1
|
Braglia C, Rudelli C, Tinti A, Bocquet M, Isani G, Bulet P, Giacomelli A, Di Gioia D, Alberoni D. Unravelling pollen diet and microbiome influence on honey bee health. Sci Rep 2025; 15:13474. [PMID: 40251206 PMCID: PMC12008280 DOI: 10.1038/s41598-025-96649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
In the last decade, drought has been identified as one of the most relevant climate change factors affecting ecosystem integrity across countries. It can severely affect plant growth in agroecosystems, leading to changes in the trophic potential of nectar and pollen. As a cascade effect, a deficit in the nutritional composition of pollen can weaken pollinators, triggering additional threats to ecosystem stability. In this scenario, understanding the impact of trophic sources on honey bee health remains a significant gap that needs to be addressed. This study aims to correlate pollen of different botanical and geographical origins, and therefore of different trophic potential, with selected honey bee markers: the abundance of core microbial taxa and proteins involved in the immune response detectable in the haemolymph. A comprehensive proteomic approach based on MALDI BeeTyping® and SDS-PAGE profiles, together with qPCR for the quantification of target microorganisms, was used to elucidate these interactions in bees fed with pollen deriving from 8 botanical families. Our results show that different pollens do not significantly affect the concentration and the total amount of small and large haemolymph proteins but do significantly affect the core gut microbiome composition. Furthermore, the effect of different diets on the microbiome suggests an indirect effect on the immune system response by modulating and influencing the synthesis of some immune-related peptides. This research confirms the importance of the gut microbiome in honey bee health and may also help to understand the honey bee response to climate changes in a scenario of compromised trophic resources.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | - Cecilia Rudelli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, BO, 40064, Italy
| | - Anna Tinti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | | | - Gloria Isani
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, BO, 40064, Italy
| | - Philippe Bulet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309,, Équipe Epigenetics Regulations, Institute for Advanced Biosciences, 38000, Grenoble, France
- Plateforme BioPark d'Archamps, 218 Avenue Marie Curie, 74160, Archamps, France
| | - Alessandra Giacomelli
- Unione Nazionale Associazioni Apicoltori Italiani (UNA API), Via Paolo Boselli, 2, Florence, 50136, Italy
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy.
| |
Collapse
|
2
|
Morrison B, Newburn LR, Fitch G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. INSECTS 2025; 16:414. [PMID: 40332845 DOI: 10.3390/insects16040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts.
Collapse
Affiliation(s)
| | - Laura R Newburn
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
| | - Gordon Fitch
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Hu C, Deng B, Fang W, Guo B, Chen P, Lu C, Dong Z, Pan M. Transgenic overexpression of bmo-miR-6498-5p increases resistance to Nosema bombycis in the silkworm, Bombyx mori. Appl Environ Microbiol 2024; 90:e0027024. [PMID: 39240120 PMCID: PMC11497792 DOI: 10.1128/aem.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/23/2024] [Indexed: 09/07/2024] Open
Abstract
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Collapse
Affiliation(s)
- Congwu Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bingyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, Eguaras MJ, Di Gioia D, Mifsud D. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol 2024; 14:1323157. [PMID: 38808063 PMCID: PMC11131372 DOI: 10.3389/fcimb.2024.1323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Martin Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | | | - Martin Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - David Mifsud
- Institute of Earth Systems, L-Universita ta’ Malta, Msida, Malta
| |
Collapse
|
5
|
Garrido PM, Porrini MP, Alberoni D, Baffoni L, Scott D, Mifsud D, Eguaras MJ, Di Gioia D. Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema ceranae Infection. Probiotics Antimicrob Proteins 2024; 16:259-274. [PMID: 36637793 PMCID: PMC10850026 DOI: 10.1007/s12602-022-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.
Collapse
Affiliation(s)
- Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Martín Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy.
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| | - Dara Scott
- ADVANCE SCIENCE Ltd, Knocknacarra Rd, Galway, H91 XV84, Ireland
| | - David Mifsud
- Institute of Earth Systems, L-Università ta' Malta, University Ring Rd, Msida, MSD2080, Malta
| | - Matín Javier Eguaras
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET, UNMdP, Centro Asoc. Simple CIC PBA, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Centro de Investigación en Abejas Sociales (CIAS), FCEyN, UNMdP, Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| |
Collapse
|
6
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
7
|
Bjørnson S, James K, Steele T. Evaluation of manuka honey on the microsporidian pathogen Vairimorpha (Nosema) adaliae and its host, the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae). J Invertebr Pathol 2023; 196:107855. [PMID: 36410528 DOI: 10.1016/j.jip.2022.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Honey is known for its antibacterial and antifungal properties. Manuka honey was examined for its potential to manage the microsporidium Vairimorpha (Nosema) adaliae infecting Adalia bipunctata larvae. Development time for uninfected larvae fed aphids and water was 13.0 ± 0.2 days, which did not differ significantly from larvae fed aphids and manuka honey. Development of V. adaliae-infected larvae fed aphids and water was 16.3 ± 0.5 days, compared to 15.0 ± 0.2, 15.2 ± 0.3, and 15.6 ± 0.2 days for larvae fed aphids and 5 %, 10 %, or 15 % manuka honey, respectively. Development time was shorter for all honey treatments, but only those fed 5 % manuka differed significantly from the control. Control adults had 19.4 ± 3.0 spores/120 µm2, compared to 19.0 ± 2.0, 19.1 ± 2.1, and 14.3 ± 2.2, for adults provided with 5 %, 10 %, and 15 % honey, respectively. Although spore loads did not differ significantly (p > 0.05), lighter infections were observed in the group fed 15 % manuka.
Collapse
Affiliation(s)
- S Bjørnson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - K James
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - T Steele
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
8
|
Romanishina TO, Kot TF, Guralska SV, Furman SV, Rybachuk ZV, Kysterna OS. Study of the activity of sunflower honey against a mixed microbial association isolated from bees with signs of dyspepsia in laboratory conditions. UKRAINIAN JOURNAL OF VETERINARY AND AGRICULTURAL SCIENCES 2022. [DOI: 10.32718/ujvas5-3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Beekeeping is one of the essential branches of agriculture in Ukraine, the main activity of which is aimed at breeding bees and obtaining honey and other products beneficial for human health. Maintaining the physiological state of bee colonies at the proper level is one of the essential tasks of veterinary medicine doctors and beekeepers. Compliance with veterinary and sanitary requirements at bee farms is the basis of preventing infectious pathologies in bee colonies. Since the body of insects has a fast metabolism, any infectious pathology quickly acquires a massive manifestation. One indicative symptom of infectious damage to the “gut” of bees is dyspepsia. Diarrhea, anorexia, and loss of productivity are observed in bees in this condition. The market of means to prevent such pathological manifestations in beekeeping is relatively narrow. The healing and favorable properties of honey, manifested in pain-relieving, antimicrobial and anti-inflammatory effects, have been known since ancient times. Sunflower honey differs from other types in a wide range of components, particularly phytoncides, which inhibit the growth of pathogenic microorganisms. Therefore, the main goal of the experiment was a laboratory study of the effect of different concentrations of sunflower honey sieve on the mixed microbial association isolated from bees with signs of dyspepsia. The activity of sunflower honey in laboratory conditions was studied by the disco-diffusion method in Petri dishes on MPA medium (meat-peptone agar). To obtain syrup from sunflower honey, sunflower honey was diluted with distilled water in a ratio of 1:1, working solutions were prepared from sunflower honey syrup in dilutions of 1:2, 1:4, 1:10, 1:100. The data analysis indicates the bacteriostatic activity of the syrup from sunflower honey in all studied concentrations concerning the mixed microbial association. Moreover, the largest diameter of the growth inhibition zone of the studied microorganisms was noted when the syrup from sunflower honey was diluted in a ratio of 1:10 (19.2 ± 0.42 mm). In turn, the antagonistic effect of the syrup from sunflower honey was observed in all dilutions concerning the mixed microbial association, where the largest diameter of the antagonism was 19.6 ± 0.27 mm when the disc was impregnated with the native working solution. Thus, it is promising to accumulate and identify a pure culture antagonist concerning a mixed culture of bacteria isolated during bee diarrhea to further create a pharmacological agent for preventing infectious pathologies of bees in unhealthy apiaries.
Collapse
|
9
|
Ignatieva AN, Timofeev SA, Tokarev YS, Dolgikh VV. Laboratory Cultivation of Vairimorpha (Nosema) ceranae (Microsporidia: Nosematidae) in Artificially Infected Worker Bees. INSECTS 2022; 13:1092. [PMID: 36555002 PMCID: PMC9784591 DOI: 10.3390/insects13121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Nosemosis type C is a dangerous and widespread disease of the adult European honey bee Apis mellifera and is caused by the spore-forming intracellular parasite Vairimorpha (Nosema) ceranae. The search for new ways of therapy for this disease is complicated due to the seasonal availability of V. ceranae-infected insects as well as the lack of a developed system for the pathogen's cultivation. By carrying out trials which used different infectious dosages of the parasite, spore storage protocols, host age, and incubation temperatures, we present a simple, safe, and efficient method of V. ceranae propagation in artificially infected worker bees in the laboratory. The method is based on feeding the groups of adult worker bees with microsporidian spores and insect maintenance in plastic bottles at 33 °C. The source of the spores originated from the cadavers of infected insects from the previous round of cultivation, in which the infective spores persist for up to six months. An analysis of five independent cultivation rounds involving more than 2500 bees showed that the proposed protocol exploiting the dosage of one million spores per bee yielded over 60 million V. ceranae spores per bee, and most of the spore samples can be isolated from living insects.
Collapse
|
10
|
Bahreini R, Nasr M, Docherty C, de Herdt O, Feindel D, Muirhead S. In Vivo Inhibitory Assessment of Potential Antifungal Agents on Nosema ceranae Proliferation in Honey Bees. Pathogens 2022; 11:pathogens11111375. [PMID: 36422626 PMCID: PMC9695399 DOI: 10.3390/pathogens11111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Nosema ceranae Fries, 1996, causes contagious fungal nosemosis disease in managed honey bees, Apis mellifera L. It is associated around the world with winter losses and colony collapse disorder. We used a laboratory in vivo screening assay to test curcumin, fenbendazole, nitrofurazone and ornidazole against N. ceranae in honey bees to identify novel compounds with anti-nosemosis activity compared to the commercially available medication Fumagilin-B®. Over a 20-day period, Nosema-inoculated bees in Plexiglas cages were orally treated with subsequent dilutions of candidate compounds, or Fumagilin-B® at the recommended dose, with three replicates per treatment. Outcomes indicated that fenbendazole suppressed Nosema spore proliferation, resulting in lower spore abundance in live bees (0.36 ± 1.18 million spores per bee) and dead bees (0.03 ± 0.25 million spores per bee), in comparison to Fumagilin-B®-treated live bees (3.21 ± 2.19 million spores per bee) and dead bees (3.5 ± 0.6 million spores per bee). Our findings suggest that Fumagilin-B® at the recommended dose suppressed Nosema. However, it was also likely responsible for killing Nosema-infected bees (24% mortality). Bees treated with fenbendazole experienced a greater survival probability (71%), followed by ornidazole (69%), compared to Nosema-infected non-treated control bees (20%). This research revealed that among screened compounds, fenbendazole, along with ornidazole, has potential effective antifungal activities against N. ceranae in a controlled laboratory environment.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Correspondence:
| | - Medhat Nasr
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
- Saskatchewan Beekeepers Development Commission, Prince Albert, SK S6V 6Z2, Canada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Olivia de Herdt
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - David Feindel
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
11
|
Kunat-Budzyńska M, Budzyński M, Schulz M, Strachecka A, Gancarz M, Rusinek R, Ptaszyńska AA. Natural Substances, Probiotics, and Synthetic Agents in the Treatment and Prevention of Honeybee Nosemosis. Pathogens 2022; 11:pathogens11111269. [PMID: 36365020 PMCID: PMC9697638 DOI: 10.3390/pathogens11111269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Honeybees are important pollinators, but they are continuously exposed to a variety of fungal and bacterial diseases. One of the various diseases affecting honeybees is nosemosis caused by microsporidia from the Nosema genus. Honeybees are mainly infected through consumption of infected food or faeces containing Nosema spp. spores. Nosemosis causes damage to the middle intestine epithelium, which leads to food absorption disorders and honeybee malnutrition. Fumagillin, i.e., the antibiotic used to treat nosemosis, was withdrawn in 2016 from EU countries. Therefore, researchers have been looking for compounds of both natural and synthetic origin to fight nosemosis. Such compounds should not have a negative impact on bees but is expected to inhibit the disease. Natural compounds tested against nosemosis include, e.g., essential oils (EOs), plant extracts, propolis, and bacterial metabolites, while synthetic substances tested as anti-nosemosis agents are represented by porphyrins, vitamins, antibiotics, phenolic, ascorbic acids, and others. This publication presents an 18-year overview of various studies of a number of natural and synthetic compounds used in the treatment and prevention of nosemosis cited in PubMed, GoogleScholar, and CrossRef.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Michał Budzyński
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Michał Schulz
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence:
| |
Collapse
|
12
|
Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G, Cytryńska M, Lipke A, Gryko D. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406. [PMID: 36002552 PMCID: PMC9402574 DOI: 10.1038/s41598-022-18534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 12/29/2022] Open
Abstract
The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.
Collapse
Affiliation(s)
- Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Grzegorz Borsuk
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Lipke
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
13
|
Antifungal activity of "HO21-F", a formulation based on Olea europaea plant extract, in honey bees infected with Nosema ceranae. J Invertebr Pathol 2022; 193:107801. [PMID: 35863438 DOI: 10.1016/j.jip.2022.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidium parasite that silently affects honey bees, causing a disease called nosemosis. This parasite produces resistant spores and germinates in the midgut of honey bees, extrudes a polar tubule that injects an infective sporoplasm in the host cell epithelium, proliferates, and produces intestinal disorders that shorten honey bee lifespan. The rapid extension of this disease has been reported to be widespread among adult bees, and treatments are less effective and counterproductive weakening colonies. This work aimed to evaluate the antifungal activity of a prototype formulation based on a non-toxic plant extract (HO21-F) against N. ceranae. In laboratory, honey bees were infected artificially, kept in cages for 17 days and samples were taken at 7 and 14 days post infection (dpi). At the same time, in field conditions we evaluated the therapeutic effect of HO21-F for 28 days in naturally infected colonies. The effectiveness of the treatment has been demonstrated by a reduction of 83.6 % of the infection levels observed in laboratory conditions at concentrations of 0.5 and 1 g/L without affecting the survival rate. Besides, in-field conditions we reported a reduction of 88 % of the infection level at a concentration of 2.5 g/L, obtaining better antifungal effectiveness in comparison to other commercially available treatments. As a result, we observed that the use of HO21-F led to an increase in population size and honey production, both parameters associated with colony strength. The reported antifungal activity of HO21-F against N. ceranae, with a significant control of spore proliferation in worker bees, suggests the promising commercial application use of this product against nosemosis, and it will encourage new research studies to understand the mechanism of action, whether related to the spore-inhibition effect and/or a stimulating effect in natural response of colonies to counteract the disease.
Collapse
|
14
|
Alberoni D, Di Gioia D, Baffoni L. Alterations in the Microbiota of Caged Honeybees in the Presence of Nosema ceranae Infection and Related Changes in Functionality. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02050-4. [PMID: 35819480 DOI: 10.1007/s00248-022-02050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 05/16/2023]
Abstract
Several studies have outlined that changes in the honeybee gut microbial composition may impair important metabolic functions supporting the honeybees' life. Gut dysbiosis may be caused by diseases like Nosema ceranae or by other anthropic, environmental or experimental stressors. The present work contributes to increasing knowledge on the dynamics of the gut microbiome acquisition in caged honeybees, an experimental condition frequently adopted by researchers, with or without infection with N. ceranae, and fed with a bacterial mixture to control N. ceranae development. Changes of the gut microbiota were elucidated comparing microbial profile of caged and open-field reared honeybees. The absolute abundance of the major gut microbial taxa was studied with both NGS and qPCR approaches, whereas changes in the functionality were based on RAST annotations and manually curated. In general, all caged honeybees showed important changes in the gut microbiota, with [Formula: see text]-proteobacteria (Frischella, Gilliamella and Snodgrassella) lacking in all caged experimental groups. Caged honeybees infected with N. ceranae showed also a strong colonization of environmental taxa like Citrobacter, Cosenzaea and Morganella, as well as possibly pathogenic bacteria such as Serratia. The colonization of Serratia did not occur in presence of the bacterial mixture. The functionality prediction revealed that environmental bacteria or the supplemented bacterial mixture increased the metabolic potential of the honeybee gut microbiome compared to field and caged controls.
Collapse
Affiliation(s)
- Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
15
|
Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees. INSECTS 2022; 13:insects13070574. [PMID: 35886750 PMCID: PMC9319372 DOI: 10.3390/insects13070574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects (increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the spore loads in Nosema-infected bees. However, when applied to Nosema-free bees, thymol caused certain health disorders; therefore, beekeepers should be careful with its use. Abstract Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.
Collapse
|
16
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
17
|
Special Issue: “Infection in Honey Bees: Host–Pathogen Interaction and Spillover”. Pathogens 2022; 11:pathogens11010077. [PMID: 35056025 PMCID: PMC8779490 DOI: 10.3390/pathogens11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
|
18
|
Ugolini L, Cilia G, Pagnotta E, Malaguti L, Capano V, Guerra I, Zavatta L, Albertazzi S, Matteo R, Lazzeri L, Righetti L, Nanetti A. Glucosinolate Bioactivation by Apis mellifera Workers and Its Impact on Nosema ceranae Infection at the Colony Level. Biomolecules 2021; 11:1657. [PMID: 34827655 PMCID: PMC8615805 DOI: 10.3390/biom11111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The microsporidian fungus Nosema ceranae represents one of the primary bee infection threats worldwide and the antibiotic fumagillin is the only registered product for nosemosis disease control, while few alternatives are, at present, available. Natural bioactive compounds deriving from the glucosinolate-myrosinase system (GSL-MYR) in Brassicaceae plants, mainly isothiocyanates (ITCs), are known for their antimicrobial activity against numerous pathogens and for their health-protective effects in humans. This work explored the use of Brassica nigra and Eruca sativa defatted seed meal (DSM) GSL-containing diets against natural Nosema infection in Apis mellifera colonies. DSM patties from each plant species were obtained by adding DSMs to sugar candy at the concentration of 4% (w/w). The feeding was administered in May to mildly N. ceranae-infected honey bee colonies for four weeks at the dose of 250 g/week. In the treated groups, no significant effects on colony development and bee mortality were observed compared to the negative controls. The N. ceranae abundance showed a slight but significant decrease. Furthermore, the GSL metabolism in bees was investigated, and MYR hydrolytic activity was qualitatively searched in isolated bee midgut and hindgut. Interestingly, MYR activity was detected both in the bees fed DSMs and in the control group where the bees did not receive DSMs. In parallel, ITCs were found in gut tissues from the bees treated with DSMs, corroborating the presence of a MYR-like enzyme capable of hydrolyzing ingested GSLs. On the other hand, GSLs and other GSL hydrolysis products other than ITCs, such as nitriles, were found in honey produced by the treated bees, potentially increasing the health value of the final product for human consumption. The results are indicative of a specific effect on the N. ceranae infection in managed honey bee colonies depending on the GSL activation within the target organ.
Collapse
Affiliation(s)
- Luisa Ugolini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Lorena Malaguti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Vittorio Capano
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Luca Lazzeri
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| |
Collapse
|