1
|
Erram D, McGregor B, Acevedo C, Alto BW, Burkett-Cadena N. Epizootic hemorrhagic disease virus oral infection affects midge reproduction and is vertically transmitted to offspring in Culicoides sonorensis. Sci Rep 2025; 15:16078. [PMID: 40341161 PMCID: PMC12062246 DOI: 10.1038/s41598-025-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV: Reoviridae: Orbivirus) is a Culicoides-borne pathogen that affects a variety of ruminants, causing significant economic losses and/or ecological impacts in animal agriculture/wildlife populations worldwide. In this study, we examined the effect of EHDV serotype-2 oral infection on the survival and reproduction of Culicoides sonorensis Wirth and Jones (a confirmed vector of EHDV in North America), and the potential vertical transmission of EHDV-2 (from infected female to its offspring) in this midge species. Culicoides sonorensis females were fed on defibrinated bovine blood mixed with EHDV-2 (5.5 log10 PFU/ml) or without EHDV-2 (control). Adult survival/longevity, oviposition rates, number of eggs deposited, egg hatch rates (fertility), larval survival, larval stage duration, eclosion rates, and sex-ratios of the progeny were recorded and compared between the two groups. In addition, the progeny (eggs and F1 generation adults) of EHDV-2 fed females were processed for viral detection through RT-qPCR and plaque assays. Survival/longevity of the blood-fed adults, oviposition rates, number of eggs deposited, larval stage duration, eclosion rates, and sex-ratios were not significantly different between the two groups. However, egg hatch rates were significantly lower in the EHDV-2 fed group (35.8 ± 5.2%) than the control group (74.5 ± 6.8%), but larval survival rates were higher in the EHDV-2 fed group (59.8 ± 4.9%) compared to the control group (34.1 ± 6.5%). EHDV-2 (Ct < 35) was detected in the eggs (3.4%, 1/29 females tested, Ct = 22.1 [4.9 log10 PFUe/ml]) and F1 adult progeny (1.7%, 1/58 adults tested, Ct = 23.5 [4.5 log10 PFUe/ml]) of the orally exposed females through RT-qPCR as well as through plaque assays. Our findings suggest that EHDV-2 infection has no major impact on C. sonorensis survival/longevity or oviposition but has a significant negative effect on midge fecundity/fertility. Our study also provides evidence for the vertical transmission of EHDV-2 from an infected adult female to its offspring in C. sonorensis. However, salivary transmission of EHDV-2 from the vertically infected progeny and its significance in the epidemiology of hemorrhagic disease are currently unknown and remain to be examined in further studies. Overall, these findings collectively indicate that Orbivirus infection can negatively affect vector reproduction, and that vertical transmission is a probable mechanism of overwintering of EHDV in North America.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA.
- Department of Entomology, Louisiana State University, 409 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Bethany McGregor
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
- Minaris Regenerative Medicine, 75 Commerce Dr, Allendale, NJ, 07401, USA
| | - Barry W Alto
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
2
|
Kien CA, Ebai R, Fombad FF, Esofi F, Ntuh AN, Ouam E, Gandjui NVT, Chunda VC, Ekanya R, Nietcho FN, Foyet JV, Nchang LC, Magha C, Njouendou AJ, Enyong P, Hoerauf A, Ritter M, Wanji S. Large-scale production of Mansonella perstans infective larvae from engorged Culicoides milnei. FRONTIERS IN TROPICAL DISEASES 2024; 5:fitd.2024.1391823. [PMID: 39811392 PMCID: PMC7617305 DOI: 10.3389/fitd.2024.1391823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Background Mansonella perstans is transmitted by Culicoides species and affects hundred millions of inhabitants in about 33 countries in sub-Saharan Africa. It is known that Mansonellosis due to Mansonella perstans do not result in a clear clinical picture, but down-regulates the immunity of patients predisposing them to other diseases like tuberculosis, HIV and malaria or damping vaccine efficacy. However, research about novel drugs against this filarial nematode is missing because of the lack of parasite material. Previous studies have developed in vitro culture systems using infective stage 3 larvae (L3), but these life stages are difficult to obtain and thus the performance of in vitro cultures is restricted and does not allow large-scale testing of drugs or even infection experiments in animal models. Therefore, we aim to establish a platform for the large-scale production of M. perstans infective larvae from engorged Culicoides milnei. Methods Culicoides species were caught in Yangom (Yabassi Health District) in the Littoral Region of Cameroon following a blood meal on six microfilariae-positive donors with different microfilaraemic loads over one year. Engorged midges were reared in the insectarium for up to 14 days and L3 were isolated from the different body parts. Result In summary, 13,658 engorged Culicoides were collected and reared in the laboratory. We observed an overall predicted survival of 78.5%. Out of the 8,123 survived midges, 7,086 midges belong to C. milnei, from which 2,335 were infected leading to a recovery of 6,310 L3. Moreover, we found the highest survival rates of midges during the early dry season in December with moderate temperatures (23-25°C) and low (2-4mm) or no rainfall. In addition, we observed that midges that fed on donors with high microfilarial loads showed increased mortality. Conclusion We revealed suitable conditions for the collection and maintenance of engorged Culicoides midges allowing the large-scale production of M. perstans L3. This procedure will provide a platform to produce sufficient parasite material that will facilitate in vitro cultures and the establishment of a murine model of M. perstans, which is important for in-depth investigation of the filarial biology and screening of novel drugs that are effective against this ivermectin-resistant nematode.
Collapse
Affiliation(s)
- Chi Anizette Kien
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frederick Esofi
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Anna Ning Ntuh
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Emmanuel Ouam
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Valerine Chawa Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Relindis Ekanya
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Franck Noel Nietcho
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Juluis Visnel Foyet
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Lucy Cho Nchang
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Peter Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
3
|
Zhou LH, Valdez F, Lopez Gonzalez I, Freysser Urbina W, Ocaña A, Tapia C, Zambrano A, Hernandez Solis E, Peters DPC, Mire CE, Navarro R, Rodriguez LL, Hanley KA. Vesicular Stomatitis Virus Transmission Dynamics Within Its Endemic Range in Chiapas, Mexico. Viruses 2024; 16:1742. [PMID: 39599856 PMCID: PMC11598859 DOI: 10.3390/v16111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Vesicular stomatitis virus (VSV), comprising vesicular stomatitis New Jersey virus (VSNJV) and vesicular stomatitis Indiana virus (VSIV), emerges from its focus of endemic transmission in Southern Mexico to cause sporadic livestock epizootics in the Western United States. A dearth of information on the role of potential arthropod vectors in the endemic region hampers efforts to identify factors that enable endemicity and predict outbreaks. In a two-year, longitudinal study at five cattle ranches in Chiapas, Mexico, insect taxa implicated as VSV vectors (blackflies, sandflies, biting midges, and mosquitoes) were collected and screened for VSV RNA, livestock vesicular stomatitis (VS) cases were monitored, and serum samples were screened for neutralizing antibodies. VS cases were reported during the rainy (n = 20) and post-rainy (n = 2) seasons. Seroprevalence against VSNJV in adult cattle was very high (75-100% per ranch) compared with VSIV (0.6%, all ranches). All four potential vector taxa were sampled, and VSNJV RNA was detected in each of them (11% VSNJV-positive of 874 total pools), while VSIV RNA was only detected in four pools of mosquitoes. Our findings indicate that VSNJV is the dominant serotype across our sampling sites with a variety of potential insect vectors involved in its transmission throughout the year. Although no livestock cases were reported in Chiapas during the dry season, VSNJV was detected in insects during this period, suggesting that mechanisms other than transmission from livestock support VSV endemicity.
Collapse
Affiliation(s)
- Lawrence H. Zhou
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Federico Valdez
- United States Department of Agriculture, Agricultural Research Services, Plum Island Animal Disease Center and National Bio- and Agro-Defense Facility, Manhattan, KS 66502, USA; (F.V.); (L.L.R.)
- United States Department of Agriculture, Agricultural Research Services, National Bio and Agro-Defense Facility, Foreign Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA;
| | - Irene Lopez Gonzalez
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Ciudad de México 29020, Chiapas, Mexico;
| | - Willian Freysser Urbina
- Instituto Interamericano de Cooperación para la Agricultura (IICA)—Laboratorio de Biología Molecular LBS2 Tuxtla Gutiérrez, Ciudad de México 29020, Chiapas, Mexico; (W.F.U.); (A.O.); (C.T.); (A.Z.); (E.H.S.)
| | - Ariadna Ocaña
- Instituto Interamericano de Cooperación para la Agricultura (IICA)—Laboratorio de Biología Molecular LBS2 Tuxtla Gutiérrez, Ciudad de México 29020, Chiapas, Mexico; (W.F.U.); (A.O.); (C.T.); (A.Z.); (E.H.S.)
| | - Cristell Tapia
- Instituto Interamericano de Cooperación para la Agricultura (IICA)—Laboratorio de Biología Molecular LBS2 Tuxtla Gutiérrez, Ciudad de México 29020, Chiapas, Mexico; (W.F.U.); (A.O.); (C.T.); (A.Z.); (E.H.S.)
| | - Armando Zambrano
- Instituto Interamericano de Cooperación para la Agricultura (IICA)—Laboratorio de Biología Molecular LBS2 Tuxtla Gutiérrez, Ciudad de México 29020, Chiapas, Mexico; (W.F.U.); (A.O.); (C.T.); (A.Z.); (E.H.S.)
| | - Edilberto Hernandez Solis
- Instituto Interamericano de Cooperación para la Agricultura (IICA)—Laboratorio de Biología Molecular LBS2 Tuxtla Gutiérrez, Ciudad de México 29020, Chiapas, Mexico; (W.F.U.); (A.O.); (C.T.); (A.Z.); (E.H.S.)
| | - Debra P. C. Peters
- Office of National Programs and the SCINet Big Data Program, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Chad E. Mire
- United States Department of Agriculture, Agricultural Research Services, National Bio and Agro-Defense Facility, Foreign Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA;
| | - Roberto Navarro
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Mexico City 64590, Mexico State, Mexico
| | - Luis L. Rodriguez
- United States Department of Agriculture, Agricultural Research Services, Plum Island Animal Disease Center and National Bio- and Agro-Defense Facility, Manhattan, KS 66502, USA; (F.V.); (L.L.R.)
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
4
|
Scroggs SLP, Swanson DA, Steele TD, Hudson AR, Reister-Hendricks LM, Gutierrez J, Shults P, McGregor BL, Taylor CE, Davis TM, Lamberski N, Phair KA, Howard LL, McConnell NE, Gurfield N, Drolet BS, Pelzel-McCluskey AM, Cohnstaedt LW. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses 2024; 16:1428. [PMID: 39339904 PMCID: PMC11437509 DOI: 10.3390/v16091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Vesicular stomatitis (VS) is a viral disease that affects horses, cattle, and swine that is transmitted by direct contact and hematophagous insects. In 2023, a multi-state outbreak of vesicular stomatitis New Jersey virus (VSNJV) occurred in California, Nevada, and Texas, infecting horses, cattle, and rhinoceros. To identify possible insect vectors, we conducted insect surveillance at various locations in San Diego County, CA, including at a wildlife park. CO2 baited traps set from mid-May to mid-August 2023 collected 2357 Culicoides biting midges and 1215 Simulium black flies, which are insect genera implicated in VSNJV transmission. Insects were pooled by species, location, and date, then tested for viral RNA. Nine RNA-positive pools of Culicoides spp. and sixteen RNA-positive pools of Simulium spp were detected. Infectious virus was detected by cytopathic effect in 96% of the RNA-positive pools. This is the first report of VSNJV in wild-caught C. bergi, C. freeborni, C. occidentalis, S. argus, S. hippovorum, and S. tescorum. The vector competency of these species for VSNJV has yet to be determined but warrants examination. Active vector surveillance and testing during disease outbreaks increases our understanding of the ecology and epidemiology of VS and informs vector control efforts.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Dustin A. Swanson
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Taylor D. Steele
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Amy R. Hudson
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Lindsey M. Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Jessica Gutierrez
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Phillip Shults
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Caitlin E. Taylor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Nadine Lamberski
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Kristen A. Phair
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Lauren L. Howard
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
- Peel Therapeutics, Salt Lake City, UT 84101, USA
| | | | - Nikos Gurfield
- San Diego County Vector Control, San Diego, CA 92123, USA; (N.E.M.); (N.G.)
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Angela M. Pelzel-McCluskey
- Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| |
Collapse
|
5
|
Humphreys JM, Shults PT, Velazquez-Salinas L, Bertram MR, Pelzel-McCluskey AM, Pauszek SJ, Peters DPC, Rodriguez LL. Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. Viruses 2024; 16:1118. [PMID: 39066280 PMCID: PMC11281362 DOI: 10.3390/v16071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014-15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US-Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment-vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions.
Collapse
Affiliation(s)
- John M. Humphreys
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Phillip T. Shults
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA;
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), U.S. Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Steven J. Pauszek
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), Plum Island Animal Disease Center (PIADC), U.S. Department of Agriculture, Orient, NY 11957, USA;
| | - Debra P. C. Peters
- Office of National Programs, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| |
Collapse
|
6
|
Rozo-Lopez P, Drolet BS. Culicoides-Specific Fitness Increase of Vesicular Stomatitis Virus in Insect-to-Insect Infections. INSECTS 2024; 15:34. [PMID: 38249040 PMCID: PMC10816812 DOI: 10.3390/insects15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Vesicular stomatitis virus (VSV) is an arthropod-borne virus affecting livestock. In the United States, sporadic outbreaks result in significant economic losses. During epizootics, Culicoides biting midges are biological vectors and key to the geographic expansion of outbreaks. Additionally, Culicoides may play a role in VSV overwintering because females and males are capable of highly efficient venereal transmission, despite their relatively low virus titers. We hypothesized that VSV propagated within a midge has increased fitness for subsequent midge infections. To evaluate the potential host-specific fitness increase, we propagated three viral isolates of VSV in porcine skin fibroblasts and Culicoides cell lines. We then evaluated the viral infection dynamics of the different cell-source groups in Culicoides sonorensis. Our results indicate that both mammalian- and insect-derived VSV replicate well in midges inoculated via intrathoracic injection, thereby bypassing the midgut barriers. However, when the virus was required to infect and escape the midgut barrier to disseminate after oral acquisition, the insect-derived viruses had significantly higher titers, infection, and dissemination rates than mammalian-derived viruses. Our research suggests that VSV replication in Culicoides cells increases viral fitness, facilitating midge-to-midge transmission and subsequent replication, and further highlights the significance of Culicoides midges in VSV maintenance and transmission dynamics.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
7
|
Scroggs SLP, Bird EJ, Molik DC, Nayduch D. Vesicular Stomatitis Virus Elicits Early Transcriptome Response in Culicoides sonorensis Cells. Viruses 2023; 15:2108. [PMID: 37896885 PMCID: PMC10612082 DOI: 10.3390/v15102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Viruses that are transmitted by arthropods, or arboviruses, have evolved to successfully navigate both the invertebrate and vertebrate hosts, including their immune systems. Biting midges transmit several arboviruses including vesicular stomatitis virus (VSV). To study the interaction between VSV and midges, we characterized the transcriptomic responses of VSV-infected and mock-infected Culicoides sonorensis cells at 1, 8, 24, and 96 h post inoculation (HPI). The transcriptomic response of VSV-infected cells at 1 HPI was significant, but by 8 HPI there were no detectable differences between the transcriptome profiles of VSV-infected and mock-infected cells. Several genes involved in immunity were upregulated (ATG2B and TRAF4) or downregulated (SMAD6 and TOLL7) in VSV-treated cells at 1 HPI. These results indicate that VSV infection in midge cells produces an early immune response that quickly wanes, giving insight into in vivo C. sonorensis VSV tolerance that may underlie their permissiveness as vectors for this virus.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| | - Edward J. Bird
- Department of Entomology, Kansas State University, Manhattan, KS 66502, USA;
| | - David C. Molik
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| | - Dana Nayduch
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.C.M.); (D.N.)
| |
Collapse
|
8
|
Molecular Tracking of the Origin of Vesicular Stomatitis Outbreaks in 2004 and 2018, Ecuador. Vet Sci 2023; 10:vetsci10030181. [PMID: 36977220 PMCID: PMC10057135 DOI: 10.3390/vetsci10030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
The Vesicular Stomatitis Virus (VSV) is an arbovirus causing vesicular stomatitis (VS) in livestock. There are two serotypes recognized: New Jersey (VSNJV) and Indiana (VSIV). The virus can be transmitted directly by contact or by vectors. In 2018, Ecuador experienced an outbreak of Vesicular Stomatitis (VS) in cattle, caused by VSNJV and VSVIV, with 399 cases reported distributed over 18 provinces. We determined the phylogenetic relationships among 67 strains. For the construction of phylogenetic trees, the viral phosphoprotein gene was sequenced, and trees were constructed based on the Maximum Likelihood method using 2004 outbreak strains from Ecuador (GenBank) and the 2018 sequences (this article). We built a haplotype network for VSNJV to trace the origin of the 2004 and 2018 epizootics through topology and mutation connections. These analyses suggest two different origins, one related to the 2004 outbreak and the other from a transmission source in 2018. Our analysis also suggests different transmission patterns; several small and independent outbreaks, most probably transmitted by vectors in the Amazon, and another outbreak caused by the movement of livestock in the Andean and Coastal regions. We recommend further research into vectors and vertebrate reservoirs in Ecuador to clarify the mechanisms of the reemergence of the virus.
Collapse
|
9
|
Comparison of Endemic and Epidemic Vesicular Stomatitis Virus Lineages in Culicoides sonorensis Midges. Viruses 2022; 14:v14061221. [PMID: 35746691 PMCID: PMC9230599 DOI: 10.3390/v14061221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Vesicular stomatitis virus (VSV) primarily infects livestock and is transmitted by direct contact and vectored by Culicoides midges (Diptera: Ceratopogonidae). Endemic to Central and South America, specific VSV lineages spread northward out of endemic regions of Mexico and into the U.S. sporadically every five to ten years. In 2012, a monophyletic epidemic lineage 1.1 successfully spread northward into the U.S. In contrast, the closest endemic ancestor, lineage 1.2, remained circulating exclusively in endemic regions in Mexico. It is not clear what roles virus-animal interactions and/or virus-vector interactions play in the ability of specific viral lineages to escape endemic regions in Mexico and successfully cause outbreaks in the U.S., nor the genetic basis for such incursions. Whole-genome sequencing of epidemic VSV 1.1 and endemic VSV 1.2 revealed significant differences in just seven amino acids. Previous studies in swine showed that VSV 1.1 was more virulent than VSV 1.2. Here, we compared the efficiency of these two viral lineages to infect the vector Culicoides sonorensis (Wirth and Jones) and disseminate to salivary glands for subsequent transmission. Our results showed that midges orally infected with the epidemic VSV 1.1 lineage had significantly higher infection dissemination rates compared to those infected with the endemic VSV 1.2 lineage. Thus, in addition to affecting virus-animal interactions, as seen with higher virulence in pigs, small genetic changes may also affect virus-vector interactions, contributing to the ability of specific viral lineages to escape endemic regions via vector-borne transmission.
Collapse
|
10
|
Vector-Borne Viral Diseases as a Current Threat for Human and Animal Health—One Health Perspective. J Clin Med 2022; 11:jcm11113026. [PMID: 35683413 PMCID: PMC9181581 DOI: 10.3390/jcm11113026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, an increase in the emergence or re-emergence of arthropod-borne viruses has been observed in many regions. Viruses such as dengue, yellow fever, or zika are a threat for millions of people on different continents. On the other hand, some arboviruses are still described as endemic, however, they could become more important in the near future. Additionally, there is a group of arboviruses that, although important for animal breeding, are not a direct threat for human health. Those include, e.g., Schmallenberg, bluetongue, or African swine fever viruses. This review focuses on arboviruses and their major vectors: mosquitoes, ticks, biting midges, and sandflies. We discuss the current knowledge on arbovirus transmission, ecology, and methods of prevention. As arboviruses are a challenge to both human and animal health, successful prevention and control are therefore only possible through a One Health perspective.
Collapse
|
11
|
Effect of Constant Temperatures on Culicoides sonorensis Midge Physiology and Vesicular Stomatitis Virus Infection. INSECTS 2022; 13:insects13040372. [PMID: 35447814 PMCID: PMC9024736 DOI: 10.3390/insects13040372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Culicoides biting midges are nuisance pests of livestock and well-known vectors of veterinary arboviruses, such as vesicular stomatitis virus (VSV). Female midges ingest viruses when feeding on blood to obtain protein for egg-laying. After ingesting a VSV-infected blood meal, the environmental temperature of the resting location mediates the rates at which blood is digested, eggs are laid, and virus particles are replicated inside the midge. VSV transmission will occur if the timing of virus amplification aligns with the next feeding–egg-laying cycle. We evaluated the impact of constant environmental temperatures on midge physiology (lifespan and reproduction), vector competence for VSV (infection and dissemination), and thermal resting preference. Our results indicate that after ingesting a blood meal, most midges prefer to rest in areas that fall within their preferred physiological range regardless of the temperatures at which they were being maintained. These preferred temperatures maximized their survival, the number of egg-laying cycles, and the likelihood of VSV transmission. Our temperature approach shows that in the Culicoides–VSV system, the preferred resting temperature selected by blood-fed midges is beneficial for both insect and virus transmission. Abstract Culicoides midges play an important role in vesicular stomatitis virus (VSV) transmission to US livestock. After VSV-blood feeding, blood digestion followed by oviposition occurs while ingested virus particles replicate and disseminate to salivary glands for transmission during subsequent blood-feeding events. Changes to environmental temperature may alter the feeding–oviposition–refeeding cycles, midge survival, VSV infection, and overall vector capacity. However, the heterothermic midge may respond rapidly to environmental changes by adjusting their thermal behavior to resting in areas closer to their physiological range. Here we investigated the effects of four constant environmental temperatures (20, 25, 30, and 35 °C) on C. sonorensis survival, oviposition, and VSV infection, as well as resting thermal preferences after blood-feeding. We found that most midges preferred to rest in areas at 25–30 °C. These two constant temperatures (25 and 30 °C) allowed an intermediate fitness performance, with a 66% survival probability by day 10 and oviposition cycles occurring every 2–3 days. Additionally, VSV infection rates in bodies and heads with salivary glands were higher than in midges held at 20 °C and 35 °C. Our results provide insight into the implications of temperature on VSV–Culicoides interactions and confirm that the range of temperature preferred by midges can benefit both the vector and the arbovirus.
Collapse
|
12
|
A Review of the Vector Status of North American Culicoides (Diptera: Ceratopogonidae) for Bluetongue Virus, Epizootic Hemorrhagic Disease Virus, and Other Arboviruses of Concern. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:130-139. [PMID: 36105115 PMCID: PMC9463510 DOI: 10.1007/s40475-022-00263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review Culicoides biting midges transmit several pathogens of veterinary importance in North America, but the vector status of many midge species is unresolved. Additionally, the available evidence of vector competence in these species is scattered and variable. The purpose of this review is to summarize current knowledge on confirmed and putative North American Culicoides arbovirus vectors. Recent Findings While the vector status of Culicoides sonorensis (EHDV, BTV, VSV) and Culicoides insignis (BTV) are well established, several other potential vector species have been recently identified. Frequently, these species are implicated based primarily on host-feeding, abundance, and/or detection of arboviruses from field-collected insects, and often lack laboratory infection and transmission data necessary to fully confirm their vector status. Recent genetic studies have also indicated that some wide-ranging species likely represent several cryptic species, further complicating our understanding of their vector status. Summary In most cases, laboratory evidence needed to fully understand the vector status of the putative Culicoides vectors is absent; however, it appears that several species are likely contributing to the transmission of arboviruses in North America.
Collapse
|
13
|
The Absence of Abdominal Pigmentation in Livestock Associated Culicoides following Artificial Blood Feeding and the Epidemiological Implication for Arbovirus Surveillance. Pathogens 2021; 10:pathogens10121571. [PMID: 34959526 PMCID: PMC8705276 DOI: 10.3390/pathogens10121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Culicoides midges (Diptera: Ceratopogonidae), the vectors of economically important arboviruses such as bluetongue virus and African horse sickness virus, are of global importance. In the absence of transovarial transmission, the parity rate of a Culicoides population provides imperative information regarding the risk of virus dispersal. Abdominal pigmentation, which develops after blood feeding and ovipositioning, is used as an indicator of parity in Culicoides. During oral susceptibility trials over the last three decades, a persistent proportion of blood engorged females did not develop pigment after incubation. The present study, combining a number of feeding trials and different artificial feeding methods, reports on this phenomenon, as observed in various South African and Italian Culicoides species and populations. The absence of pigmentation in artificial blood-fed females was found in at least 23 Culicoides species, including important vectors such as C. imicola, C. bolitinos, C. obsoletus, and C. scoticus. Viruses were repeatedly detected in these unpigmented females after incubation. Blood meal size seems to play a role and this phenomenon could be present in the field and requires consideration, especially regarding the detection of virus in apparent “nulliparous” females and the identification of overwintering mechanisms and seasonally free vector zones.
Collapse
|
14
|
Surveillance along the Rio Grande during the 2020 Vesicular Stomatitis Outbreak Reveals Spatio-Temporal Dynamics of and Viral RNA Detection in Black Flies. Pathogens 2021; 10:pathogens10101264. [PMID: 34684213 PMCID: PMC8541391 DOI: 10.3390/pathogens10101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
Vesicular stomatitis virus (VSV) emerges periodically from its focus of endemic transmission in southern Mexico to cause epizootics in livestock in the US. The ecology of VSV involves a diverse, but largely undefined, repertoire of potential reservoir hosts and invertebrate vectors. As part of a larger program to decipher VSV transmission, we conducted a study of the spatiotemporal dynamics of Simulium black flies, a known vector of VSV, along the Rio Grande in southern New Mexico, USA from March to December 2020. Serendipitously, the index case of VSV-Indiana (VSIV) in the USA in 2020 occurred at a central point of our study. Black flies appeared soon after the release of the Rio Grande’s water from an upstream dam in March 2020. Two-month and one-year lagged precipitation, maximum temperature, and vegetation greenness, measured as Normalized Difference Vegetation Index (NDVI), were associated with increased black fly abundance. We detected VSIV RNA in 11 pools comprising five black fly species using rRT-PCR; five pools yielded a VSIV sequence. To our knowledge, this is the first detection of VSV in the western US from vectors that were not collected on premises with infected domestic animals.
Collapse
|
15
|
Palinski R, Pauszek SJ, Humphreys JM, Peters DP, McVey DS, Pelzel‐McCluskey AM, Derner JD, Burruss ND, Arzt J, Rodriguez LL. Evolution and expansion dynamics of a vector‐borne virus: 2004–2006 vesicular stomatitis outbreak in the western USA. Ecosphere 2021. [DOI: 10.1002/ecs2.3793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rachel Palinski
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
- Veterinary Diagnostic Laboratory College of Veterinary Medicine Kansas State University 2005 Research Park Manhattan Kansas 66502 USA
| | - Steven J. Pauszek
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| | - John M. Humphreys
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
| | - Debra P.C. Peters
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico 88003 USA
| | - D. Scott McVey
- US Department of Agriculture Agricultural Research Service Center for Grain and Animal Health Research Arthropod‐Borne Animal Diseases Research Unit Manhattan Kansas 66506 USA
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska Lincoln Lincoln Nebraska 68583 USA
| | - Angela M. Pelzel‐McCluskey
- US Department of Agriculture, Animal and Plant Health Inspection Service Veterinary Services Fort Collins Colorado 80526 USA
| | - Justin D. Derner
- US Department of Agriculture Agricultural Research Service Rangeland Resources and Systems Research Unit 8408 Hildreth Road Cheyenne Wyoming 82009 USA
| | - N. Dylan Burruss
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico 88003 USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico 88003 USA
| | - Jonathan Arzt
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| | - Luis L. Rodriguez
- US Department of Agriculture, Agricultural Research Service Plum Island Animal Disease Center Orient Point New York 11957 USA
| |
Collapse
|
16
|
McGregor BL, Rozo-Lopez P, Davis TM, Drolet BS. Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA. Pathogens 2021; 10:1126. [PMID: 34578160 PMCID: PMC8471201 DOI: 10.3390/pathogens10091126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Vesicular stomatitis (VS) is a reportable viral disease which affects horses, cattle, and pigs in the Americas. Outbreaks of vesicular stomatitis virus New Jersey serotype (VSV-NJ) in the United States typically occur on a 5-10-year cycle, usually affecting western and southwestern states. In 2019-2020, an outbreak of VSV Indiana serotype (VSV-IN) extended eastward into the states of Kansas and Missouri for the first time in several decades, leading to 101 confirmed premises in Kansas and 37 confirmed premises in Missouri. In order to investigate which vector species contributed to the outbreak in Kansas, we conducted insect surveillance at two farms that experienced confirmed VSV-positive cases, one each in Riley County and Franklin County. Centers for Disease Control and Prevention miniature light traps were used to collect biting flies on the premises. Two genera of known VSV vectors, Culicoides biting midges and Simulium black flies, were identified to species, pooled by species, sex, reproductive status, and collection site, and tested for the presence of VSV-IN RNA by RT-qPCR. In total, eight positive pools were detected from Culicoides sonorensis (1), Culicoides stellifer (3), Culicoides variipennis (1), and Simulium meridionale (3). The C. sonorensis- and C. variipennis-positive pools were from nulliparous individuals, possibly indicating transovarial or venereal transmission as the source of virus. This is the first report of VSV-IN in field caught C. stellifer and the first report of either serotype in S. meridionale near outbreak premises. These results improve our understanding of the role midges and black flies play in VSV epidemiology in the United States and broadens the scope of vector species for targeted surveillance and control.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (B.L.M.); (T.M.D.)
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (B.L.M.); (T.M.D.)
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (B.L.M.); (T.M.D.)
| |
Collapse
|
17
|
Drolet BS, Reeves WK, Bennett KE, Pauszek SJ, Bertram MR, Rodriguez LL. Identical Viral Genetic Sequence Found in Black Flies ( Simulium bivittatum) and the Equine Index Case of the 2006 U.S. Vesicular Stomatitis Outbreak. Pathogens 2021; 10:pathogens10080929. [PMID: 34451394 PMCID: PMC8398051 DOI: 10.3390/pathogens10080929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/25/2023] Open
Abstract
In 2006, vesicular stomatitis New Jersey virus (VSNJV) caused outbreaks in Wyoming (WY) horses and cattle after overwintering in 2004 and 2005. Within two weeks of the outbreak onset, 12,203 biting flies and 194 grasshoppers were collected near three equine-positive premises in Natrona County, WY. Insects were identified to the species level and tested by RT-qPCR for VSNJV polymerase (L) and phosphoprotein (P) gene RNA. Collected dipterans known to be competent for VSV transmission included Simulium black flies and Culicoides biting midges. VSNJV L and P RNA was detected in two pools of female Simulium bivittatum and subjected to partial genome sequencing. Phylogenetic analysis based on the hypervariable region of the P gene from black flies showed 100% identity to the isolate obtained from the index horse case on the same premises. This is the first report of VSNJV in S. bivittatum in WY and the first field evidence of possible VSV maintenance in black fly populations during an outbreak.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, Unites States Department of Agriculture, Manhattan, KS 66502, USA
- Correspondence:
| | - Will K. Reeves
- Biological Regulatory Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | | | - Steven J. Pauszek
- Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Orient Point, NY 11957, USA;
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, Unites States Department of Agriculture, Orient Point, NY 11957, USA; (M.R.B.); (L.L.R.)
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, Unites States Department of Agriculture, Orient Point, NY 11957, USA; (M.R.B.); (L.L.R.)
| |
Collapse
|
18
|
Rozo-Lopez P, Londono-Renteria B, Drolet BS. Impacts of Infectious Dose, Feeding Behavior, and Age of Culicoides sonorensis Biting Midges on Infection Dynamics of Vesicular Stomatitis Virus. Pathogens 2021; 10:pathogens10070816. [PMID: 34209902 PMCID: PMC8308663 DOI: 10.3390/pathogens10070816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Culicoides sonorensis biting midges are biological vectors of vesicular stomatitis virus (VSV) in the U.S. Yet, little is known regarding the amount of ingested virus required to infect midges, nor how their feeding behavior or age affects viral replication and vector competence. We determined the minimum infectious dose of VSV-New Jersey for C. sonorensis midges and examined the effects of multiple blood-feeding cycles and age at the time of virus acquisition on infection dynamics. A minimum dose of 3.2 logs of virus/mL of blood resulted in midgut infections, and 5.2 logs/mL resulted in a disseminated infection to salivary glands. For blood-feeding behavior studies, ingestion of one or two non-infectious blood meals (BM) after a VSV infectious blood meal (VSV-BM) resulted in higher whole-body virus titers than midges receiving only the single infectious VSV-BM. Interestingly, this infection enhancement was not seen when a non-infectious BM preceded the infectious VSV-BM. Lastly, increased midge age at the time of infection correlated to increased whole-body virus titers. This research highlights the epidemiological implications of infectious doses, vector feeding behaviors, and vector age on VSV infection dynamics to estimate the risk of transmission by Culicoides midges more precisely.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Vector Biology Laboratory, Manhattan, KS 66506, USA;
| | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Vector Biology Laboratory, Manhattan, KS 66506, USA;
- Correspondence: (B.L.-R.); (B.S.D.)
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
- Correspondence: (B.L.-R.); (B.S.D.)
| |
Collapse
|
19
|
Tell JG, Coller BAG, Dubey SA, Jenal U, Lapps W, Wang L, Wolf J. Environmental Risk Assessment for rVSVΔG-ZEBOV-GP, a Genetically Modified Live Vaccine for Ebola Virus Disease. Vaccines (Basel) 2020; 8:vaccines8040779. [PMID: 33352786 PMCID: PMC7767225 DOI: 10.3390/vaccines8040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19.
Collapse
Affiliation(s)
- Joan G. Tell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
- Correspondence:
| | - Beth-Ann G. Coller
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Sheri A. Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Ursula Jenal
- Jenal & Partners Biosafety Consulting, 4310 Rheinfelden, Switzerland;
| | - William Lapps
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Liman Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.-A.G.C.); (S.A.D.); (W.L.); (L.W.); (J.W.)
| |
Collapse
|