1
|
Livnjak A, Hadžimusić N, Fuehrer HP, Shahi-Barogh B, Šupić J, Pašić L. First molecular evidence of hemotropic mycoplasmas in goats from Bosnia and Herzegovina. Open Vet J 2025; 15:270-276. [PMID: 40092208 PMCID: PMC11910294 DOI: 10.5455/ovj.2025.v15.i1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 04/11/2025] Open
Abstract
Background Hemoplasmas represent the type of bacteria that infect red blood cells, potentially leading to various health impacts, including changes in blood parameters. The close interaction between hemoplasma and red blood cells results in cell damage through immune-related and other unspecified mechanisms. Even with a strong immune response and antibiotic treatment, affected animals are likely to remain chronic carriers once clinical symptoms have subsided. These microorganisms were previously documented in sheep and other small ruminants worldwide. Aim Since there is a lack of research on the link between Mycoplasma infection and blood parameters, our aim was to investigate how Mycoplasma infection affects these blood parameters. In addition, the study conducted in Bosnia and Herzegovina represents the first documented research of hemoplasma infection in goats within this region. Methods In this research, 20 Alpine goats were sampled to investigate the presence of hemoplasma using polymerase chain reaction (PCR) analysis. Sequences of the 16S rRNA gene fragments were identified subsequently. The effect of Mycoplasma ovis (M. ovis) infection was observed on the following hematological parameters: Red blood cell count (RBC), hematocrit (HCT), hemoglobin (HGB), mean cell volume (MCV), mean cell hemoglobin, mean cell hemoglobin concentration, Reticulocyte count, and white blood cell (WBC). Effect on white blood cell differentiation, absolute white blood cell counts, platelet count, and mean platelet volume were also investigated. Results PCR analysis confirmed the presence of Mycoplasma spp. in 7 out of the 20 blood samples. Sequencing of the 16S rRNA gene fragments revealed that all positive samples were identified as M. ovis. The research findings highlighted potential effects on blood parameters in infected goats. Goats infected with M. ovis exhibited higher mean levels of HGB and HCT compared to uninfected goats. However, there were no statistically significant differences in RBC counts between infected and uninfected groups. The study also noted significantly higher WBC counts in goats without M. ovis infection. Conclusion 35% of animals tested positive for M. ovis. Our study's findings showed notable differences in hematological parameters between goats infected with M. ovis and those that were not infected.
Collapse
Affiliation(s)
- Amela Livnjak
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Nejra Hadžimusić
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Hans Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Bita Shahi-Barogh
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Jovana Šupić
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Lejla Pašić
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Livnjak A, Hadžimusić N, Fuehrer HP, Shahi-Barogh B, Šupić J, Pašić L. First molecular evidence of hemotropic mycoplasmas in goats from Bosnia and Herzegovina. Open Vet J 2025; 15:270-276. [PMID: 40092208 PMCID: PMC11910294 DOI: 10.5455/ovj.2024.v15.i1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 03/19/2025] Open
Abstract
Background Hemoplasmas represent the type of bacteria that infect red blood cells, potentially leading to various health impacts, including changes in blood parameters. The close interaction between hemoplasma and red blood cells results in cell damage through immune-related and other unspecified mechanisms. Even with a strong immune response and antibiotic treatment, affected animals are likely to remain chronic carriers once clinical symptoms have subsided. These microorganisms were previously documented in sheep and other small ruminants worldwide. Aim Since there is a lack of research on the link between Mycoplasma infection and blood parameters, our aim was to investigate how Mycoplasma infection affects these blood parameters. In addition, the study conducted in Bosnia and Herzegovina represents the first documented research of hemoplasma infection in goats within this region. Methods In this research, 20 Alpine goats were sampled to investigate the presence of hemoplasma using polymerase chain reaction (PCR) analysis. Sequences of the 16S rRNA gene fragments were identified subsequently. The effect of Mycoplasma ovis (M. ovis) infection was observed on the following hematological parameters: Red blood cell count (RBC), hematocrit (HCT), hemoglobin (HGB), mean cell volume (MCV), mean cell hemoglobin, mean cell hemoglobin concentration, Reticulocyte count, and white blood cell (WBC). Effect on white blood cell differentiation, absolute white blood cell counts, platelet count, and mean platelet volume were also investigated. Results PCR analysis confirmed the presence of Mycoplasma spp. in 7 out of the 20 blood samples. Sequencing of the 16S rRNA gene fragments revealed that all positive samples were identified as M. ovis. The research findings highlighted potential effects on blood parameters in infected goats. Goats infected with M. ovis exhibited higher mean levels of HGB and HCT compared to uninfected goats. However, there were no statistically significant differences in RBC counts between infected and uninfected groups. The study also noted significantly higher WBC counts in goats without M. ovis infection. Conclusion 35% of animals tested positive for M. ovis. Our study's findings showed notable differences in hematological parameters between goats infected with M. ovis and those that were not infected.
Collapse
Affiliation(s)
- Amela Livnjak
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Nejra Hadžimusić
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Hans Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Bita Shahi-Barogh
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Jovana Šupić
- Department for Clinical Sciences, University of Sarajevo-Veterinary Faculty, Sarajevo, Bosnia and Herzegovina
| | - Lejla Pašić
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Li B, Lu Y, Feng Y, Jiao X, Zhang Q, Zhou M, Zhang Y, Xu J, Chu Y, Ran D. Mycoplasma bovis Invades Non-Phagocytic Cells by Clathrin-Dependent Endocytic Pathways and Escapes from Phagocytic Vesicles. Pathogens 2024; 13:1003. [PMID: 39599557 PMCID: PMC11597682 DOI: 10.3390/pathogens13111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves as a pivotal mechanism enabling M. bovis to evade the immune system and penetrate mucosal barriers, thereby promoting its spread. To investigate the differences in M. bovis invasion into four types of non-phagocytic cells (Madin-Darby bovine kidney (MDBK) cells, embryonic bovine lung (EBL) cells, bovine embryo tracheal (EBTr) cells and bovine turbinate (BT) cells) and further elucidate its invasion mechanism, this study first optimized the experimental methods for M. bovis invasion into cells. Utilizing laser scanning confocal microscopy, transmission electron microscopy, and high-content live-cell imaging systems, the invasion process of M. bovis into four types of non-phagocytic cells was observed. The invasion rates of three different strains of M. bovis (PG45, 07801, 08M) were quantified through the plate counting method. In order to clarify the specific pathway of M. bovis invasion into cells, chlorpromazine (CPZ), amiloride (AMI), and methyl-β-cyclodextrin (M-β-CD) were used to inhibit CLR-mediated clathrin-dependent endocytosis (CDE) pathway, macropinocytosis, and lipid raft pathway, respectively. Subsequently, the invasion rates of PG45 into these four types of cells were measured. Using siRNA technology, the expression of clathrin (CLR) in EBL cells was knocked down to further verify the role of CLR in the invasion process of M. bovis. The results showed that the optimal conditions for M. bovis to invade non-phagocytic cells were a multiplicity of infection (MOI) of 1000 and an optimal invasion time of 4 h. All three strains of M. bovis have the ability to invade the four types of non-phagocytic cells, yet their invasion abilities vary significantly. Observations from transmission electron microscopy further confirmed that at 120 min post-infection, PG45 had successfully invaded EBL cells and was present within endocytic vesicles. It is noteworthy that almost all PG45 successfully escaped from the endocytic vesicles after 240 min of infection had passed. Through chemical inhibition experiments and CLR protein knockdown experiments, it was found that when the CDE and lipid raft pathways were blocked or CLR protein expression was reduced, the invasion rates of PG45, 07801, and 08M in MDBK, EBL, EBTr, and BT cells were significantly decreased (p < 0.05). The above results indicate that M. bovis can invade all types of non-phagocytic cells through endocytic pathways involving CDE (clathrin-dependent endocytosis) or lipid raft-mediated endocytosis, and possesses the ability to escape from phagosomes.
Collapse
Affiliation(s)
- Bin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Yaru Feng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Xiaolong Jiao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Qiuyu Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Mengting Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Yuyu Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| | - Jian Xu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yuefeng Chu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Duoliang Ran
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (B.L.); (Y.L.); (Y.F.); (X.J.); (Q.Z.); (M.Z.); (Y.Z.); (J.X.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivores, Urumqi 830052, China
| |
Collapse
|
4
|
Gelgie AE, Schneider P, Citti C, Dordet-Frisoni E, Gillespie BE, Almeida RA, Agga GE, Amoah YS, Shpigel NY, Kerro Dego O, Lysnyansky I. Mycoplasma bovis 5'-nucleotidase is a virulence factor conferring mammary fitness in bovine mastitis. PLoS Pathog 2024; 20:e1012628. [PMID: 39531484 PMCID: PMC11729948 DOI: 10.1371/journal.ppat.1012628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/13/2025] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Nucleases and 5' nucleotidase (5'-NT) play essential roles in cell biology and are often associated with bacterial virulence. In Mycoplasma spp., which have limited metabolic capacities and rely on nutrient availability, these enzymes are of significant importance for nucleotide salvage. This study explores the potential role of 2 membrane-associated lipoproteins, the major nuclease MnuA and 5'-NT, in Mycoplasma bovis mastitis. Mutants deficient in MnuA (mnuA::Tn) and in 5'-NT (0690::Tn) were identified through genome-wide transposon mutagenesis of M. bovis PG45 type strain and their fitness and virulence were assessed both in vitro, in axenic medium, and in vivo, using murine and cow mastitis models. The mnuA::Tn mutant demonstrated reduced nuclease activity, while 0690::Tn exhibited slow log-phase growth and impaired hydrolase activity towards nucleotides as well as deoxynucleotides (dAMP and dGMP). In comparison to the parent strain, the 0690::Tn mutant displayed markedly reduced fitness, as evidenced by a significant decrease or even absence in post-challenge mycoplasma counts in murine and cow mammary tissues, respectively. Moreover, the 0690::Tn mutant failed to induce mastitis in both experimental models. Conversely, the mnuA::Tn mutant induced inflammation in murine mammary glands, characterized by neutrophil infiltration and increased expression of major inflammatory genes. In cows, the mnuA::Tn was able to cause an increase in somatic cell counts in a manner comparable to the wild type, recruit neutrophils, and induce mastitis. Collectively, these findings provide complementary insights, revealing that disruption of 5'-NT significantly attenuated M. bovis pathogenicity, whereas a MnuA-deficient mutant retained the ability to cause mastitis.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Peleg Schneider
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Emilie Dordet-Frisoni
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Raúl A. Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| | - Yaa Serwaah Amoah
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Mycoplasma Unit, Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Nahum Y. Shpigel
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Inna Lysnyansky
- Mycoplasma Unit, Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
5
|
Song Y, Tang L, Li N, Xu J, Zhang Z, Ma H, Liao Y, Chu Y. Mycoplasma bovis activates apoptotic caspases to suppress xenophagy for its intracellular survival. Vet Microbiol 2024; 298:110298. [PMID: 39509837 DOI: 10.1016/j.vetmic.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Mammalian caspases are categorized into apoptotic and inflammatory types. Apoptotic caspases mediate apoptosis activation, while inflammatory caspases participate in inflammasome activation. Previous studies have shown that apoptotic caspases regulate autophagy in both cancer and pharmacological treatment models. However, the relationship between apoptotic caspases and xenophagy during pathogen infection remains elusive. In the current study, we used Mycoplasma bovis (M. bovis) as a model pathogen investigating the relationship between apoptotic caspases and xenophagy during infection. We found that M. bovis activated apoptotic caspases by triggering mitochondrial damage in macrophages, and the intracellular survival of M. bovis was enhanced by the activation of apoptotic caspases and restricted by the inhibition of apoptotic caspases. Moreover, confocal microscopy and Western blot analysis revealed that the activation of apoptotic caspases impedes host xenophagy by cleaving autophagy-related protein Beclin 1. Our findings indicate that M. bovis utilizes host apoptotic caspases to suppress xenophagy, thereby enhancing its intracellular survival. This research contributes to understanding the interplay between apoptotic caspases and xenophagy during pathogen infection, offering novel insights into the intracellular survival mechanisms of mycoplasma in macrophages.
Collapse
Affiliation(s)
- Yinjuan Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Li Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhengyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hui Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yi Liao
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, College of Animal and Veterinary Sciences, Southwest Minzu University, Sichuan 610041, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China.
| |
Collapse
|
6
|
Yang M, Yang F, Guo Y, Liu F, Li Y, Qi Y, Guo L, He S. Molecular mechanism of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia based on network pharmacology, molecular docking, molecular dynamics simulations and experimental verification. Front Vet Sci 2024; 11:1431233. [PMID: 39380772 PMCID: PMC11458528 DOI: 10.3389/fvets.2024.1431233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Mycoplasma bovis pneumonia is a highly contagious respiratory infection caused by Mycoplasma bovis. It is particularly prevalent in calves, posing a significant threat to animal health and leading to substantial economic losses. Dang-Shen-Yu-Xing decoction is often used to treat this condition in veterinary clinics. It exhibits robust anti-inflammatory effects and can alleviate pulmonary fibrosis. However, its mechanism of action remains unclear. Therefore, this study aimed to preliminarily explore the molecular mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma pneumonia in calves through a combination of network pharmacology, molecular docking, molecular dynamics simulation methods, and experimental validation. The active components and related targets of Dang-Shen-Yu-Xing decoction were extracted from several public databases. Additionally, complex interactions between drugs and targets were explored through network topology, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Subsequently, the binding affinity of drug to disease-related targets was verified through molecular docking and molecular dynamics simulation. Finally, the pharmacodynamics were verified via animal experiments. The primary network topology analysis revealed two core targets and 10 key active components of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma bovis pneumonia involved multiple signaling pathways, with the main pathways including PI3K-Akt and IL17 signaling pathways. Moreover, molecular docking predicted the binding affinity and conformation of the core targets of Dang-Shen-Yu-Xing decoction, IL6, and IL10, with the associated main active ingredients. The results showed a strong binding of the active ingredients to the hub target. Further, molecular docking dynamics simulation revealed three key active components of IL10 induced by Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Finally, animal experiments confirmed Dang-Shen-Yu-Xing decoction pharmacodynamics, suggesting that it holds potential as an alternative therapy for treating mycoplasma bovis pneumonia.
Collapse
Affiliation(s)
- Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Fan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Yong Li
- College of Life Science and Technology, Ningxia Polytechnic, Yinchuan, Ningxia, China
| | - Yanrong Qi
- Agricultural and Rural Bureau of Helan County, Yinchuan, Ningxia, China
| | - Lei Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Huang Q, Xing J, Li G, Liu M, Gao M, Wang J, Tang F, Ren J, Zhao C, Wang X, Zhou X, Luo H, Yu Y, Zeng D, Dai J, Xue F. LCN2 regulates the gut microbiota and metabolic profile in mice infected with Mycobacterium bovis. mSystems 2024; 9:e0050124. [PMID: 39051782 PMCID: PMC11334432 DOI: 10.1128/msystems.00501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Infection with Mycobacterium bovis precipitates a spectrum of pathologies in bovines, notably necrotic pneumonia, mastitis, and arthritis, impinging upon the health and nutritional assimilation of these animals. A pivotal factor, lipocalin 2 (Lcn2), is responsive to microbial invasion, inflammatory processes, and tissue damage, the extent of which Lcn2 modulates the gut environment, however, remains unclear in response to M. bovis-induced alterations. To explore the role of Lcn2 in shaping the gut milieu of mice during a 5-week period post-M. bovis infection, Lcn2 knockout Lcn2-/- mice were scrutinized for changes in the gut microbiota and metabolomic profiles. Results showed that Lcn2-/- mice infected with M. bovis exhibited notable shifts in the operational taxonomic units (OTUs) of gut microbiota, alongside significant disparities in α and β diversity. Concomitantly, a marked increase was observed during the 5-week period in the abundance of Akkermansia, Oscillospira, and Bacteroides, coupled with a substantial decrease in Ruminococcus within the microbiome of Lcn2 knockout mice. Notably, Akkermansia muciniphila was significantly enriched in the gut flora of Lcn2-/- mice. Furthermore, the absence of Lcn2 significantly altered the gut metabolomic landscape, evidenced by elevated levels of metabolites such as taurodeoxycholic acid, 10-undecenoic acid, azelaic acid, and dodecanedioic acid in Lcn2-/- mice. Our findings demonstrated that the lack of Lcn2 in the context of M. bovis infection profoundly affected the regulation of gut microbiota and metabolomic components, culminating in a transformed gut environment. Our results revealed that Lcn2 may regulate gut microbiota and metabolome components, changing the intestinal environment, thereby affecting the infection status of M. bovis. IMPORTANCE Our study addresses the critical knowledge gap regarding the specific influence of lipocalin 2 (LCN2) in the context of Mycobacterium bovis infection, particularly focusing on its role in the gut environment. Utilizing LCN2 knockout (Lcn2-/-) mice, we meticulously assessed changes in the gut microbiota and metabolic components following M. bovis infection. Our findings reveal alterations in the gut microbial community, emphasizing the potentially crucial role of LCN2 in maintaining stability. Furthermore, we observed significant shifts in specific microbial communities, including the enrichment of Akkermansia muciniphila, known for its positive impact on intestinal health and immune regulation. The implications of our study extend beyond understanding the dynamics of the gut microbiome, offering insights into the potential therapeutic strategies for gut-related health conditions and microbial dysbiosis.
Collapse
Affiliation(s)
- Quntao Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Mengting Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengtian Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingwen Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengzhu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinru Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haodong Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Youli Yu
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Dexin Zeng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Sameed Saher A, Raza A, Qiu F, Mehmood K, Hussain R, Qayyum A, Idris M, Almutairi MH, Li K. Detection of haptoglobin and serum amyloid A as biomarkers in naturally infected Mycoplasma bovis calves. Acta Trop 2024; 254:107215. [PMID: 38604328 DOI: 10.1016/j.actatropica.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
The livestock sector of Pakistan is increasing rapidly and it plays important role both for rural community and national economy. It is estimated that almost 8 million rural people are involved in livestock rearing and earning about 35-40 % of their income from the livestock sector. Mycoplasma bovis (M. bovis) infection causes significant economic losses in dairy animals especially young calf in the form of clinical illnesses such as pneumonia, poly-arthritis, respiratory distress and mortality. M. bovis is hard to diagnose and control because of uneven disease appearance and it is usually noticed in asymptomatic animals. For the identification of M. bovis in sub-clinical and clinical samples, determination of acute phase proteins i.e., haptoglobin (Hp) and serum amyloid A (SAA) are important tools for the timely diagnosis of disease. Therefore, early diagnosis of disease and hemato-biochemical changes are considered beneficial tools to control the infectious agent to uplift the economy of the dairy farmers. For this purpose, blood samples were collected from 200 calves of Bovidae family. Serum was separated from blood samples to determine the concentration of Hp and SAA, while blood samples were processed to determine hematological changes in blood from calves by using hematological analyzer. The blood plasma obtained from the blood samples was processed to measure oxidative stress factors. Lungs tissues from slaughterhouses/ morbid calves were collected to observe histopathological changes. The results of present study indicated that level of SAA and Hp remarkably increased (P < 0.05) in M. bovis infected calves in comparison to healthy calves. The oxidative stress markers indicated that nitric oxide and MDA levels in the infected calves increased significantly (P < 0.05), while infected claves had considerably lower levels of superoxide dismutase, catalase and glutathione. These findings indicate that oxidative stress play role to increase the level of APPs, while monitoring of APPs levels may serve as a valuable addition to the clinical evaluation of naturally infected calves with M. bovis. The hematological parameters were decreased significantly (P < 0.05). Altogether, this study suggests that Hp and SAA are proposed as promising biomarkers for detecting naturally occurring M. bovis infection in calves.
Collapse
Affiliation(s)
- Abdul Sameed Saher
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Ali Raza
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Fuan Qiu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province & Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan.
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Abdul Qayyum
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Musadiq Idris
- Department of Physiology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Zhang H, Zhang Y, Lu D, Chen X, Chen Y, Hu C, Guo A. MbovP0725, a secreted serine/threonine phosphatase, inhibits the host inflammatory response and affects metabolism in Mycoplasma bovis. mSystems 2024; 9:e0089123. [PMID: 38440990 PMCID: PMC11019793 DOI: 10.1128/msystems.00891-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1β, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal & Veterinary Sciences, Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Raheem A, Lu D, Khalid AK, Zhao G, Fu Y, Chen Y, Chen X, Hu C, Chen J, Chen H, Guo A. The Identification of a Novel Nucleomodulin MbovP467 of Mycoplasmopsis bovis and Its Potential Contribution in Pathogenesis. Cells 2024; 13:604. [PMID: 38607043 PMCID: PMC11011252 DOI: 10.3390/cells13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Mycoplasmopsis bovis is a causative agent of crucial diseases in both dairy and beef cattle leading to substantial economic losses. However, limited control measures for M. bovis-related diseases exist due to a lack of understanding about the virulence factors of this pathogen, a common challenge in mycoplasma research. Consequently, this study aimed to characterize a novel nucleomodulin as a virulence-related factor of M. bovis. Employing bioinformatic tools, we initially predicted MbovP467 to be a secreted protein with a nuclear localization signal based on SignalP scores and the cNLS (Nuclear Localization Signal) Mapper, respectively. Subsequently, the MbovP467 gene was synthesized and cloned into a pEGFP plasmid with EGFP labeling to obtain a recombinant plasmid (rpEGFP-MbovP467) and then was also cloned in pET-30a with a consideration for an Escherichia coli codon bias and expressed and purified for the production of polyclonal antibodies against the recombinant MbovP467 protein. Confocal microscopy and a Western blotting assay confirmed the nuclear location of MbovP467 in bovine macrophages (BoMacs). RNA-seq data revealed 220 up-regulated and 20 down-regulated genes in the rpEGFP-MbovP467-treated BoMac group compared to the control group (pEGFP). A GO- and KEGG-enrichment analysis identified associations with inflammatory responses, G protein-coupled receptor signaling pathways, nuclear receptor activity, sequence-specific DNA binding, the regulation of cell proliferation, IL-8, apoptotic processes, cell growth and death, the TNF signaling pathway, the NF-κB signaling pathway, pathways in cancer, and protein families of signaling and cellular processes among the differentially expressed up-regulated mRNAs. Further experiments, investigating cell viability and the inflammatory response, demonstrated that MbovP467 reduces BoMac cell viability and induces the mRNA expression of IL-1β, IL-6, IL-8, TNF-α, and apoptosis in BoMac cells. Further, MbovP467 increased the promoter activity of TNF-α. In conclusion, this study identified a new nucleomodulin, MbovP467, for M. bovis, which might have an important role in M. bovis pathogenesis.
Collapse
Affiliation(s)
- Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Karim Khalid
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Burne AM, Richey LJ, Schoeb TR, Brown MB. Galleria mellonella Invertebrate Model Mirrors the Pathogenic Potential of Mycoplasma alligatoris within the Natural Host. Transbound Emerg Dis 2024; 2024:3009838. [PMID: 40303151 PMCID: PMC12017031 DOI: 10.1155/2024/3009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2025]
Abstract
Most mycoplasmal infections result in chronic, clinically silent disease. In direct contrast, Mycoplasma alligatoris elicits a fulminant, multisystem disease in the natural host, Alligator mississippiensis (American alligator). The goals of the study were to better understand the disease in the natural host and to determine if the invertebrate model G. mellonella could serve as a surrogate alternate host. The survival of alligators infected intratracheally was dose dependent (p=0.0003), ranging from no mortality (102 CFU) to 100% mortality (108 CFU), with 60% mortality at the 104 and 105 CFU infectious dose. Microbial load in blood, joints, and brain was dose dependent, regardless of whether alligators were infected intratracheally or intravenously (p < 0.002). Weight loss was similarly impacted (p < 0.001). Experimental infection of the invertebrate Galleria mellonella mirrored the result in the natural host. In a dose response infection study, both larval survival curves and successful pupation curves were significantly different (p ≤ 0.0001) and dose dependent. Infected insects did not emerge as moths (p < 0.0001). Here, we describe the first study investigating G. mellonella as a surrogate model to assess the pathogenic potential of M. alligatoris. G. mellonella survival was dose dependent and impacted life stage outcome.
Collapse
Affiliation(s)
- Alexandra M. Burne
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lauren J. Richey
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Comparative Pathology Services, Tufts University, Boston, MA 02155, USA
| | - Trenton R. Schoeb
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Program in Immunology, Heersink School of Medicine, University of Alabama Birmingham, Birmingham, AL 35294, UK
| | - Mary B. Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Gelgie AE, Desai SE, Gelalcha BD, Kerro Dego O. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024; 11:1322267. [PMID: 38515536 PMCID: PMC10956102 DOI: 10.3389/fvets.2024.1322267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Desai
- College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
13
|
Dawood AS, Zhao G, He Y, Lu D, Wang S, Zhang H, Chen Y, Hu C, Chen H, Schieck E, Guo A. Comparative Proteomic Analysis of Secretory Proteins of Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides Investigates Virulence and Discovers Important Diagnostic Biomarkers. Vet Sci 2023; 10:685. [PMID: 38133236 PMCID: PMC10748157 DOI: 10.3390/vetsci10120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yujia He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.S.D.); (Y.H.); (D.L.); (S.W.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Jourquin S, Lowie T, Debruyne F, Chantillon L, Vereecke N, Boyen F, Boone R, Bokma J, Pardon B. Dynamics of subclinical pneumonia in male dairy calves in relation to antimicrobial therapy and production outcomes. J Dairy Sci 2022; 106:676-689. [DOI: 10.3168/jds.2022-22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
|
15
|
Omotainse OS, Wawegama NK, Kulappu Arachchige SN, C Coppo MJ, Vaz PK, Woodward AP, Kordafshari S, Bogeski M, Stevenson M, Noormohammadi AH, Stent AW. Tracheal cellular immune response in chickens inoculated with Mycoplasma synoviae vaccine, MS-H or its parent strain 86079/7NS. Vet Immunol Immunopathol 2022; 251:110472. [PMID: 35940079 DOI: 10.1016/j.vetimm.2022.110472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Mycoplasma synoviae causes respiratory tract disease in chickens characterised by mild to moderate lymphoplasmacytic infiltration of the tracheal mucosa. MS-H (Vaxsafe1 MS, Bioproperties Pty Ltd.) is an effective live attenuated vaccine for M. synoviae, but the immunological basis for its mechanism of protection has not been investigated, and the phenotypes of lymphocytes and associated cytokines involved in the local adaptive immune response have not been described previously. In this study, specific-pathogen-free chickens were inoculated intra-ocularly at 3 weeks of age with either M. synoviae vaccine strain MS-H or vaccine parent strain 86079/7NS (7NS), or remained uninoculated. At 2-, 7- and 21 days post-inoculation (dpi), tracheal mucosal pathology, infiltrating lymphocytes subsets and transcription levels of mRNA encoding 8 cytokines were assessed using light microscopy, indirect immunofluorescent staining and RT-qPCR, respectively. After inoculation, tracheal mucosal thickness, tracheal mucosal lesions, and numbers of infiltrating CD4+CD25- cells, B-cells, and macrophages were greater in MS-H- and 7NS-inoculated chickens compared with non-inoculated. Inoculation with 7NS induced up-regulation of IFN-γ, while vaccination with MS-H induced up-regulation of IL-17A, when compared with non-inoculated birds. Both inoculated groups had a moderate infiltrate of CD4+CD25+ T cells in the tracheal mucosa. These findings reveal that the tracheal local cellular response after MS-H inoculation is dominated by a Th-17 response, while that of 7NS-inoculated chickens is dominated by a Th-1 type response.
Collapse
Affiliation(s)
- Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia.
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Basic Veterinary SciencesFaculty of Veterinary Medicine and Animal Science University of Peradeniya, Peradeniya 20400, Sri lanka
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Woodward
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Somayeh Kordafshari
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, VIC, Australia
| | - Mirjana Bogeski
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Mark Stevenson
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Andrew W Stent
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
16
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
18
|
Gelgie AE, Korsa MG, Kerro Dego O. Mycoplasma bovis Mastitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100123. [PMID: 35909617 PMCID: PMC9325741 DOI: 10.1016/j.crmicr.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma bovis mastitis (MBM) is highly contagious and causes significant economic losses through reduction in milk quantity and quality, culling and treatment costs. Adhesion and invasion are among the most important virulence mechanisms to establish infection in the mammary gland. M. bovis can elicit both humoral and cellular immune responses during mammary gland infection. There is no effective commercial vaccine against MBM to date and early detection and isolation/culling remains vital control measure for MBM in dairy farms.
Bovine mycoplasmoses, which is mostly caused by Mycoplasma bovis, is a significant problem in the dairy and beef industry. Mycoplasmal mastitis has a global occurrence with notable effects in the United States and Europe. The pathogen was first detected in a mastitis case in California, United States, and regarded as major contagious mastitis. It is highly contagious and resistant to antibiotics and lack cell wall rendering certain group of antibiotics ineffective. Outbreaks mostly originate from introduction of diseased dairy cows to a farm and poor hygienic practices that help to maintain cow to cow transmission. Rapid detection scheme is needed to be in place in dairy farms to devise preventive measures and stop future outbreaks. However; early detection is hampered by the fastidious growth of M. bovis and the need for specialized equipment and reagents in laboratory settings. Intramammary Mycoplasma bovis infections cause elevation in milk somatic cell count which is one of the important factors to determine milk quality for grading and hence dictates milk price. There are multiple attributes of M. bovis regarded as virulence factors such as adhesion to and invasion into host cells, avoidance of phagocytosis, resistance to killing by the alternative complement system, biofilm formation, and hydrogen peroxide production. Nevertheless, there are still undetermined virulence factors that hamper the development of sustainable control tools such as effective vaccine. To date, most vaccine trials have failed, and there is no commercial M. bovis mastitis vaccine. Mycoplasma bovis has been shown to modulate both humoral and cellular immune response during bovine mastitis. In the future, research seeking new immunogenic and protective vaccine targets are highly recommended to control this important dairy cattle disease worldwide.
Collapse
|
19
|
Maya-Rodríguez LM, Carrillo-Casas EM, Rojas-Trejo V, Trigo-Tavera F, Miranda-Morales RE. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico. Trop Anim Health Prod 2022; 54:394. [PMID: 36417039 PMCID: PMC9685072 DOI: 10.1007/s11250-022-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to identify Mycoplasma bovis, Myc. dispar, and Myc. bovirhinis, which are involved in bovine respiratory disease through a multiplex PCR as an alternative to culture's features that hamper Mycoplasma isolation. Nasal swabs were taken from 335 cattle with and without respiratory disease background (RDB) from dairy herds in the central region of Mexico. Each sample was divided in two; the first part was processed for the direct DNA extraction of the nasal swab and the second for Mycoplasma isolation, culture, and then the multiplex PCR was performed. In the nasal swabs, Myc. bovis was identified in 21.1%; Myc. dispar, in 11.8%; and Myc. bovirhinis, in 10.8% in cattle with RDB. Isolates were identified as Myc. bovis, 20.1%; Myc. dispar, 11.8%; and Myc. bovirhinis, 6.1%. There is a strong correlation between the presence of Mycoplasma identified by PCR and the clinical history of the disease (ρ < 0.0000). In animals without RDB, Myc. bovirhinis was the only species detected in 6.1% of the samples processed directly for multiplex PCR, and in 2% of the isolates. There is an excellent correlation (kappa 0.803) between the isolation and the 16S PCR and a high correlation (kappa 0.75) between the isolation and the multiplex PCR. Therefore, we conclude that the PCR multiplex test is highly sensitive and may be used for the diagnosis and surveillance of the three species in biological samples and mycoplasma isolates.
Collapse
Affiliation(s)
- L. M. Maya-Rodríguez
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - E. M. Carrillo-Casas
- grid.414754.70000 0004 6020 7521Hospital General “Dr. Manuel Gea González”, Depto. de Biología Molecular e Histocompatibilidad, Dirección de Investigación, Calz. de Tlalpan 4800, Secc XVI, 14080 Tlalpan CDMX, CP Mexico
| | - V. Rojas-Trejo
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - F. Trigo-Tavera
- grid.9486.30000 0001 2159 0001Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Patología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - R. E. Miranda-Morales
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| |
Collapse
|
20
|
Scott MA, Woolums AR, Swiderski CE, Perkins AD, Nanduri B. Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology. Sci Rep 2021; 11:22916. [PMID: 34824337 PMCID: PMC8616896 DOI: 10.1038/s41598-021-02343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understanding of host response related to BRD pathophysiology. Supervised machine learning (ML) approaches present one such method for analyzing new and previously published transcriptome data to identify novel disease-associated genes and mechanisms. Our objective was to apply ML models to lung and immunological tissue datasets acquired from previous clinical BRD experiments to identify genes that classify disease with high accuracy. Raw mRNA sequencing reads from 151 bovine datasets (n = 123 BRD, n = 28 control) were downloaded from NCBI-GEO. Quality filtered reads were assembled in a HISAT2/Stringtie2 pipeline. Raw gene counts for ML analysis were normalized, transformed, and analyzed with MLSeq, utilizing six ML models. Cross-validation parameters (fivefold, repeated 10 times) were applied to 70% of the compiled datasets for ML model training and parameter tuning; optimized ML models were tested with the remaining 30%. Downstream analysis of significant genes identified by the top ML models, based on classification accuracy for each etiological association, was performed within WebGestalt and Reactome (FDR ≤ 0.05). Nearest shrunken centroid and Poisson linear discriminant analysis with power transformation models identified 154 and 195 significant genes for IBR and BRSV, respectively; from these genes, the two ML models discriminated IBR and BRSV with 100% accuracy compared to sham controls. Significant genes classified by the top ML models in IBR (154) and BRSV (195), but not BVDV (74), were related to type I interferon production and IL-8 secretion, specifically in lymphoid tissue and not homogenized lung tissue. Genes identified in Mannheimia haemolytica infections (97) were involved in activating classical and alternative pathways of complement. Novel findings, including expression of genes related to reduced mitochondrial oxygenation and ATP synthesis in consolidated lung tissue, were discovered. Genes identified in each analysis represent distinct genomic events relevant to understanding and predicting clinical BRD. Our analysis demonstrates the utility of ML with published datasets for discovering functional information to support the prediction and understanding of clinical BRD.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, USA.
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Cyprianna E Swiderski
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Andy D Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
21
|
Fanelli A, Cirilli M, Lucente MS, Zarea AAK, Buonavoglia D, Tempesta M, Greco G. Fatal Calf Pneumonia Outbreaks in Italian Dairy Herds Involving Mycoplasma bovis and Other Agents of BRD Complex. Front Vet Sci 2021; 8:742785. [PMID: 34568480 PMCID: PMC8462733 DOI: 10.3389/fvets.2021.742785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma bovis is increasingly recognized worldwide as an important cause of disease with major welfare and production impairments on cattle rearing. Although it was detected in veal calves and beef cattle, little is known on the infection impact and on its temporal morbidity pattern in Italian dairy herds. Thus, this study aimed to investigate the involvement of M. bovis on fatal calf pneumonia outbreaks that occurred during 2009–2019 in 64 Italian dairy farms. Furthermore, a deeper diagnostic workup of concurrent infection with other viral and bacterial respiratory pathogens was assessed. Out of the investigated fatal pneumonia cases, M. bovis was frequently detected (animal prevalence, 16.16%; 95%CI, 11.82–21.33; herd prevalence, 26.56; 95%CI, 16.29–39.08) either as the single agent of the disease in more than half of the positive samples (20/37) or in concurrent infections with Histophilus somni (9/37, 24.3%), Mannheimia haemolytica (6/37, 16.621%), Trueperella pyogenes (1/37, 2.70%), Pasteurella multocida (1/37, 2.70%), bovine respiratory syncytial virus (5/37, 13.51%), and bovine viral diarrhea virus (2/37, 5.55%). Based on time-series analysis, M. bovis was recorded in the area since 2009 with outbreaks displaying a clear morbidity seasonal pattern with peaks in April (43.21%) and in September (13.51%). This might be due to the stressing conditions during spring and late summer periods. Results of this study highlight that M. bovis infection warrants consideration, and control measures are needed given its involvement in lethal pneumonia outbreaks in dairy herds from an extended area.
Collapse
Affiliation(s)
- Angela Fanelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Margie Cirilli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Aya Attia Koraney Zarea
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy.,Department of Microbiology and Immunology, National Research Centre, Cairo, Egypt
| | | | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|