1
|
Pereira GR, Portes AB, Conte CA, Brandão MLL, Spisso BF. Antimicrobial resistance in bacteria from pig production chain: a systematic review and meta-analyses focused on the Brazilian context. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40222024 DOI: 10.1080/10408398.2025.2489531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Pork industry plays an important role in antibiotics consumption, which can lead to antimicrobial resistance (AMR) spread. Hence, monitoring and controlling AMR in swine production chains is essential to reduce the risks to public health. A systematic review protocol was developed to assess AMR in the pig production chain in Brazil, the fourth largest producer and exporter of pork in the world. More than 3000 strains obtained from swine chain had their antibiotic resistance characteristics assessed. Results showed a major attention to the research of swine AMR in Salmonella and Escherichia coli. Resistance against quinolones has been most investigated and high levels of resistance against tetracyclines were observed. Moreover, resistance profiles and determinants against colistin were frequently found. Meta-analyses were performed to estimate the frequency of microorganisms from the World Health Organization (WHO) global priority pathogens list of antibiotic-resistant bacteria. The results showed prevalences ≤ 0.11 of each priority group in Brazilian pork. As far as is known, this is the first research to provide a comprehensive synthesis of available data on AMR in this production chain. It may support the tackling of knowledge gaps and inspire the enhancement of policies to monitoring, controlling, and managing foodborne AMR.
Collapse
Affiliation(s)
- Gracielle Rodrigues Pereira
- Instituto Nacional de Controle de Qualidade em Saúde/Fundação Oswaldo Cruz (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - Ana Beatriz Portes
- Instituto de Microbiologia Paulo de Góes/Universidade Federal do Rio de Janeiro (IMPG/UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Luiz Lima Brandão
- Instituto de Tecnologia em Imunobiológicos/Fundação Oswaldo Cruz (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade em Saúde/Fundação Oswaldo Cruz (INCQS/Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Oh H, Choi Y, Lee J. Antibiotic-Resistant Salmonella in Animal Products Jeopardize Human Health. Food Sci Anim Resour 2025; 45:409-428. [PMID: 40093628 PMCID: PMC11907419 DOI: 10.5851/kosfa.2025.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Despite the significance of antibiotics in treating bacterial infections, antibiotic resistance is continuously increasing, thus posing a significant threat. In addition to strains resistant to individual drugs, multidrug-resistant (MDR) and pandrug-resistant strains, are emerging. Salmonella, a primary cause of global foodborne illness, is often transmitted through animal products. Antibiotic treatment is crucial for immunocompromised individuals, such as older adults and patients with weakened immune systems, due to their increased susceptibility to severe effects. MDR Salmonella, which can arise following antibiotic use in food animals, may transfer to humans, leading to significant health challenges. The emergence of Salmonella strains resistant to carbapenems, often considered a last-resort antibiotic class, is particularly concerning. Salmonella neutralizes antibiotics through mechanisms, such as horizontal gene transfer via plasmids, efflux/influx system regulation, and enzyme production that deactivate or alter antibiotics. The rise of megaplasmids in Salmonella is particularly alarming, as it may enable resistance to a broader range of antibiotics. This review summarizes the current state of the growing threat of MDR Salmonella and underscores the urgent need for a coordinated response.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yukyung Choi
- Chong Kun Dang Bio Research Institute, Ansan 15604, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
3
|
von Hertwig AM, Pereira AA, Amorim Neto DP, Nascimento MS. Quantification of Viable Salmonella by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products. Microorganisms 2024; 12:2640. [PMID: 39770842 PMCID: PMC11679600 DOI: 10.3390/microorganisms12122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the performance of quantitative PCR, combined or not with propidium monoazide (PMA), to recover Salmonella from peanut products after different storage times was evaluated. The samples were inoculated with 5-6 log cfu g-1 of Salmonella Typhimurium ATCC 14028 and stored at 28 °C for up to 540 d. The correlation between the threshold cycle number (Ct) and the colony-forming units (cfu) was obtained by a standard curve, which showed a linear correlation (R2 = 0.97). The highest counts were recovered by qPCR (p < 0.05); however, it quantified both viable and non-viable cells. For roasted peanuts, a significant difference (p < 0.05) between qPCR-PMA and the culture method was verified only for samples stored for 30 d, i.e., 2.8 versus 4.0 log cfu g-1. Further, there was no VBNC status in the roasted peanuts, even after long-term exposure to desiccation stress. For peanut-based products, after 540 d, only paçoca showed a significant difference (p < 0.05) among the three methods evaluated. In peanut brittle, qPCR-PMA detected 1.5 log cfu g-1, while, in the culture method, Salmonella was recovered in 1 g. The pathogen was below the detection limit in pé-de-moça either by plate count or qPCR-PMA. Therefore, qPCR-PMA shows potential for use in quantifying Salmonella in peanut products.
Collapse
Affiliation(s)
| | | | | | - Maristela S. Nascimento
- Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (A.M.v.H.); (A.A.P.); (D.P.A.N.)
| |
Collapse
|
4
|
Huoy L, Vuth S, Hoeng S, Chheang C, Yi P, San C, Chhim P, Thorn S, Ouch B, Put D, Aong L, Phan K, Nasirzadeh L, Tieng S, Bongcam-Rudloff E, Sternberg-Lewerin S, Boqvist S. Prevalence of Salmonella spp. in meat, seafood, and leafy green vegetables from local markets and vegetable farms in Phnom Penh, Cambodia. Food Microbiol 2024; 124:104614. [PMID: 39244366 DOI: 10.1016/j.fm.2024.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Salmonella is a major bacterial concern for public health globally. Although there are limited documentation on the prevalence of Salmonella species in Cambodia's food chain, some reports indicate that salmonellosis is a severe gastrointestinal infection in its population and especially in children. To investigate the presence of Salmonella spp., 285 food samples (75 meat, 50 seafood, and 160 leafy green vegetable samples) were randomly collected from various local markets in Phnom Penh capital and nearby farms in Cambodia. Concurrently, field observations were conducted to collect data on food hygiene and practices among the relevant actors. All food samples were analyzed using bacterial culture and plate counts, and the findings were confirmed serially with biochemical, serological, and PCR tests. The observational data on food hygiene and practices from farm to market revealed that the spread of Salmonella in the food-value chain from farm to market could pose health risks to consumers. The overall prevalence of Salmonella spp. was 48.4% (138/285), while the prevalence in meat, seafood, and vegetables was 71% (53/75), 64% (32/50), and 33% (53/160), respectively. Mean Salmonella plate count ranged from 1.2 to 7.40 log10 CFU/g, and there was no significant difference in bacterial counts between meat, seafood, and vegetable samples (p > 0.05). The most common serogroups among the isolated Salmonella spp. were B and C. These results suggest that a large proportion of meat, seafood, and vegetable products sold at local markets in Phnom Penh are contaminated with Salmonella spp. This is likely linked to inadequate hygiene and sanitation practices, including handling, storage, and preservation conditions. Observations on farms suggested that the prevalence of Salmonella in vegetables sold at the market could be linked to contamination relating to agricultural practices. Thus, controlling the spread of foodborne salmonellosis through the food-value chain from farms and retailers to consumers is warranted to enhance food safety in Cambodia.
Collapse
Affiliation(s)
- Laingshun Huoy
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia; Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden; Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia.
| | - Sireyvathanak Vuth
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Sophanith Hoeng
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Chilean Chheang
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Phalla Yi
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Chenda San
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Panha Chhim
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Sopacphear Thorn
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Bunsopheana Ouch
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Dengrachda Put
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Lyna Aong
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Kongkea Phan
- Department of Food Chemistry, Faculty of Science and Technology, International University, Phnom Penh, Cambodia
| | - Leila Nasirzadeh
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Siteng Tieng
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Susanna Sternberg-Lewerin
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Sofia Boqvist
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| |
Collapse
|
5
|
Tiba-Casas MR, Almeida EA, Costa GL, Bertani AMDJ, Vieira T, Camargo CH. Trends in antimicrobial susceptibility patterns in Salmonella from human and nonhuman sources in Sao Paulo State, Brazil, 2016-2023. Rev Inst Med Trop Sao Paulo 2024; 66:e64. [PMID: 39536218 PMCID: PMC11556830 DOI: 10.1590/s1678-9946202466064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Antimicrobial resistance constitutes a significant global challenge to public health and development, in which non-typhoidal Salmonella emerges as a critical concern. This study investigates the prevalence and antimicrobial resistance profiles of Salmonella isolates from both human and nonhuman sources. A total of 2,511 Salmonella isolates that had been collected from 2016 to 2023 were analyzed, of which 1,724 underwent antimicrobial susceptibility testing. The main focus lied on the 10 most prevalent serotypes, totaling 957 isolates. Serotyping showed the diverse distribution of serotypes, with Heidelberg, Typhimurium, Enteritidis, and the monophasic Salmonella Typhimurium occurring most often. Antimicrobial resistance was common since 512 strains resisted at least one drug and 319 several drugs. Notably, the Heidelberg and Mbandaka serotypes, predominantly occurring in nonhuman samples, showed multidrug resistance. Salmonella Typhi remained susceptible to antimicrobials. Resistance to nalidixic acid, tetracycline, sulfonamides, and ampicillin was prevalent, whereas all isolates remained susceptible to imipenem. A reduction in susceptibility rates for aminoglycosides was observed over the study period. Extended-spectrum β-lactamase production occurred in 4.4% of the isolates, of which Heidelberg configured the most prevalent extended-spectrum β-lactamase-positive serotype. These findings underscore the importance of surveillance and effective monitoring to control this pathogen, highlighting the necessity of prioritizing public health efforts.
Collapse
Affiliation(s)
| | | | - Gisele Lozano Costa
- Instituto Adolfo Lutz, Centro de Bacteriologia, São Paulo, São Paulo, Brazil
| | | | - Thais Vieira
- Instituto Adolfo Lutz, Centro de Bacteriologia, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Gonçalves C, Silveira L, Rodrigues J, Furtado R, Ramos S, Nunes A, Pista Â. Phenotypic and Genotypic Characterization of Escherichia coli and Salmonella spp. Isolates from Pigs at Slaughterhouse and from Commercial Pork Meat in Portugal. Antibiotics (Basel) 2024; 13:957. [PMID: 39452223 PMCID: PMC11505151 DOI: 10.3390/antibiotics13100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Foodborne diseases are a serious public health concern, and food-producing animals are a major source of contamination. Methods: The present study analysed Escherichia coli and Salmonella spp. isolated from faecal samples of 100 fattening pigs and from 52 samples of pork meat. Results: The results showed that the majority of the analysed meat samples were considered satisfactory in terms of microbiological quality (92.3% for E. coli and 94.2% for Salmonella spp.). Salmonella spp. was identified in 5.8% of the meat samples, whereas E. coli was detected in 89.5% of all samples (69.2% in meat and 100% in faecal samples). Furthermore, 1.9% of the faecal samples contained Shiga-toxin-producing E. coli and 3.9% contained enterotoxigenic E. coli. All sequenced isolates presented virulence genes for extraintestinal pathogenic E. coli. Moreover, 75.0% of E. coli isolates from meat and 71.8% from faeces samples showed antibiotic resistance, with 40.7% and 51.4%, respectively, being multidrug-resistant (MDR). The most prevalent resistances were to tetracycline, ampicillin, and sulfamethoxazole, and one E. coli isolate showed resistance to extended-spectrum β-lactamase. Conclusions: This study highlights the role of pigs as a potential source of human contamination and the importance of a One Health approach to ensure food safety and to promote public health.
Collapse
Affiliation(s)
- Carlota Gonçalves
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Department of Chemistry, Nova School of Science & Technology, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - João Rodrigues
- Laboratory of Microbiology, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Sónia Ramos
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
| | - Alexandra Nunes
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ângela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| |
Collapse
|
7
|
Lucca V, Borges KA, Furian TQ, Chitolina GZ, Streck AF, da Rocha DT, de Souza Moraes HL, Nascimento VP. Phenotypic and molecular characterisation of Salmonella spp. isolates in healthy poultry. Br Poult Sci 2024; 65:415-423. [PMID: 38717314 DOI: 10.1080/00071668.2024.2337180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/05/2024] [Indexed: 07/27/2024]
Abstract
1. Epidemiological surveillance of Salmonella spp. serves as a primary tool for maintaining the health of poultry flocks. Characterising circulating serotypes is crucial for implementing control and prevention measures. This study conducted phenotypic and molecular characterisation of S. enterica Pullorum, S. enterica Heidelberg, and S. enterica Corvalis isolated from broiler chickens during slaughtering.2. All strains were susceptible to gentamicin, neomycin and norfloxacin. However, resistance rates exceeded 50% for ciprofloxacin and tiamulin, irrespective of the serotype. Approximately 64% of strains were classified as multidrug-resistant, with S. enterica Heidelberg strains exhibiting significantly higher overall resistance. The isolates demonstrated the ability to adhere and produce biofilm at a minimum of three temperatures, with S. enterica Pullorum capable of biofilm production at all temperatures encountered during poultry rearing.3. Each strain possessed between two and seven different virulence-associated genes. Genetic similarity, as indicated by pulsed field gel electrophoresis, exceeded 90% for all three serotypes and strains were classified in the R5 ribotype by PCR, regardless of serotype. Sequencing revealed high similarity among all strains, with homology ranging from 99.61 to 100% and all were classified to a single cluster.4. The results suggested a clonal relationship among the strains, indicating the possible circulation of a unique clonal group of S. enterica Pullorum in the southern region of Brazil.
Collapse
Affiliation(s)
- V Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - K A Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - T Q Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - G Z Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - A F Streck
- Departamento de Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - D T da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - H L de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V P Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Pelyuntha W, Ngasaman R, Yingkajorn M, Chukiatsiri K, Guyonnet V, Vongkamjan K. Phage cocktail administration to reduce Salmonella load in broilers. Res Vet Sci 2024; 169:105163. [PMID: 38295630 DOI: 10.1016/j.rvsc.2024.105163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Salmonella is a serious foodborne pathogen that can cause gastrointestinal disease through the consumption of contaminated foods; including poultry meat. Salmonella is commonly present in the intestinal tract of poultry and farm environments, posing a potential risk of contamination during the processing of poultry meat. This study was a continuation in evaluating the effects of our previously developed phage cocktail targeting Salmonella at large-scale trials in commercial broiler farms, in which this cocktail considerably lowered Salmonella colonization in the gut of broilers. The phage cocktail given to broilers showed resistance to temperatures of up to 65 °C (> 60% survivability), pH ranging from 2 to 12 (> 96% survivability), 0.5 to 15% (w/v) NaCl (> 98% survivability), chlorine up to 0.5% (v/v) (53% survivability), and chlorine neutralizer (100% survivability). In the animal challenge study, phage treatments, designed as "prevention" and "exclusion" programs, could control Salmonella on day 20 and 32 of the experiment, respectively; as indicated by the absence of Salmonella detection in cloacal swabs from broilers (0% prevalence). In the commercial-scale trial I, Salmonella was not detected in the phage-treated group from cloacal swabs, boot cover swabs, and bedding material samples after 16 days (0% prevalence) of phage administration. In the commercial-scale trial II, phage treatment extended the Salmonella control period in broilers during a 40-day growout period. In summary, a phage cocktail demonstrated high efficiency in controlling various serovars of Salmonella historically linked to contamination on these broiler farms. Phage cocktail application offers an effective, alternative to enhance food safety within the poultry value chain, protecting consumers and as well as the economic sustainability of the poultry sector.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Science and Technology, Maejo University, Nongharn, Sansai, Chiang Mai 50290, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
9
|
Wilsmann DE, Furian TQ, Carvalho D, Chitolina GZ, Lucca V, Emery BD, Borges KA, Martins AC, Pontin KP, Salle CTP, de Souza Moraes HL, do Nascimento VP. Antibiofilm activity of electrochemically activated water (ECAW) in the control of Salmonella Heidelberg biofilms on industrial surfaces. Braz J Microbiol 2023; 54:2035-2045. [PMID: 37184738 PMCID: PMC10485189 DOI: 10.1007/s42770-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.
Collapse
Affiliation(s)
- Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Brunna Dias Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Abrahão Carvalho Martins
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
10
|
de Souza ZN, de Moura DF, de Almeida Campos LA, Córdula CR, Cavalcanti IMF. Antibiotic resistance profiles on pathogenic bacteria in the Brazilian environments. Arch Microbiol 2023; 205:185. [PMID: 37043091 DOI: 10.1007/s00203-023-03524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The present study aimed to elaborate a review of multidrug-resistant (MDR) bacteria in soil, food, aquatic environments, cattle, poultry, and swine farms in Brazil. Initially, the literature database for published papers from 2012 to 2023 was Scientific Electronic Library Online (SciELO), U.S. National Library of Medicine (PubMed), and Google Scholar, through the descriptors: antimicrobial resistance, resistance profile, multidrug resistance, environmental bacteria, and pathogenic bacteria. The studies demonstrated the prevalence of pathogenic and resistant bacteria in environments that favor their rapid dissemination. Bacteria of medical importance, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio spp., were present in samples from animal farms and foods, including cheese and milk, urban aquatic environments, hospital effluents, and shrimp farms. Studies suggested that important bacteria have been disseminated through different niches with easy contact with humans, animals, and food, demonstrating the danger of the emergence of increasingly difficult conditions for treating and controlling these infections. Thus, better understanding and characterizing the resistance profiles of bacteria in these regions, mainly referring to MDR bacteria, can help develop solutions to prevent the progression of this public health problem.
Collapse
Affiliation(s)
- Zion Nascimento de Souza
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Danielle Feijó de Moura
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Carolina Ribeiro Córdula
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
11
|
A Simple Assay to Assess Salmonella Typhimurium Impact on Performance and Immune Status of Growing Pigs after Different Inoculation Doses. Microorganisms 2023; 11:microorganisms11020446. [PMID: 36838413 PMCID: PMC9962513 DOI: 10.3390/microorganisms11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Salmonella Typhimurium is the most frequent serovar in pigs and causes infections in humans. However, the dosage used for experimentation is not well defined. The present study aimed to evaluate a dosage for oral inoculation with Salmonella Typhimurium to assess immunological and growth performance alterations in pigs. Gilts were randomly allocated into one of three experimental treatments: no Salmonella Typhimurium inoculation (Basal), or oral inoculation of 1 × 108 or 1.5 × 108 colony-forming units of Salmonella Typhimurium. Growth rate, rectal temperature, and fecal Salmonella shedding were recorded. Blood samples were taken. Inoculated pigs shed the bacteria for up to 7 days, but no differences were observed between the groups. No differences were observed in rectal temperature, body weight, or average daily feed intake. However, reductions in average daily gain (-17 and -22%) and feed efficiency (-14 and -20%) were observed in pigs inoculated with 1 × 108 and 1.5 × 108 colony-forming units, respectively. The hemoglobin and hematocrit concentrations increased in challenged pigs compared to Basal pigs. The oral dosage of 1.5 × 108 colony-forming units of Salmonella Typhimurium is suitable for activating the immune system of pigs and assessing the impact of Salmonella on pig performance.
Collapse
|
12
|
Voss-Rech D, Ziech RE, Vaz CSL, Coldebella A, Kuchiishi SS, Balzan C, Matter L, Vargas ÁC, Botton SA. Association between antimicrobial resistance and biofilm forming ability of Salmonella enterica serotypes from commercial broiler farms in Brazil. Br Poult Sci 2022; 64:224-230. [PMID: 36259551 DOI: 10.1080/00071668.2022.2136511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study determined the antimicrobial resistance profile and the biofilm-forming ability of Salmonella enterica strains isolated from commercial broiler houses over a three-year period in southern Brazil. 2. Of the 720 drag swabs analysed, 37 (5.1%) tested positive for non-typhoidal Salmonella spp. and S. Heidelberg was the most frequent serovar. 3. Among the antimicrobial resistant strains (83.8%; 31/37), resistance was most common to tetracycline, ampicillin and nalidixic acid. Multidrug resistance was found in 65% (24/37) of the isolates, with a large proportion of multidrug resistant S. Heidelberg strains (81%; 13/16). 4. In total, 65% (24/37) of the isolates showed the ability to produce biofilm and multiple antimicrobial resistance was negatively correlated with biofilm formation. 5. Strains susceptible to all tested antimicrobials tended to form stronger biofilms than multidrug resistant ones. This suggested that Salmonella spp. with less antimicrobial resistance depend more on the protection provided by biofilm to survive in the farm environment.
Collapse
Affiliation(s)
- D Voss-Rech
- Embrapa Suínos e Aves, Concórdia, SC, Brazil.,Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - R E Ziech
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - C S L Vaz
- Embrapa Suínos e Aves, Concórdia, SC, Brazil
| | | | - S S Kuchiishi
- Centro de Diagnóstico de Sanidade Animal, Concórdia, SC, Brazil
| | - C Balzan
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L Matter
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Á C Vargas
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - S A Botton
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Pissetti C, de Freitas Costa E, Zenato KS, de Itapema Cardoso MR. Critically Important Antimicrobial Resistance Trends in Salmonella Derby and Salmonella Typhimurium Isolated from the Pork Production Chain in Brazil: A 16-Year Period. Pathogens 2022; 11:pathogens11080905. [PMID: 36015026 PMCID: PMC9414203 DOI: 10.3390/pathogens11080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Knowledge about antimicrobial resistance in Salmonella is relevant due to its importance in foodborne diseases. We gathered data obtained over 16 years in the southern Brazilian swine production chain to evaluate the temporal evolution of halo for carbapenem, and the MIC for third-generation cephalosporins, fluoroquinolone, and polymyxin in 278 Salmonella Derby and Typhimurium isolates. All antimicrobial resistance assays were performed in accordance with EUCAST. To assess the diameter halo, we used a mixed linear model, and to assess the MIC, an accelerated failure time model for interval-censored data using an exponential distribution was used. The linear predictor of the models comprised fixed effects for matrix, serovar, and the interaction between year, serovar, and matrix. The observed halo diameter has decreased for ertapenem, regardless of serovars and matrices, and for the serovar Typhimurium it has decreased for three carbapenems. The MIC for ciprofloxacin and cefotaxime increased over 16 years for Typhimurium, and for Derby (food) it decreased. We did not find evidence that the MIC for colistin, ceftazidime, ciprofloxacin (Derby), or cefotaxime (food Typhimurium and animal Derby) has changed over time. This work gave an overview of antimicrobial resistance evolution from an epidemiological point of view and observed that using this approach can increase the sensitivity and timeliness of antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Caroline Pissetti
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
- Correspondence:
| | - Eduardo de Freitas Costa
- Department of Epidemiology, Bio-Informatics and Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Karoline Silva Zenato
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
14
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|