSF by improving the gut microbiota, thereby affecting its muscle lipid metabolism. The lipid metabolite TG showed a strong positive correlation with the gut microbes Bacteroides and Fibrobacter, while Phosphatidylethanolamine and Phosphatidyl serine (PE and PS) showed a significant negative correlation with Fibrobacter. The above results indicate that gut microbiota and lipid metabolites interact with each other. BR has the effects of promoting SFS growth, improving body health, and improving meat quality. These findings offer new insights into improve animal growth performance and livestock product quality in modern farming. IMPORTANCE Enhancing livestock growth performance and improving meat quality are important guidelines for the development of the current animal husbandry industry; thus, we explored a comprehensive study of Bupleuri Radix (BR) on growth performance, gut microbiology, and muscle lipid metabolism in Shaanxi fine-wool sheep (SFS). Our research has found that BR could improve the growth performance of SFS and meat quality by affecting gut microbes. This study provides new solutions to improve the economic efficiency of animal husbandry.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Cheng Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fuqiang Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Zengkai Li
- Shenmu Livestock Development Center, Yulin, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
10
|
Brito ML, Coutinho-Wolino KS, Almeida PP, Trigueira PDC, Alves APDP, Magliano DC, Stockler-Pinto MB. Unstressing the Reticulum: Nutritional Strategies for Modulating Endoplasmic Reticulum Stress in Obesity. Mol Nutr Food Res 2024; 68:e2400361. [PMID: 39363792 DOI: 10.1002/mnfr.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Indexed: 10/05/2024]
Abstract
The progression of obesity involves several molecular mechanisms that are closely associated with the pathophysiological response of the disease. Endoplasmic reticulum (ER) stress is one such factor. Lipotoxicity disrupts endoplasmic reticulum homeostasis in the context of obesity. Furthermore, it induces ER stress by activating several signaling pathways via inflammatory responses and oxidative stress. ER performs crucial functions in protein synthesis and lipid metabolism; thus, triggers such as lipotoxicity can promote the accumulation of misfolded proteins in the organelle. The accumulation of these proteins can lead to metabolic disorders and chronic inflammation, resulting in cell death. Thus, alternatives, such as flavonoids, amino acids, and polyphenols that are associated with antioxidant and anti-inflammatory responses have been proposed to attenuate this response by modulating ER stress via the administration of nutrients and bioactive compounds. Decreasing inflammation and oxidative stress can reduce the expression of several ER stress markers and improve clinical outcomes through the management of obesity, including the control of body weight, visceral fat, and lipid accumulation. This review explores the metabolic changes resulting from ER stress and discusses the role of nutritional interventions in modulating the ER stress pathway in obesity.
Collapse
Affiliation(s)
- Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Karen Salve Coutinho-Wolino
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Patricia Pereira Almeida
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | | | - Ana Paula de Paula Alves
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
- Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, 24020-150, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Nutrition Sciences Postgraduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24020-140, Brazil
| |
Collapse
|
11
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
12
|
Khankhum S, Khamkaew K, Li H, Prakitchaiwattana C, Siriamornpun S. Impact of Plant Oil Supplementation on Lipid Production and Fatty Acid Composition in Cunninghamella elegans TISTR 3370. Microorganisms 2024; 12:992. [PMID: 38792821 PMCID: PMC11124419 DOI: 10.3390/microorganisms12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid production and fatty acid composition in C. elegans (TISTR 3370). All oils significantly boosted fungal growth, each influencing distinct patterns of lipid accumulation within the cells. The cells exhibited distinct patterns of lipid accumulation, forming intracellular lipid bodies, influenced by the different oils. Monounsaturated fatty acids (MUFAs) were found to be the most abundant, followed by polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) in the fungal lipid cultures. Oleic acid was identified as the primary MUFA, while palmitic acid was the predominant SFA in perilla oil supplements. Remarkably, perilla oil supplement provided the highest total lipid production with arachidonic acid being exclusively detected. The percentage of PUFAs ranged from 12% in the control to 33% in soybean oil, 32% in rice bran oil, and 61% in perilla oil supplements. These findings offer valuable opportunities for advancing biotechnological applications in lipid production and customization, with implications for food and nutrition as well as pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Surasak Khankhum
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai 44150, Maha Sarakham, Thailand;
| | - Karnjana Khamkaew
- Senangkhanikhom School, Secondary Educational Service Area Office Ubonratchathani—Amnat Charoen, Senangkhanikhom 73290, Amnat Charoen, Thailand;
| | - Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China;
| | - Chuenjit Prakitchaiwattana
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Payatai, Patumwan, Bangkok 10330, Thailand;
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation, Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Kantarawichai 44150, Maha Sarakham, Thailand
| |
Collapse
|
13
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Yan X, Liu H, Huang M, Zhang Y, Zeng B. Integrative proteomics and metabolomics explore the effect and mechanism of Qiyin granules on improving nonalcoholic fatty liver disease. Heliyon 2024; 10:e27075. [PMID: 38444462 PMCID: PMC10912341 DOI: 10.1016/j.heliyon.2024.e27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern, representing a substantial burden within the spectrum of chronic liver diseases. Despite its escalating prevalence, a definitive therapeutic strategy or efficacious pharmacological intervention for NAFLD has yet to receive official approval to date. While Fu Fang Qiyin granules have exhibited efficacy in addressing NAFLD, the intricacies of their underlying mechanism of action remain inadequately elucidated. In this study, we substantiated the ameliorative impact of Qiyin on highfat diet (HFD)induced NAFLD in rat models. The results of metabonomics showed that 108 potential biomarkers in serum and urine related to amino acid metabolism, energy metabolism, and pyrimidine metabolism, have returned to normal levels compared to the model group. Hepatic transcriptomics further indicated that Qiyin potentially confers protective effects against NAFLD by mediating liver inflammation and fibrosis through lumican (LUM) and decorin (DCN). In summation, our investigation provides compelling evidence affirming the therapeutic promise of Qiyin for NAFLD. It elucidates the underlying mechanistic pathways, furnishing a compelling rationale for its prospective clinical application.
Collapse
Affiliation(s)
- Xuehua Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| |
Collapse
|
15
|
Peng L, Li L, Liu J, Li Y. New insights into metabolic dysfunction-associated steatotic liver disease and oxidative balance score. Front Nutr 2024; 10:1320238. [PMID: 38249604 PMCID: PMC10796785 DOI: 10.3389/fnut.2023.1320238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Background The relationship between oxidative stress and metabolic dysfunction-associated steatotic liver disease (MASLD) has not been studied, which remains inadequately recognized. This is a cross-sectional study in a US adult population to explore the relationship between MASLD and oxidative balance scores (OBS), which containing integrating dietary nutrition and lifestyle factors. Methods We analyzed data from National Health and Nutrition Examination Survey during 2017-2018. Multivariate logistic regression, restricted cubic spline curve (RCS) and subgroup analysis were used to investigate the association between OBS and MASLD. Cox regression analysis was utilized to assess the association between OBS and all-cause mortality among individuals. Results The multivariable-adjusted odds ratio (OR) and 95% confidence interval (CI) for the highest quartile of OBS (Q4) was 0.30 (0.12, 0.77) (p = 0.012) compared to the lowest quartile of OBS (Q1). The RCS regression and subgroup analysis indicated an inverted relationship between OBS and the development of MASLD. The OBS Q4 group (HR: 0.15, 95% CI: 0.03-0.87; p = 0.035) exhibited a lower risk of all-cause death than the Q1 group. Conclusion OBS is statistically significantly and negatively correlated with the risk of MASLD and all-cause mortality in US adults. More prospective investigations are required to substantiate our findings.
Collapse
Affiliation(s)
- Lei Peng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lurong Li
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahao Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|