1
|
Qianzhu H, Tan YJ, Abdelkader EH, Huber T, Otting G. Genetic Encoding of Fluorinated Analogues of Phenylalanine for 19F NMR Spectroscopy: Detection of Conformational Heterogeneity in Flaviviral NS2B-NS3 Proteases. ACS Sens 2025; 10:3152-3161. [PMID: 40168619 DOI: 10.1021/acssensors.5c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Substituting a single hydrogen atom in a protein by fluorine provides a probe for site-specific sensing by 19F nuclear magnetic resonance (NMR) spectroscopy with minimal impact on the properties of the protein. Genetic encoding systems are presented for five different fluorinated analogues of phenylalanine: 2-, 3-, 4-fluorophenylalanine, 2,6-difluorophenylalanine, and 3,5-difluorophenylalanine. The systems allow the installation of each of these amino acids with high fidelity during in vivo bacterial protein synthesis in response to an amber stop codon. The respective target proteins are obtained in high yield. At the site of Phe116 in different constructs of the dengue virus and Zika virus NS2B-NS3 proteases, the fluorinated phenylalanine analogues reveal evidence of significant conformational heterogeneity in 19F NMR spectra and demonstrate conformational dynamics. The availability of different 19F NMR probes allows discriminating between impacts arising from the fluorine atoms and the properties intrinsic to the protein.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
2
|
Dong Y, Ye C, Han P, Ye W, Wang Y, Yang J, Xu Z, Zhang F, Lei Y. The Compound AT13148 Targeting AKT Suppresses Dengue Virus 2 Replication. Vector Borne Zoonotic Dis 2025; 25:213-219. [PMID: 39772930 DOI: 10.1089/vbz.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. Objective: This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148. Methods: A mini-screening was conducted to identify kinase inhibitors with antiviral properties against DENV-2. The effects of AT13148 on viral RNA replication and translation were assessed in a dose- and time-dependent manner following DENV-2 entry. The mechanism of action was further investigated by evaluating the impact of AT13148 on AKT kinase activity and phosphorylation status. Results: AT13148 exhibited potent antiviral activity against DENV-2, significantly inhibiting viral RNA replication and translation post-entry. The compound was found to inhibit AKT kinase activity through hyperphosphorylation. Conclusion: The findings indicate that AT13148 effectively targets the AKT pathway, demonstrating potential as an antiviral therapeutic against DENV-2 by interfering with the virus's post-entry processes. Further in vivo studies are warranted to assess the efficacy of AT13148 in controlling DENV infection.
Collapse
Affiliation(s)
- Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peijun Han
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Yang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Khan MAA, Zilani MNH, Hasan M, Hasan N. Identification and evaluation of bioactive compounds from Azadirachta indica as potential inhibitors of DENV-2 capsid protein: An integrative study utilizing network pharmacology, molecular docking, molecular dynamics simulations, and machine learning techniques. Heliyon 2025; 11:e42594. [PMID: 40051864 PMCID: PMC11883367 DOI: 10.1016/j.heliyon.2025.e42594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Background Dengue fever is a viral disease caused by the dengue flavivirus and transmitted through mosquito bites in humans. According to the World Health Organization, severe dengue causes approximately 40,000 deaths annually, and nearly 4 billion people are at risk of dengue infection. The urgent need for effective treatments against the dengue virus has led to extensive research on potential bioactive compounds. Objective In this study, we utilized a network pharmacology approach to identify the DENV-2 capsid protein as an appropriate target for intervention. Subsequently, we selected a library of 537 phytochemicals derived from Azadirachta indica (Family: Meliaceae), known for their anti-dengue properties, to explore potential inhibitors of this protein. Methods The compound library was subjected to molecular docking to the capsid protein to identify potent inhibitors with high binding affinity. We selected 81 hits based on a thorough analysis of their binding affinities, particularly those exhibiting higher binding energy than the established inhibitor ST-148. After evaluating their binding characteristics, we identified two top-scored compounds and subjected them to molecular dynamics simulations to assess their stability and binding properties. Additionally, we predicted ADMET properties using in silico methods. Results One of the inhibitors, [(5S,7R,8R,9R,10R,13R,17R)-17-[(2R)-2-hydroxy-5-oxo-2H-furan-4-yl]-4,4,8,10,13-pentamethyl-3-oxo-5,6,7,9,11,12,16,17-octahydrocyclopenta[a]phenanthren-7-yl] acetate (AI-59), showed the highest binding affinity at -10.4 kcal/mol. Another compound, epoxy-nimonol (AI-181), demonstrated the highest number of H-bonds with a binding affinity score of -9.5 kcal/mol. During molecular dynamics simulation studies, both compounds have exhibited noteworthy outcomes. Through molecular mechanics employing Generalized Born surface area (MM/GBSA) calculations, AI-59 and AI-181 displayed negative ΔG_bind scores of -74.99 and -83.91 kcal/mol, respectively. Conclusion The hit compounds identified in the present investigation hold the potential for developing drugs targeting dengue virus infections. Furthermore, the knowledge gathered from this study serves as a foundation for the structure- or ligand-based exploration of anti-dengue compounds.
Collapse
Affiliation(s)
- Md. Ahad Ali Khan
- Department of Pharmacy, Manarat International University, Dhaka, Bangladesh
| | | | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Dhaka, Bangladesh
| | - Nahid Hasan
- Department of Pharmacy, Manarat International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Corliss L, Petit CM, Lennemann NJ. Subcellular determinants of orthoflavivirus protease activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635871. [PMID: 39975024 PMCID: PMC11838526 DOI: 10.1101/2025.01.31.635871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Orthoflaviviruses are small, enveloped, positive-sense RNA viruses that cause over 500 million infections globally each year for which there are no antiviral treatments. The viral protease is an attractive target for therapeutics due to its critical functions throughout infection. Many studies have reported on the structure, function, and importance of orthoflavivirus proteases; However, the molecular determinants for cleavage of intracellular substrates by orthoflavivirus proteases and how these factors affect viral fitness are unknown. In this study, we used our fluorescent, protease-activity reporter system to investigate the subcellular determinants involved in orthoflavivirus protease cleavage. By modifying our reporter platform, we identified endoplasmic reticulum (ER) subdomain localization and membrane proximity of the substrate cut site as two previously uncharacterized molecular determinants for cleavage. We also altered the amino acid composition of the reporter cut site to introduce sequences present at the cytoplasmic junctions within orthoflavivirus polyproteins and found that each protease processed the sequence located at the junction between NS4A and the 2K peptide least efficiently. Live-cell imaging revealed that cleavage of the NS4A|2K sequence is significantly delayed compared to the capsid cleavage sequence. We further determined that introducing a more efficient cleavage sequence into the NS4A|2K junctions of orthoflavivirus infectious clones abolished virus recovery. Overall, this study identifies ER subdomain localization and membrane proximity of the cut site as molecular determinants for cleavage by orthoflavivirus proteases and provides insight into the role that sequence specificity plays in the coordinated processing of the viral polyprotein and establishing productive infections. Importance Orthoflaviviruses are the most prevalent and dangerous arthropod-borne viruses (arboviruses) leading to over 500 million global infections annually. Orthoflavivirus infection can cause severe pathologies, including hemorrhagic conditions and neurological disease, that lead to hundreds of thousands of deaths each year. The viral protease complex, responsible for processing the viral polyprotein into its functional subunits, is an attractive target for antiviral therapeutic development. Despite extensive research efforts on these viral protein complexes, all protease inhibitor candidates have fallen short of clinical efficacy, highlighting a considerable gap in knowledge of the viral protease's complex intracellular activity. The significance of our research is in characterizing the subcellular determinants associated with orthoflavivirus protease cleavage efficiency and how these factors can influence viral fitness. These findings contribute to closing this gap in knowledge of the mechanisms of orthoflavivirus proteases which can ultimately lead to the successful development of targeted antivirals.
Collapse
|
5
|
Kelly B, Boudreau JE, Beyea S, Brewer K. Molecular imaging of viral pathogenesis and opportunities for the future. NPJ IMAGING 2025; 3:3. [PMID: 39872292 PMCID: PMC11761071 DOI: 10.1038/s44303-024-00056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging is used in clinical and research settings. Since tools to study viral pathogenesis longitudinally and systemically are limited, molecular imaging is an attractive and largely unexplored tool. This review discusses molecular imaging probes and techniques for studying viruses, particularly those currently used in oncology that are applicable to virology. Expanding the repertoire of probes to better detect viral disease may make imaging even more valuable in (pre-)clinical settings.
Collapse
Affiliation(s)
- Brianna Kelly
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
| | - Jeanette E. Boudreau
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pathology, Dalhousie University, Halifax, NS Canada
- Beatrice Hunter Cancer Research Institute (BHCRI), Halifax, NS Canada
| | - Steven Beyea
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
6
|
Grabski H, Grabska S, Abagyan R. Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae. Viruses 2024; 17:6. [PMID: 39861795 PMCID: PMC11769402 DOI: 10.3390/v17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development. Promising allosteric binding sites were identified in two conformationally distinct inactive states and characterized for five flaviviruses and four Dengue virus subtypes. Their shapes, druggability, inter-viral similarity, sequence variation, and susceptibility to drug-resistant mutations have been studied. Two identified allosteric inactive state pockets appear to be feasible alternatives to a larger closed pocket near the active site, and they can be targeted with specific drug-like small-molecule inhibitors. Virus-specific sequence and structure implications and the feasibility of multi-viral inhibitors are discussed.
Collapse
Affiliation(s)
- Hovakim Grabski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Siranuysh Grabska
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
| |
Collapse
|
7
|
Januário MAP, Junior CDOR, Castro-Gamboa I. Indole Derivatives as Promising Anti-Dengue Agents: A Review of Recent Advances. Chem Biodivers 2024:e202402517. [PMID: 39714443 DOI: 10.1002/cbdv.202402517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Dengue, a mosquito-borne disease transmitted by Aedes mosquitoes, is a significant global health concern. Despite extensive research, effective treatments remain limited. The indole nucleus, known for its diverse pharmacological properties, has emerged as a promising scaffold for anti-dengue drug discovery. This review comprehensively examines recent advancements in the fields of natural products, medicinal chemistry, and computer-aided drug design focused on discovering indole-based anti-dengue agents. We discuss the rationale for targeting indole frameworks, highlight key structural features associated with anti-dengue activity, and summarize recent research findings. The review aims to provide valuable insights for researchers working on developing novel anti-dengue therapeutics.
Collapse
Affiliation(s)
| | | | - Ian Castro-Gamboa
- Departament of Biochemistry and Organic Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
8
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
9
|
Sousa BG, Mebus-Antunes NC, Fernandes-Siqueira LO, Caruso MB, Saraiva GN, Carvalho CF, Neves-Martins TC, Galina A, Zingali RB, Zeidler JD, Da Poian AT. Dengue virus non-structural protein 3 inhibits mitochondrial respiration by impairing complex I function. mSphere 2024; 9:e0040624. [PMID: 38980068 PMCID: PMC11288018 DOI: 10.1128/msphere.00406-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Dengue virus (DENV) infection is known to affect host cell metabolism, but the molecular players involved are still poorly known. Using a proteomics approach, we identified six DENV proteins associated with mitochondria isolated from infected hepatocytes, and most of the peptides identified were from NS3. We also found an at least twofold decrease of several electron transport system (ETS) host proteins. Thus, we investigated whether NS3 could modulate the ETS function by incubating recombinant DENV NS3 constructs in mitochondria isolated from mouse liver. We found that NS3pro (NS3 protease domain), but not the correspondent catalytically inactive mutant (NS3proS135A), impairs complex I (CI)-dependent NADH:ubiquinone oxidoreductase activity, but not the activities of complexes II, III, IV, or V. Accordingly, using high-resolution respirometry, we found that both NS3pro and full-length NS3 decrease the respiratory rates associated with malate/pyruvate oxidation in mitochondria. The NS3-induced impairment in mitochondrial respiration occurs without altering either leak respiration or mitochondria's capacity to maintain membrane potential, suggesting that NS3 does not deeply affect mitochondrial integrity. Remarkably, CI activity is also inhibited in DENV-infected cells, supporting that the NS3 effects observed in isolated mitochondria may be relevant in the context of the infection. Finally, in silico analyses revealed the presence of potential NS3 cleavage sites in 17 subunits of mouse CI and 16 subunits of human CI, most of them located on the CI surface, suggesting that CI is prone to undergo proteolysis by NS3. Our findings suggest that DENV NS3 can modulate mitochondrial bioenergetics by directly affecting CI function. IMPORTANCE Dengue virus (DENV) infection is a major public health problem worldwide, affecting about 400 million people yearly. Despite its importance, many molecular aspects of dengue pathogenesis remain poorly known. For several years, our group has been investigating DENV-induced metabolic alterations in the host cells, focusing on the bioenergetics of mitochondrial respiration. The results of the present study reveal that the DENV non-structural protein 3 (NS3) is found in the mitochondria of infected cells, impairing mitochondrial respiration by directly targeting one of the components of the electron transport system, the respiratory complex I (CI). NS3 acts as the viral protease during the DENV replication cycle, and its proteolytic activity seems necessary for inhibiting CI function. Our findings uncover new nuances of DENV-induced metabolic alterations, highlighting NS3 as an important player in the modulation of mitochondria function during infection.
Collapse
Affiliation(s)
- Bruna G. Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane C. Mebus-Antunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia N. Saraiva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara F. Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais C. Neves-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julianna D. Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
11
|
Velásquez-López Y, Ruiz-Escudero A, Arrasate S, González-Díaz H. Implementation of IFPTML Computational Models in Drug Discovery Against Flaviviridae Family. J Chem Inf Model 2024; 64:1841-1852. [PMID: 38466369 PMCID: PMC10966645 DOI: 10.1021/acs.jcim.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
The Flaviviridae family consists of single-stranded positive-sense RNA viruses, which contains the genera Flavivirus, Hepacivirus, Pegivirus, and Pestivirus. Currently, there is an outbreak of viral diseases caused by this family affecting millions of people worldwide, leading to significant morbidity and mortality rates. Advances in computational chemistry have greatly facilitated the discovery of novel drugs and treatments for diseases associated with this family. Chemoinformatic techniques, such as the perturbation theory machine learning method, have played a crucial role in developing new approaches based on ML models that can effectively aid drug discovery. The IFPTML models have shown its capability to handle, classify, and process large data sets with high specificity. The results obtained from different models indicates that this methodology is proficient in processing the data, resulting in a reduction of the false positive rate by 4.25%, along with an accuracy of 83% and reliability of 92%. These values suggest that the model can serve as a computational tool in assisting drug discovery efforts and the development of new treatments against Flaviviridae family diseases.
Collapse
Affiliation(s)
- Yendrek Velásquez-López
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU. Apdo. 644. 48080 Bilbao (Spain)
- Bio-Cheminformatics
Research Group, Universidad de Las Américas, Quito 170504, (Ecuador)
| | - Andrea Ruiz-Escudero
- Department
of Pharmacology, University of the Basque
Country UPV/EHU, 48940 Leioa, (Spain)
- IKERDATA
S.L., ZITEK, University of Basque Country
UPV/EHU, Rectorate Building, 48940 Leioa, Spain
| | - Sonia Arrasate
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU. Apdo. 644. 48080 Bilbao (Spain)
| | - Humberto González-Díaz
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU. Apdo. 644. 48080 Bilbao (Spain)
- BIOFISIKA, Basque
Center for Biophysics CSIC-UPV/EHU, 48940 Bilbao (Spain)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)
| |
Collapse
|
12
|
Zogali V, Kiousis D, Voutyra S, Kalyva G, Abdul Mahid MB, Bist P, Ki Chan KW, Vasudevan SG, Rassias G. Carbazole to indolazepinone scaffold morphing leads to potent cell-active dengue antivirals. Eur J Med Chem 2024; 268:116213. [PMID: 38382389 DOI: 10.1016/j.ejmech.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
According to WHO, dengue virus is classed among major threats for future pandemics and remains at large an unmet medical need as there are currently no relevant antiviral drugs whereas vaccine developments have met with safety concerns, mostly due to secondary infections caused by antibody-dependant-enhancement in cross infections among the four dengue serotypes. This adds extra complexity in dengue antiviral research and has impeded the progress in this field. Following through our previous effort which born the allosteric, dual-mode inhibitor SP-471P (a carbazole derivative, EC50 1.1 μM, CC50 100 μM) we performed further optimisation while preserving the two arylamidoxime arms and the bromoaryl domain present in SP-471P. Examination of the relative positions of these functionalities within this three-point pharmacophore ultimately led us to an indolazepinone scaffold and our lead compound SP-1769B. SP-1769B is among the most cell-efficacious against all serotypes (DENV2/3 EC50 100 nM, DENV1/4 EC50 0.95-1.25 μM) and safest (CC50 > 100 μM) anti-dengue compounds in the literature that also completely inhibits a secondary ADE-driven infection.
Collapse
Affiliation(s)
- Vasiliki Zogali
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Stefania Voutyra
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Georgia Kalyva
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Gerasimos Rassias
- Department of Chemistry, University of Patras, Patra, 26504, Greece.
| |
Collapse
|
13
|
Nogales A, Martínez-Sobrido L, Almazán F. Reverse Genetics of Zika Virus Using a Bacterial Artificial Chromosome. Methods Mol Biol 2024; 2733:185-206. [PMID: 38064034 DOI: 10.1007/978-1-0716-3533-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has become a global threat to human health. Although ZIKV has been known to circulate for decades causing mild febrile illness, the more recent ZIKV outbreaks in the Americas and the Caribbean have been associated with severe neurological disorders and congenital abnormalities. The development of ZIKV reverse genetics approaches have allowed researchers to address key questions on the biology of ZIKV by genetically engineering infectious recombinant (r)ZIKV. This has resulted in a better understanding of the biology of ZIKV infections, including viral pathogenesis, molecular mechanisms of viral replication and transcription, or the interaction of viral and host factors, among others aspects. In addition, reverse genetics systems have facilitated the identification of anti-ZIKV compounds and the development of new prophylactic approaches to combat ZIKV infections. Different reverse genetics strategies have been implemented for the recovery of rZIKV. All these reverse genetics systems have faced and overcome multiple challenges, including the viral genome size, the toxicity of viral sequences in bacteria, etc. In this chapter we describe the generation of a ZIKV full-length complementary (c)DNA infectious clone based on the use of a bacterial artificial chromosome (BAC) and the experimental procedures for the successful recovery of rZIKV. Importantly, the protocol described in this chapter provides a powerful method for the generation of infectious clones of other flaviviruses with genomes that have stability problems during bacterial propagation.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| | | | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
14
|
Serman T, Chiang C, Liu G, Sayyad Z, Pandey S, Volcic M, Lee H, Muppala S, Acharya D, Goins C, Stauffer SR, Sparrer KMJ, Gack MU. Acetylation of the NS3 helicase by KAT5γ is essential for flavivirus replication. Cell Host Microbe 2023; 31:1317-1330.e10. [PMID: 37478852 PMCID: PMC10782998 DOI: 10.1016/j.chom.2023.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
Direct targeting of essential viral enzymes such as proteases, polymerases, and helicases has long been the major focus of antiviral drug design. Although successful for some viral enzymes, targeting viral helicases is notoriously difficult to achieve, demanding alternative strategies. Here, we show that the NS3 helicase of Zika virus (ZIKV) undergoes acetylation in its RNA-binding tunnel. Regulation of the acetylated state of K389 in ZIKV NS3 modulates RNA binding and unwinding and is required for efficient viral replication. NS3 acetylation is mediated by a specific isoform of the host acetyltransferase KAT5 (KAT5γ), which translocates from the nucleus to viral replication complexes upon infection. NS3 acetylation by KAT5γ and its proviral role are also conserved in West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). Our study provides molecular insight into how a cellular acetyltransferase regulates viral helicase functions, unveiling a previously unknown target for antiviral drug development.
Collapse
Affiliation(s)
- Taryn Serman
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Shanti Pandey
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Haejeong Lee
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Christopher Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Ali S, Zhou J. Highlights on U.S. FDA-approved fluorinated drugs over the past five years (2018-2022). Eur J Med Chem 2023; 256:115476. [PMID: 37207534 PMCID: PMC10247436 DOI: 10.1016/j.ejmech.2023.115476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The objective of this review is to provide an update on the fluorine-containing drugs approved by U.S. Food and Drug Administration in the span of past five years (2018-2022). The agency accepted a total of fifty-eight fluorinated entities to diagnose, mitigate and treat a plethora of diseases. Among them, thirty drugs are for therapy of various types of cancers, twelve for infectious diseases, eleven for CNS disorders, and six for some other diseases. These are categorized and briefly discussed based on their therapeutic areas. In addition, this review gives a glimpse about their trade name, date of approval, active ingredients, company developers, indications, and drug mechanisms. We anticipate that this review may inspire the drug discovery and medicinal chemistry community in both industrial and academic settings to explore the fluorinated molecules leading to the discovery of new drugs in the near future.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States.
| |
Collapse
|
16
|
Zhou GF, Qian W, Li F, Yang RH, Wang N, Zheng CB, Li CY, Gu XR, Yang LM, Liu J, Xiong SD, Zhou GC, Zheng YT. Discovery of ZFD-10 of a pyridazino[4,5-b]indol-4(5H)-one derivative as an anti-ZIKV agent and a ZIKV NS5 RdRp inhibitor. Antiviral Res 2023; 214:105607. [PMID: 37088168 DOI: 10.1016/j.antiviral.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10's anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 μM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10's cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; College of Pharmacy, Soochow University, Suzhou, 215021, China
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ren-Hua Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Chun-Yan Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou, 215021, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
17
|
Zhou GF, Li F, Xue JX, Qian W, Gu XR, Zheng CB, Li C, Yang LM, Xiong SD, Zhou GC, Zheng YT. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Virus Res 2023; 326:199062. [PMID: 36746341 DOI: 10.1016/j.virusres.2023.199062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The prevalence and ravages of Zika virus (ZIKV) seriously endanger human health, especially causing significant neurological defects in both neonates as pediatric microcephaly and adults as Guillain-Barré syndrome. In this work, we studied anti-ZIKV effects of the fused tricyclic derivatives of indoline and imidazolidinone and discovered that some of them are valuable leads for drug discovery of anti-ZIKV agents. The current results show that certain compounds are broad-spectrum inhibitors of ZIKV- and dengue virus (DENV)-infection while distinctive compounds are selective ZIKV inhibitors or selective DENV inhibitors. Compounds of 12, 17 and 28 are more active against Asian ZIKV SZ-VIV01 strain than African ZIKV MR766 strain. It is valued that silylation makes six TBS compounds of 4-nitrophenyl hydrazine series and phenyl hydrazine series more active against ZIKV infection than their phenols. Time-of-addition and withdrawal studies indicate that compound 12 majorly acts on post-infection of RNA synthesis stage of ZIKV life cycle. Moreover, compounds of 12, 17 and 18 are anti-ZIKV agents with the inhibitory activities to ZIKV NS5 RdRp while 12 doesn't inhibit DENV infection even though it is a DENV RdRp inhibitor, 17 is an active agent against DENV infection but is only a weak DENV NS5 RdRp inhibitor, and 28 is inactive against DENV infection and not a DENV NS5 RdRp inhibitor. As a result, a compound's antiviral difference between ZIKV and DENV is not always related to anti-RdRp difference between ZIKV RdRp and DENV RdRp, and structural features of a compound play important roles in executing antiviral and anti-RdRp functions. Further discovery of highly potent broad-spectrum or selective agents against infection by ZIKV and DENV will be facilitated.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Pharmacy, Soochow University, Suzhou 215021, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jian-Xia Xue
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Medical College, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou 215021, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
18
|
Chen R, Francese R, Wang N, Li F, Sun X, Xu B, Liu J, Liu Z, Donalisio M, Lembo D, Zhou GC. Exploration of novel hexahydropyrrolo[1,2-e]imidazol-1-one derivatives as antiviral agents against ZIKV and USUV. Eur J Med Chem 2023; 248:115081. [PMID: 36623328 DOI: 10.1016/j.ejmech.2022.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuyun Liu
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, Jiangsu, China
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China.
| |
Collapse
|
19
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Mackenzie JS, Smith DW, Speers DJ. Japanese encephalitis disease: overview of the virus, its risk to Australia and the need for better surveillance. Intern Med J 2022; 52:2029-2033. [PMID: 37133372 DOI: 10.1111/imj.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Affiliation(s)
- John S. Mackenzie
- Faculty of Health Sciences Curtin University Western Australia Perth Australia
| | - David W. Smith
- Faculty of Health Sciences PathWest Laboratory Medicine WA Western Australia Perth Australia
- School of Medicine The University of Western Australia Perth Western Australia Australia
| | - David J. Speers
- Department of Microbiology Queen Elizabeth II Medical Centre, PathWest Laboratory Medicine WA Perth Western Australia Australia
| |
Collapse
|
21
|
Jung E, Soto-Acosta R, Geraghty RJ, Chen L. Zika Virus Inhibitors Based on a 1,3-Disubstituted 1 H-Pyrazolo[3,4- d]pyrimidine-amine Scaffold. Molecules 2022; 27:molecules27186109. [PMID: 36144841 PMCID: PMC9502836 DOI: 10.3390/molecules27186109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
To search for Zika virus (ZIKV) antivirals, we have further explored previously reported 7H-pyrrolo[2,3-d]pyrimidines by examining an alternative substitution pattern of their central scaffold, leading to compound 5 with low micromolar antiviral activity. To circumvent the synthetic difficulties associated with compound 5, we have exploited a 1H-pyrazolo[3,4-d]pyrimidine scaffold and performed structure-activity relationship studies on its peripheral rings A and B. While ring B is less sensitive to structural modifications, an electron-withdrawing group at the para position of ring A is preferred for enhanced antiviral activity. Overall, we have not only discovered an alternative substitution pattern centered on a 1H-pyrazolo[3,4-d]pyrimidine scaffold but also generated anti-ZIKV compounds including 6 and 13, which possess low micromolar antiviral activity and relatively low cytotoxicity. These compounds represent new chemotypes that will be further optimized in our continued efforts to discover anti-ZIKV agents.
Collapse
|
22
|
Samrat SK, Xu J, Xie X, Gianti E, Chen H, Zou J, Pattis JG, Elokely K, Lee H, Li Z, Klein ML, Shi PY, Zhou J, Li H. Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Res 2022; 205:105381. [PMID: 35835291 PMCID: PMC9272661 DOI: 10.1016/j.antiviral.2022.105381] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 has raised the alarm to search for effective therapy for this virus. To date several vaccines have been approved but few available drugs reported recently still need approval from FDA. Remdesivir was approved for emergency use only. In this report, the SARS-CoV-2 3CLpro was expressed and purified. By using a FRET-based enzymatic assay, we have screened a library consisting of more than 300 different niclosamide derivatives and identified three molecules JMX0286, JMX0301, and JMX0941 as potent allosteric inhibitors against SARS-CoV-2 3CLpro, with IC50 values similar to that of known covalent inhibitor boceprevir. In a cell-based antiviral assay, these inhibitors can inhibit the virus growth with EC50 in the range of 2-3 μM. The mechanism of action of JMX0286, JMX0301, and JMX0941 were characterized by enzyme kinetics, affinity binding and protein-based substrate digestion. Molecular docking, molecular dynamics (MD) simulations and hydration studies suggested that JMX0286, JMX0301, JMX0941 bind specifically to an allosteric pocket of the SARS-CoV-2 3CL protease. This study provides three potent compounds for further studies.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA.
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jason G Pattis
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Khaled Elokely
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences at College of Pharmacy and Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA; BIO5 Institute, The University of Arizona, Tucson, Tucson, AZ, 85721, USA.
| |
Collapse
|
23
|
Xiao Y, Yang J, Zou L, Wu P, Li W, Yan Y, Li Y, Li S, Song H, Zhong W, Qin Y. Synthesis of 10,10′-bis(trifluoromethyl) marinopyrrole A derivatives and evaluation of their antiviral activities in vitro. Eur J Med Chem 2022; 238:114436. [DOI: 10.1016/j.ejmech.2022.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|