1
|
Badiwe M, Fialho RO, Stevens C, Lombard PH, van Niekerk J. Fusarium Species Associated with Diseases of Citrus: A Comprehensive Review. J Fungi (Basel) 2025; 11:263. [PMID: 40278084 PMCID: PMC12028395 DOI: 10.3390/jof11040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The citrus industry contributes to the cultivation of one of the most important fruit crops globally. However, citrus trees are susceptible to numerous Bisifusarium, Fusarium, and Neocosmospora-linked diseases, with dry root rot posing a serious threat to citrus orchards worldwide. These infections are exacerbated by biotic and abiotic stresses, leading to increased disease incidence. Healthy trees unexpectedly wilt and fall, exhibiting symptoms such as chlorosis, dieback, necrotic roots, root rot, wood discolouration, and eventual decline. Research indicates that the disease is caused by a complex of species from the Nectriaceae family, with Neocosmospora solani being the most prominent. To improve treatment and management strategies, further studies are needed to definitively identify these phytopathogens and understand the conditions and factors associated with Bisifusarium, Fusarium, and Neocosmospora-related diseases in citrus. This review focuses on the epidemiology and symptomatology of Fusarium and Neocosmospora species, recent advances in molecular techniques for accurate phytopathogen identification, and the molecular mechanisms of pathogenicity and resistance underlying Fusarium and Neocosmospora-citrus interactions. Additionally, the review highlights novel alternative methods, including biological control agents, for disease control to promote environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Mihlali Badiwe
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Régis Oliveira Fialho
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Charles Stevens
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| | - Paul-Henri Lombard
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Jan van Niekerk
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| |
Collapse
|
2
|
Cruz JMFDL, de Farias OR, Araújo BCL, Rivera AV, de Souza CR, de Souza JT. A New Root and Trunk Rot Disease of Grapevine Plantlets Caused by Fusarium in Four Species Complexes. J Fungi (Basel) 2025; 11:230. [PMID: 40137267 PMCID: PMC11942937 DOI: 10.3390/jof11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Grapevines are propagated by grafting, but the rootstocks used in commercial plantations are susceptible to several diseases. In this study, we focused on a novel root and trunk rot disease of grapevine plantlets that show symptoms during cold storage, before field establishment. Our objectives were to study the aetiology, symptomatology, plant resistance responses, and mode of action of the pathogen that was initially identified as Fusarium. The characterisation of this pathosystem was performed by isolation, pathogenicity assays, genetic diversity studies with BOX-PCR, and identification by sequencing a fragment of the tef1 gene. Scanning electron microscopy and X-ray spectroscopy were used to study the mode of action and plant resistance responses. The results showed that 12 species of Fusarium, initially isolated from both healthy and diseased plantlets, and classified into 4 species complexes, were pathogenic to grapevines. Comparative analyses between diseased and healthy roots showed typical resistance responses in diseased plantlets, including tyloses formation, translocation of Ca, and accumulation of Si. Field experiments confirmed that 100% of the diseased plantlets died within 90 days of transplantation. This study contributes to a better understanding of root and trunk rot disease under cold storage and provides insights for the development of management strategies.
Collapse
Affiliation(s)
| | - Otília Ricardo de Farias
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Brunno Cassiano Lemos Araújo
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| | - Alejandra Valencia Rivera
- Faculty of Agricultural Sciences, Jaime Isaza Cadavid Colombian Polytechnic, Medellín 050022, ANT, Colombia;
| | - Cláudia Rita de Souza
- Technological Centre of Grape and Wine Research, Agricultural Research Agency of the State of Minas Gerais, Caldas 37780-000, MG, Brazil;
| | - Jorge Teodoro de Souza
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-900, MG, Brazil; (J.M.F.d.L.C.); (O.R.d.F.); (B.C.L.A.)
| |
Collapse
|
3
|
López-Arellanes ME, López-Pacheco LD, Elizondo-Luevano JH, González-Meza GM. Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms 2025; 13:439. [PMID: 40005804 PMCID: PMC11858688 DOI: 10.3390/microorganisms13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Collapse
Affiliation(s)
- Miguel E. López-Arellanes
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
| | - Lizbeth Denisse López-Pacheco
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| | - Joel H. Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Georgia María González-Meza
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| |
Collapse
|
4
|
Torres-Rodriguez JA, Reyes-Pérez JJ, Carranza-Patiño MS, Herrera-Feijoo RJ, Preciado-Rangel P, Hernandez-Montiel LG. Biocontrol of Fusarium solani: Antifungal Activity of Chitosan and Induction of Defence Enzymes. PLANTS (BASEL, SWITZERLAND) 2025; 14:431. [PMID: 39942993 PMCID: PMC11820095 DOI: 10.3390/plants14030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
In this work, the efficiency of chitosan as a biocontrol agent against Fusarium solani on tomato plants was determined and the antifungal activity and the induction of defence enzymes were evaluated. Treatments were carried out with different concentrations of chitosan (1, 2 and 3 g L-1) combined with a synthetic fungicide (carbendazim). The results showed that all chitosan treatments significantly inhibited the mycelial growth and biomass of F. solani, with the most effective results obtained with the 3 g L-1 treatment. Scanning electron microscopy revealed that chitosan causes severe structural damage to F. solani, including cell lysis and the deformation of mycelium and spores. In addition, plants treated with chitosan showed significant improvements in height, stem diameter, root dry biomass and root length compared to those treated with synthetic fungicide and the control (no chitosan application). Enzyme assays showed that chitosan significantly increased superoxide dismutase, catalase, peroxidase and phenylalanine ammonia-lyase activity, indicating an increased defensive response. These results suggest that chitosan is a viable and less toxic alternative for the management of disease caused by F. solani in tomato plants, promoting both plant health and growth.
Collapse
Affiliation(s)
- Juan Antonio Torres-Rodriguez
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Juan José Reyes-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Mercedes Susana Carranza-Patiño
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Robinson J. Herrera-Feijoo
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México/Campus Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, ejido Ana, Torreón, Coahuila 27170, Mexico;
| | - Luis Guillermo Hernandez-Montiel
- Nanotechnology & Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur 23096, Mexico
| |
Collapse
|
5
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Shahbaz M, Abbas A, Hakim F, Shabbir M, Tan YS, Sathiya Seelan JS. Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Arch Microbiol 2025; 207:31. [PMID: 39792175 DOI: 10.1007/s00203-024-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp., are reviewed in this article, including increased efflux pump activity, target-site mutations, and metabolic detoxification pathways. Fusarium is naturally resistant to some of the fungicides, on the other hand; it speedily develops resistance against the other fungicides groups. Most of the important plant pathogenic Fusarium species including F. oxysporum, F. psedogramanium, F. graminearium and Fusarium solani, which have shown resistance to major groups of fungicides including triazoles, phenylpyrole and benzimedazoles in various regions of the world. The review also covers a range of management techniques, including fungicide rotation, resistant cultivars, cultural methods, and biological control agents, to lessen fungicide resistance. By shedding light on the current state of knowledge concerning fungicide resistance in Fusarium spp., this review provides valuable information to researchers, policymakers, and practitioners to design long-term effective disease management approaches, as well as fungal menace control to preserve fungicides' effectiveness in agriculture and conservancy activities.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Aqleem Abbas
- Department of Agriculture and Food Technology, Faculty of Life Sciences, Karakoram International University, 15100, Gilgit, Gilgit-Baltistan, Pakistan
| | - Fahad Hakim
- Department of Horticulture, Lithuanian Institute of Agriculture and Forestry, 58344, Kėdainiai, Lithuania
| | - Muhammad Shabbir
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Center, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Cesarini M, Petrucci A, Hotaj E, Venturini G, Liguori R, Sarrocco S. Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat. Microbiol Res 2025; 290:127941. [PMID: 39503079 DOI: 10.1016/j.micres.2024.127941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024]
Abstract
Fusarium head blight (FHB) represents a significant threat for wheat production due to the risk for food security and safety. Despite the huge number of biofungicides on the market, only one is actually available at European level to control Fusarium infections on cereals. The present work aimed to assess the possible use of Trichoderma asperellum strain ICC012 and Trichoderma gamsii strain ICC080 to manage FHB on common wheat Triticum aestivum cv Apogee. Initially, the capability of ICC012 and ICC080 to endophytically colonize wheat roots, a prerequisite very often correlated with the induction of resistance in the host plant, was investigated. It resulted in 100 % of roots internally colonized by the two strains, followed by a significant up-regulation of the defense-related genes encoding for pathogenesis-related protein 1 (pr1), superoxide dismutase (sod), polygalacturonase inhibitor protein 2 (pgip2) and phenylalanine ammonia-lyase 1 (pal1). When the expression of the same genes was investigated in spikes treated at the flowering stage with the two strains, applied individually or co-inoculated, a significant up-regulation of only pal1 was registered 24 hours post inoculation (hpi) in spikes treated with ICC080. To check if a systemic defense response was induced, the expression of the same genes was analyzed in leaves collected 7 and 14 days post inoculation (dpi) of roots, resulting in a significant up-regulation of sod at 7 dpi in leaves collected from plants inoculated with ICC012. Even if induction of resistance is probably not the main mode of action of the two strains, ICC012 and ICC080 applied on spikes at anthesis significantly reduced, in greenhouse conditions, the Disease Incidence (DI) caused by the inoculation mix of F. graminearum, F. culmorum, F. langsethiae and F. sporotrichioides, four of the most important FHB casual agents. This reduction in disease symptoms was observed when the two beneficial strains were applied both individually and co-inoculated on the spikes. Finally, ICC012 and ICC080 demonstrated a good competitive ability for substrate possession. The amount of F. graminearum (as DNA and number of perithecia) on wheat straw pieces was significantly reduced after 6 months of incubation in presence of the two beneficial strains, applied individually and co-inoculated. Being cultural debris used to overwinter, this competitive behavior of ICC012 and ICC080 is an important trait to reduce the potential inoculum of the pathogen. The results collected here lay the groundwork for the use of ICC012 and ICC080 in managing FHB on common wheat.
Collapse
Affiliation(s)
- Marco Cesarini
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Arianna Petrucci
- Department of Agriculture, Food and Environment, University of Pisa, Italy; Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Eliverta Hotaj
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | | | - Riccardo Liguori
- Gowan Novara Isagro S.p.A. - Research Center Renato Ugo, Novara, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Italy.
| |
Collapse
|
7
|
Liu C, Lei L, Zhu J, Chen L, Peng S, Zhang M, Zhang Z, Tang J, Chen Q, Kong L, Zheng Y, Ladera-Carmona M, Kogel KH, Wei Y, Qi P. FgGET3, an ATPase of the GET Pathway, Is Important for the Development and Virulence of Fusarium graminearum. Int J Mol Sci 2024; 25:12172. [PMID: 39596240 PMCID: PMC11594295 DOI: 10.3390/ijms252212172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
GET3 is an ATPase protein that plays a pivotal role in the guided entry of the tail-anchored (GET) pathway. The protein facilitates the targeting and inserting of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) by interacting with a receptor protein complex on the ER. The role of GET3 in various biological processes has been established in yeast, plants, and mammals but not in filamentous fungi. Fusarium graminearum is the major causal agent of Fusarium head blight (FHB), posing a threat to the yield and quality of wheat. In this study, we found that FgGET3 exhibits a high degree of sequence and structural conservation with its homologs across a wide range of organisms. Ectopic expression of FgGET3 in yeast restored the growth defects of the Saccharomyces cerevisiae ScGET3 knock-out mutant. Furthermore, FgGET3 was found to dimerize and localize to the cytoplasm, similar to its homologs in other species. Deletion of FgGET3 in F. graminearum results in decreased fungal growth, fragmented vacuoles, altered abiotic stress responses, reduced conidia production, delayed conidial germination, weakened virulence on wheat spikes and reduced DON production. Collectively, these findings underscore the critical role of FgGET3 in regulating diverse cellular and biological functions essential for the growth and virulence of F. graminearum.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Lirun Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Maria Ladera-Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| |
Collapse
|
8
|
Feng T, Liu Y, Huang M, Chen G, Tian Q, Duan C, Chen J. Reshaping the root endophytic microbiota in plants to combat mercury-induced stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174019. [PMID: 38885713 DOI: 10.1016/j.scitotenv.2024.174019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yiyi Liu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Mingyu Huang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Guohui Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Qindong Tian
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Liu C, Kogel K, Ladera‐Carmona M. Harnessing RNA interference for the control of Fusarium species: A critical review. MOLECULAR PLANT PATHOLOGY 2024; 25:e70011. [PMID: 39363756 PMCID: PMC11450251 DOI: 10.1111/mpp.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fusarium fungi are a pervasive threat to global agricultural productivity. They cause a spectrum of plant diseases that result in significant yield losses and threaten food safety by producing mycotoxins that are harmful to human and animal health. In recent years, the exploitation of the RNA interference (RNAi) mechanism has emerged as a promising avenue for the control of Fusarium-induced diseases, providing both a mechanistic understanding of Fusarium gene function and a potential strategy for environmentally sustainable disease management. However, despite significant progress in elucidating the presence and function of the RNAi pathway in different Fusarium species, a comprehensive understanding of its individual protein components and underlying silencing mechanisms remains elusive. Accordingly, while a considerable number of RNAi-based approaches to Fusarium control have been developed and many reports of RNAi applications in Fusarium control under laboratory conditions have been published, the applicability of this knowledge in agronomic settings remains an open question, and few convincing data on RNAi-based disease control under field conditions have been published. This review aims to consolidate the current knowledge on the role of RNAi in Fusarium disease control by evaluating current research and highlighting important avenues for future investigation.
Collapse
Affiliation(s)
- Caihong Liu
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Karl‐Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
- Institut de Biologie Moléculaire des Plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Maria Ladera‐Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
10
|
Alsubaie M, Al-Askar AA, Olyan Al-Otibi F, Maniah K, Alkathiri A, Taha Yassin M. Exploring the efficacy of endophytic Diaporthe caatingaensis as a biocontrol agent targeting Fusarium strains afflicting coffee plants in Saudi Arabia. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103396. [DOI: 10.1016/j.jksus.2024.103396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
12
|
Hassan A, Zaib S, Anjum T. Evaluation of antifungal potentials of Albizia kalkora extract as a natural fungicide: In vitro and computational studies. Bioorg Chem 2024; 150:107561. [PMID: 38936050 DOI: 10.1016/j.bioorg.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.
Collapse
Affiliation(s)
- Ahmad Hassan
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
13
|
Zhou F, Zhou X, Yan Jiao, Han A, Zhou H, Chen Z, Li W, Liu R. Baseline tebuconazole sensitivity and potential resistant risk in Fusarium Graminearum. BMC PLANT BIOLOGY 2024; 24:789. [PMID: 39164633 PMCID: PMC11337888 DOI: 10.1186/s12870-024-05206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The Fusarium head blight caused by Fusarium graminearum results in reduced crop yields and the potential for vomitoxin contamination, which poses a risk to both human and livestock health. The primary method of control relies on the application of chemical fungicides. RESULTS The current study found that the tebuconazole sensitivity of 165 F. graminearum isolates collected from the Huang-Huai-Hai region of China between 2019 and 2023 ranged from 0.005 to 2.029 µg/mL, with an average EC50 value of 0.33 ± 0.03 µg/mL. The frequency distribution conformed to a unimodal curve around the mean, and therefore provides a useful reference for monitoring the emergence of tebuconazole resistance in field populations of F. graminearum. No cross-resistance was detected between tebuconazole and other unrelated fungicides such as flutriafol, propiconazole and fluazinam, but there was a clear negative cross-resistance with triazole fungicides including fludioxonil, epoxiconazole, hexaconazole, and metconazole. Analysis of five tebuconazole-resistant mutants produced under laboratory conditions indicated that although the mycelial growth of the mutants were significantly (p < 0.05) reduced, spore production and germination rates could be significantly (p < 0.05) increased. However, pathogenicity tests confirmed a severe fitness cost associated with tebuconazole resistance, as all of the mutants completely loss the ability to infect host tissue. Furthermore, in general the resistant mutants were found to have increased sensitivity to abiotic stress, such as ionic and osmotic stress, though not to Congo red and oxidative stress, to which they were more tolerant. Meanwhile, molecular analysis identified several point mutations in the CYP51 genes of the mutants, which resulted in two substitutions (I281T, and T314A) in the predicted sequence of the FgCYP51A subunit, as well as seven (S195F, Q332V, V333L, L334G, M399T, E507G, and E267G) in the FgCYP51C subunit. In addition, it was also noted that the expression of the CYP51 genes in one of the mutants, which lacked point mutations, was significantly up-regulated in response to tebuconazole treatment. CONCLUSIONS These results provide useful data that allow for more rational use of tebuconazole in the control of F. graminearum, as well as for more effective monitoring of fungicide resistance in the field.
Collapse
Affiliation(s)
- Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoli Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yan Jiao
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huanhuan Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zeyuan Chen
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
14
|
Iqbal O, Syed RN, Rajput NA, Wang Y, Lodhi AM, Khan R, Jibril SM, Atiq M, Li C. Antagonistic activity of two Bacillus strains against Fusarium oxysporum f. sp. capsici ( FOC-1) causing Fusarium wilt and growth promotion activity of chili plant. Front Microbiol 2024; 15:1388439. [PMID: 38860216 PMCID: PMC11163047 DOI: 10.3389/fmicb.2024.1388439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Fusarium oxysporum f. sp. capsici (Foc) poses a significant position in agriculture that has a negative impact on chili plant in terms of growth, fruit quality, and yield. Biological control is one of the promising strategies to control this pathogen in crops. Chili is considered as one of the most important crops in the Hyderabad region that is affected by Fusarium wilt disease. The pathogen was isolated from the infected samples in the region and was confirmed by morphological characteristics and PCR with a band of 488 bp. The bacterial strains were isolated from the rhizosphere soil of healthy plant and also confirmed by PCR with a band of 1,542 bp.The molecular characterization of the fungal and bacterial strain has shown 99.9% homology with the retrieved sequences of Fusarium oxysporum f. sp. capsici and Bacillus subtilis from NCBI. The 1-month-old Ghotki chili plants were inoculated with 1×105 cfu spore/ml-1 suspension and confirmed that the FOC-1 is responsible for chili Fusarium wilt disease. Subsequently, among the 33 screened Bacillus strains, only 11 showed antagonistic activity against F. oxysporum. Out of these, only two strains (AM13 and AM21) have shown maximum antagonistic activity against the pathogen by reducing the infection and promoting growth parameters of chili plants under both in vitro and greenhouse conditions. The study suggested that biological control is the most promising control strategy for the management of Fusarium wilt of chili in the field.
Collapse
Affiliation(s)
- Owais Iqbal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rehana Naz Syed
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Abdul Mubeen Lodhi
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Rizwan Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Yu H, Hwang SF, Strelkov SE. The Host Range of Fusarium proliferatum in Western Canada. Pathogens 2024; 13:407. [PMID: 38787258 PMCID: PMC11123688 DOI: 10.3390/pathogens13050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium proliferatum is associated with the root rot of many plant species, but knowledge of its impact on western Canadian field crops is limited. This study assessed the host range of this fungus and its effect on plant emergence, plant height, and shoot and root dry weights in repeated greenhouse experiments with wheat, barley, faba beans, peas, lentils, canola, lupine, and soybeans. Infection was confirmed via PCR, and principal component analysis determined the utility of different parameters in assessing host responses. All crops were at least partly susceptible, developing mild to severe disease at the seedling and adult stages, and showing significant reductions in growth. In general, the barley and wheat demonstrated higher tolerances to infection, followed by the faba bean and the pea. The soybean, canola, lupine, and lentil were most susceptible. The canola and the soybean were particularly vulnerable to F. proliferatum at the pre-emergence stage, while infection greatly reduced the lentil's biomass. Reductions in the barley's emergence and other growth parameters, however, occurred only under a high inoculum concentration. Variability in root rot severity among cultivars of the same crop indicated some diversity in host reactions within species. Nonetheless, the absence of fully-resistant crops may pose challenges in managing F. proliferatum in western Canadian cropping systems.
Collapse
Affiliation(s)
- Haitian Yu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| |
Collapse
|
16
|
Zhang C, Chen W, Wang B, Wang Y, Li N, Li R, Yan Y, Sun Y, He J. Potato glycoside alkaloids exhibit antifungal activity by regulating the tricarboxylic acid cycle pathway of Fusarium solani. Front Microbiol 2024; 15:1390269. [PMID: 38686115 PMCID: PMC11056507 DOI: 10.3389/fmicb.2024.1390269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Fusarium solani is a pathogenic fungus that causes significant harm, leading to crop yield reduction, fruit quality reduction, postharvest decay, and other diseases. This study used potato glycoside alkaloids (PGA) as inhibitors to investigate their effects on the mitochondrial structure and tricarboxylic acid (TCA) cycle pathway of F. solani. The results showed that PGA could inhibit the colony growth of F. solani (54.49%), resulting in the disappearance of the mitochondrial membrane and the loss of contents. PGA significantly decreased the activities of aconitase (ACO), isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH), fumarase (FH), malate dehydrogenase (MDH), succinyl-CoA synthetase (SCS), and increased the activity of citrate synthase (CS) in F. solani. After PGA treatment, the contents of acetyl coenzyme A (CoA), citric acid (CA), malic acid (L-MA), and α-ketoglutaric acid (α-KG) in F. solani were significantly decreased. The contents of isocitric acid (ICA), succinyl coenzyme A (S-CoA), succinic acid (SA), fumaric acid (FA), and oxaloacetic acid (OA) were significantly increased. Transcriptomic analysis showed that PGA could significantly affect the expression levels of 19 genes related to TCA cycle in F. solani. RT-qPCR results showed that the expression levels of ACO, IDH, α-KGDH, and MDH-related genes were significantly down-regulated, and the expression levels of SDH and FH-related genes were significantly up-regulated, which was consistent with the results of transcriptomics. In summary, PGA can achieve antifungal effects by reducing the tricarboxylic acid cycle's flow and regulating key genes' expression levels. This study reveals the antifungal mechanism of PGA from the perspective of TCA cycle, and provides a theoretical basis for the development and application of PGA as a biopesticide.
Collapse
Affiliation(s)
- Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yupeng Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Nan Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuke Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuyan Sun
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
17
|
Walaszczyk A, Jasińska A, Bernat P, Różalska S, Sas-Paszt L, Lisek A, Paraszkiewicz K. The Combined Effects of Azoxystrobin and the Biosurfactant-Producing Bacillus sp. Kol B3 against the Phytopathogenic Fungus Fusarium sambucinum IM 6525. Int J Mol Sci 2024; 25:4175. [PMID: 38673760 PMCID: PMC11049953 DOI: 10.3390/ijms25084175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to evaluate how the combined presence of the synthetic fungicide azoxystrobin (AZ) and the biosurfactant-producing Bacillus sp. Kol B3 influences the growth of the phytopathogenic fungus Fusarium sambucinum IM 6525. The results showed a noticeable increase in antifungal effectiveness when biotic and abiotic agents were combined. This effect manifested across diverse parameters, including fungal growth inhibition, changes in hyphae morphology, fungal membrane permeability and levels of intracellular reactive oxygen species (ROS). In response to the presence of Fusarium and AZ in the culture, the bacteria changed the proportions of biosurfactants (surfactin and iturin) produced. The presence of both AZ and/or Fusarium resulted in an increase in iturin biosynthesis. Only in 72 h old bacterial-fungal co-culture a 20% removal of AZ was noted. In the fungal cultures (with and without the addition of the bacteria), the presence of an AZ metabolite named azoxystrobin free acid was detected in the 48th and 72nd hours of the process. The possible involvement of increased iturin and ROS content in antifungal activity of Bacillus sp. and AZ when used together are also discussed. Biosurfactants were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Microscopy techniques and biochemical assays were also used.
Collapse
Affiliation(s)
- Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-136 Lodz, Poland;
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Lidia Sas-Paszt
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Anna Lisek
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| |
Collapse
|
18
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
19
|
Xie S, Si H, Xue Y, Zhou R, Wang S, Duan Y, Niu J, Wang Z. Efficacy of rhizobacteria Paenibacillus polymyxa SY42 for the biological control of Atractylodes chinensis root rot. Microb Pathog 2024; 187:106517. [PMID: 38159617 DOI: 10.1016/j.micpath.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.
Collapse
Affiliation(s)
- Siyuan Xie
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - He Si
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuyan Xue
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ru Zhou
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yizhong Duan
- College of Life Sciences, Yulin University, Yulin, Shaanxi, 718000, China.
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
20
|
Zhou Y, Shi Y, Huang Y, Zhong J. Microbes on the "peachy spots" of ancient Kaihua paper: microbial community and functional analysis. Front Microbiol 2024; 14:1326835. [PMID: 38274746 PMCID: PMC10808800 DOI: 10.3389/fmicb.2023.1326835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Kaihua paper is a type of precious hand-made paper in China that has been used throughout Chinese history. Due to its extraordinary whiteness and fine texture, it was adopted by the imperial palace in the reign of Emperor Kang Xi and Yong Zheng of the Qing Dynasty of China in the 17th and 18th century. It is stained by a special type of yellowish-brown spot after years of storage, which is called a "peachy spot." The formation of such spots remains unclear, although complicated physicochemical processes or microbial activities might be involved. We performed nondestructive sampling and high-throughput sequencing on peachy spot surfaces, unstained areas, and air samples in the stack room to analysis the the bacterial and fungal communities, and performed prediction of functional genes of the bacterial communities. The results showed that peachy spot formation was mainly related to bacterial communities rather than fungal communities. Significantly more potential acid- producing, acidophilic or cellulase-producing bacteria, such as, Streptococcus, Staphylococcus, and Lysinibacillus, and pigment-producing bacteria, such as Methylobacterium and Rubrobacter, were identified in the peachy spot samples. Prediction of the functional genes of the bacterial community also suggested the production of acidic substance pigments. These findings provide new insights into the pigment formation mechanism in ancient paper and open an opportunity to develop new strategies to preserve the ancient paper documents.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Shi
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyan Huang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Deng C, Protter CR, Wang Y, Borgatta J, Zhou J, Wang P, Goyal V, Brown HJ, Rodriguez-Otero K, Dimkpa CO, Hernandez R, Hamers RJ, White JC, Elmer WH. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167799. [PMID: 37838047 DOI: 10.1016/j.scitotenv.2023.167799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Connor R Protter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jingyi Zhou
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Peiying Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Hannah J Brown
- Agronomy Department, University of Florida, Gainesville, FL 32603, United States
| | | | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| |
Collapse
|
22
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
23
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|
24
|
Nosratabadi M, Ebrahimzadeh MA, Alizadeh SR, Haghani I, Faeli L, Ebrahimi Barogh R, Al Hatmi AM, Abastabar M. In vitro antifungal activity of biosynthesized selenium nanoparticles using plant extracts and six comparators against clinical Fusarium strains. Curr Med Mycol 2023; 9:17-23. [PMID: 38983615 PMCID: PMC11230142 DOI: 10.22034/cmm.2024.345189.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 07/11/2024] Open
Abstract
Background and Purpose Fusarium species are commonly resistant to many antifungal drugs. The limited therapeutic options available have led to a surge of research efforts aimed at discovering novel antifungal compounds in recent decades. This study aimed to assess the in vitro antifungal activity of plant-based biosynthesized selenium nanoparticles (Se NPs) and six comparators against a set of clinical Fusarium strains. Materials and Methods In vitro antifungal activity of Se NPs synthesized using plant extracts of Allium paradoxum, Crocus caspius, Pistacia vera L. hull, Vicia faba L. hull and Heracleum persicum, as well as six common antifungal drugs, namely voriconazole, itraconazole, amphotericin B, posaconazole, natamycin, and caspofungin were evaluated against 94 clinical Fusarium strains using broth microdilution according to Clinical and Laboratory Standards Institute guideline. Results The obtained results were intriguing since all five types of biosynthesized Se NPs demonstrated significantly higher antifungal activity, compared to antifungal drugs. It was found that Se NPs synthesized by V. faba L. hull extract (0.03 μg/ml) had the lowest geometric mean minimum inhibitory concentration value followed by Se NPs synthesized by P. vera L. hull extract (0.25 μg/ml), A. paradoxum extract (0.39 μg/ml), C. caspius extract (0.55 μg/ml), and H. persicum extract (0.9 μg/ml). Conclusion Plant-based Se NPs demonstrated supreme antifungal activity and could be considered promising antifungal agents for Fusarium infections. However, tests, such as toxicity and in vivo tests are needed before the product can be used in clinical settings.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Faeli
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Robab Ebrahimi Barogh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Gerling M, von der Waydbrink G, Verch G, Büttner C, Müller MEH. Between Habitats: Transfer of Phytopathogenic Fungi along Transition Zones from Kettle Hole Edges to Wheat Ears. J Fungi (Basel) 2023; 9:938. [PMID: 37755047 PMCID: PMC10532505 DOI: 10.3390/jof9090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
26
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
27
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
28
|
Nosratabadi M, Faeli L, Haghani I, Mohammadi R, Khodavaisy S, Kachuei R, Katiraee F, Aghili SR, Shokohi T, Hedayati MT, Nazeri M, Javan-Nikkhah M, Zarrinfar H, Javidnia J, Najafzadeh MJ, Salimi M, M S Al Hatmi A, Badali H, Abastabar M. In vitro antifungal susceptibility profile of Iranian Fusarium isolates: Emphasising on the potent inhibitory effect of efinaconazole compared to other drugs. Mycoses 2023; 66:258-275. [PMID: 36447396 DOI: 10.1111/myc.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Fusarium species are opportunistic human pathogens that remarkably cause fungal infections ranging from superficial to fatal invasive disseminated infections. Fusarium species are notoriously resistant to the majority of antifungal agents. OBJECTIVES Therefore, detailed studies regarding in vitro susceptibility are required and may lead to a better prognosis of severe infections. METHODS We evaluated 25 antifungal drugs in vitro against 282 clinical and environmental Fusarium isolates. RESULTS Fusarium species demonstrated high MICs/MECs values to the most commonly used antifungal drugs in clinical practice. The geometric mean (GM) MICs for luliconazole (0.004 μg/ml) and lanoconazole (0.012 μg/ml) were the lowest, followed by efinaconazole (0.98 μg/ml) and amphotericin B (1.04 μg/ml). CONCLUSIONS Efinaconazole, a novel triazole, may be a promising candidate for the treatment of superficial Fusarium infections. Furthermore, the development of systemic formulations of these drugs as well as further in vitro and in vivo investigations could aid in the treatment of systemic fusariosis.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Faeli
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah, Tehran, Iran
| | - Farzad Katiraee
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tehran, Iran
| | - Seyed Reza Aghili
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Nazeri
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Javidnia
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad-Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Salimi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdullah M S Al Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, Texas, San Antonio, USA
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Chen G, Xu Z, Wang F, Liu L, Wei Y, Li J, Zhang L, Zheng K, Wu L, Men X, Zhang H. Extraction, characterization, and biological activities of exopolysaccharides from plant root soil fungus Fusarium merismoides A6. Braz J Microbiol 2023; 54:199-211. [PMID: 36370337 PMCID: PMC9943999 DOI: 10.1007/s42770-022-00842-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The exploration of polysaccharides from microorganisms is of great importance. In this study, a new type of exopolysaccharide excreted by Fusarium merismoides A6 (FM-EPS) was isolated, and the extraction conditions were optimized using a response surface methodology (RSM). The extraction temperature at 0 °C, a precipitation time of 7.83 h, and an ethanol precipitation concentration of 77.64% were predicted and proved to be the best extraction conditions with the maximum extraction yield of 0.74 g/mL. Then, two fractions of F. merismoides A6 exopolysaccharides (FM-EPS1 and FM-EPS2) were obtained through DEAE Sepharose fast flow column chromatography. As indicated by monosaccharide composition analysis, both fractions mainly consisted of mannose, glucose, galactose, and ribose, with an average molecular weight of 5.14 × 104 and 6.50 × 104 g/mol, respectively. FT-IR and NMR spectroscopy indicated the FM-EPSs had both α- and β-glycosidic bonds. Moreover, the determination of antioxidant and antiproliferative activities in vitro proved that FM-EPSs had good antioxidant activities and antiproliferation activities. FM-EPS1 showed stronger antioxidant activities than FM-EPS2. FM-EPS2 showed antiproliferation activities on HeLa and HepG2 cells, while FM-EPS1 had no obvious antiproliferative activity. Therefore, FM-EPSs could be explored as potential antioxidant and anticancer agent applied in food, feed, nutraceutical, pharmaceutical, cosmetics, and chemical industries.
Collapse
Affiliation(s)
- Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenxiang Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijuan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Jinglong Li
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Liang Zhang
- Great Wall Cigar Factory Technology Development Center of China Tobacco Sichuan, Shifang, 618400, China
| | - Kai Zheng
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106, China.
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
30
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
31
|
Zhang X, Wu C, Hua H, Cai Q, Wu X. Characterization of the First Alternavirus Identified in Fusarium avenaceum, the Causal Agent of Potato Dry Rot. Viruses 2023; 15:145. [PMID: 36680185 PMCID: PMC9864086 DOI: 10.3390/v15010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
A novel virus with a double-stranded RNA (dsRNA) genome was isolated from Fusarium avenaceum strain GS-WW-224, the causal agent of potato dry rot. The virus has been designated as Fusarium avenaceum alternavirus 1 (FaAV1). Its genome consists of two dsRNA segments, 3538 bp (dsRNA1) and 2477 bp (dsRNA2) in length, encoding RNA-dependent RNA polymerase (RdRp) and a hypothetical protein (HP), respectively. The virions of FaAV1 are isometric spherical and approximately 30 nm in diameter. Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of RdRp and HP indicated that FaAV1 appears to be a new member of the proposed family Alternaviridae. No significant differences in colony morphology and spore production were observed between strains GS-WW-224 and GS-WW-224-VF, the latter strain being one in which FaAV1 was eliminated from strain GS-WW-224. Notably, however, the dry weight of mycelial biomass of GS-WW-224 was higher than that of mycelial biomass of GS-WW-224-VF. The depth and the width of lesions on potato tubers caused by GS-WW-224 were significantly greater, relative to GS-WW-224-VF, suggesting that FaAV1 confers hypervirulence to its host, F. avenaceum. Moreover, FaAV1 was successfully transmitted horizontally from GS-WW-224 to ten other species of Fusarium, and purified virions of FaAV1 were capable of transfecting wounded hyphae of the ten species of Fusarium. This is the first report of an alternavirus infecting F. avenaceum and conferring hypervirulence.
Collapse
Affiliation(s)
| | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
32
|
Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. DIVERSITY 2023. [DOI: 10.3390/d15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genus Fusarium includes many pathogenic species causing a wide range of plant diseases that lead to high economic losses. In this review, we describe how the Fusarium taxonomy has changed with the development of microbiological methods. We specify the ecological traits of this genus and the methods of its identification in soils, particularly the detection of phytopathogenic representatives of Fusarium and the mycotoxins produced by them. The negative effects of soil-borne phytopathogenic Fusarium on agricultural plants and current methods for its control are discussed. Due to the high complexity and polymorphism of Fusarium species, integrated approaches for the risk assessment of Fusarium diseases are necessary.
Collapse
|
33
|
Ramlal A, Samanta A. In Silico functional and phylogenetic analyses of fungal immunomodulatory proteins of some edible mushrooms. AMB Express 2022; 12:159. [PMID: 36571664 PMCID: PMC9791630 DOI: 10.1186/s13568-022-01503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Mushrooms are a well known source of many bioactive and nutritional compounds with immense applicability in both the pharmaceutical and food industries. They are widely used to cure various kinds of ailments in traditional medicines. They have a low amount of fats and cholesterol and possess a high number of proteins. Immunomodulators have the ability which can improve immunity and act as defensive agents against pathogens. One such class of immunomodulators is fungal immunomodulatory proteins (FIPs). FIPs have potential roles in the treatment of cancer, and immunostimulatory effects and show anti-tumor activities. In the current study, 19 FIPs from edible mushrooms have been used for comparison and analysis of the conserved motifs. Phylogenetic analysis was also carried out using the FIPs. The conserved motif analysis revealed that some of the motifs strongly supported their identity as FIPs while some are novel. The fungal immunomodulatory proteins are important and have many properties which can be used for treating ailments and diseases and this preliminary study can be used for the identification and functional characterization of the proposed novel motifs and in unraveling the potential roles of FIPs for developing newer drugs.
Collapse
Affiliation(s)
- Ayyagari Ramlal
- grid.8195.50000 0001 2109 4999Department of Botany, University of Delhi, New Delhi, Delhi 110007 India ,grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia (USM), 11800 Georgetown, Penang Malaysia
| | - Aveek Samanta
- Department of Botany, Prabhat Kumar College, Contai, 721401 West Bengal India
| |
Collapse
|
34
|
Ajmal M, Hussain A, Ali A, Chen H, Lin H. Strategies for Controlling the Sporulation in Fusarium spp. J Fungi (Basel) 2022; 9:jof9010010. [PMID: 36675831 PMCID: PMC9861637 DOI: 10.3390/jof9010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Fusarium species are the most destructive phytopathogenic and toxin-producing fungi, causing serious diseases in almost all economically important plants. Sporulation is an essential part of the life cycle of Fusarium. Fusarium most frequently produces three different types of asexual spores, i.e., macroconidia, chlamydospores, and microconidia. It also produces meiotic spores, but fewer than 20% of Fusaria have a known sexual cycle. Therefore, the asexual spores of the Fusarium species play an important role in their propagation and infection. This review places special emphasis on current developments in artificial anti-sporulation techniques as well as features of Fusarium's asexual sporulation regulation, such as temperature, light, pH, host tissue, and nutrients. This description of sporulation regulation aspects and artificial anti-sporulation strategies will help to shed light on the ways to effectively control Fusarium diseases by inhibiting the production of spores, which eventually improves the production of food plants.
Collapse
Affiliation(s)
- Maria Ajmal
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
35
|
Gerling M, Petry L, Barkusky D, Büttner C, Müller MEH. Infected grasses as inoculum for Fusarium infestation and mycotoxin accumulation in wheat with and without irrigation. Mycotoxin Res 2022; 39:19-31. [PMID: 36282420 PMCID: PMC10156776 DOI: 10.1007/s12550-022-00470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
AbstractGrasses growing next to agricultural fields influence the Fusarium abundance, the species composition, and the mycotoxin accumulation of wheat plants, especially the field parts directly adjacent to grasses, are highly affected. Grasses are a more attractive and suitable habitat for Fusarium fungi compared to other arable weeds and occur at mostly every semi-natural landscape element (e.g., kettle holes, hedgerows, field-to-field-borders). In our study, we analyzed the ability of a highly Fusarium infected grass stripe (F. graminearum, F. culmorum, F. sporotrichioides) to infect an adjacent wheat field with these species. Results show that the primary inoculated Fusarium species were as well the dominant species isolated from the wheat field. Regarding transects originating from the grass stripe going into the field, the results demonstrate that wheat ears next to the infected grass stripe have a higher Fusarium abundance and furthermore show higher mycotoxin accumulation in the wheat kernels. This effect was highly promoted by irrigation. Therefore, grass stripes next to arable fields must be considered as reservoirs for fungal infections and as a source for a contamination with mycotoxins.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Laura Petry
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Dietmar Barkusky
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
36
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
37
|
Role of Tocochromanols in Tolerance of Cereals to Biotic Stresses: Specific Focus on Pathogenic and Toxigenic Fungal Species. Int J Mol Sci 2022; 23:ijms23169303. [PMID: 36012567 PMCID: PMC9408828 DOI: 10.3390/ijms23169303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens capable of producing mycotoxins are one of the main threats to the cultivation of cereals and the safety of the harvested kernels. Improving the resistance of crops to fungal disease and accumulation of mycotoxins is therefore a crucial issue. Achieving this goal requires a deep understanding of plant defense mechanisms, most of them involving specialized metabolites. However, while numerous studies have addressed the contribution of phenylpropanoids and carotenoids to plant chemical defense, very few have dealt with tocochromanols. Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here we provide strong assumptions arguing in favor of an involvement of tocochromanols in plant–fungal pathogen interactions. These assumptions are based on both direct effects resulting from their capacity to scavenge reactive oxygen species, including lipid peroxyl radicals, on their potential to inhibit fungal growth and mycotoxin yield, and on more indirect effects mainly based on their role in plant protection against abiotic stresses.
Collapse
|
38
|
Li K, Liu D, Pan X, Yan S, Song J, Liu D, Wang Z, Xie Y, Dai J, Liu J, Li H, Zhang X, Gao F. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins (Basel) 2022; 14:toxins14070503. [PMID: 35878241 PMCID: PMC9324440 DOI: 10.3390/toxins14070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin widely detected in cereal products contaminated by Fusarium. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) is a double-stranded RNA virus infecting Fusarium pseudograminearum. In this study, it was revealed that the amount of DON in F. pseudograminearum was significantly suppressed by FpgMBV1 through a high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) assay. A total of 2564 differentially expressed genes were identified by comparative transcriptomic analysis between the FpgMBV1-containing F. pseudograminearum strain FC136-2A and the virus-free strain FC136-2A-V-. Among them, 1585 genes were up-regulated and 979 genes were down-regulated. Particularly, the expression of 12 genes (FpTRI1, FpTRI3, FpTRI4, FpTRI5, FpTRI6, FpTRI8, FpTRI10, FpTRI11, FpTRI12, FpTRI14, FpTRI15, and FpTRI101) in the trichothecene biosynthetic (TRI) gene cluster was significantly down-regulated. Specific metabolic and transport processes and pathways including amino acid and lipid metabolism, ergosterol metabolic and biosynthetic processes, carbohydrate metabolism, and biosynthesis were regulated. These results suggest an unrevealing mechanism underlying the repression of DON and TRI gene expression by the mycovirus FpgMBV1, which would provide new methods in the detoxification of DON and reducing the yield loss in wheat.
Collapse
Affiliation(s)
- Ke Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongmei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Xin Pan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Shuwei Yan
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jiaqing Song
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Dongwei Liu
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Zhifang Wang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Yuan Xie
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Junli Dai
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (D.L.); (J.L.)
| | - Honglian Li
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
| | - Xiaoting Zhang
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| | - Fei Gao
- Department of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (K.L.); (X.P.); (S.Y.); (J.S.); (D.L.); (Z.W.); (Y.X.); (J.D.); (H.L.)
- Correspondence: (X.Z.); (F.G.)
| |
Collapse
|
39
|
Kulik T, Molcan T, Fiedorowicz G, van Diepeningen A, Stakheev A, Treder K, Olszewski J, Bilska K, Beyer M, Pasquali M, Stenglein S. Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol 2022; 13:885978. [PMID: 35923405 PMCID: PMC9339996 DOI: 10.3389/fmicb.2022.885978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Tomasz Kulik,,
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
| | - Grzegorz Fiedorowicz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kinga Treder
- Department of Agriculture Systems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marco Beyer
- Agro-Environmental Systems, Environmental Monitoring and Sensing Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
40
|
Nosratabadi M, Akhtari J, Faeli L, Haghani I, Aghili SR, Shokohi T, Hedayati MT, Zarrinfar H, Mohammadi R, Najafzadeh MJ, Khodavaisy S, Al-Harrasi A, Javan-Nikkhah M, Kachuei R, Salimi M, Fattahi M, Badali H, Al Hatmi AMS, Abastabar M. In Vitro Antifungal Susceptibility Profile of Miltefosine against a Collection of Azole and Echinocandins Resistant Fusarium Strains. J Fungi (Basel) 2022; 8:jof8070709. [PMID: 35887464 PMCID: PMC9315751 DOI: 10.3390/jof8070709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fusarium species are filamentous fungi that cause a variety of infections in humans. Because they are commonly resistant to many antifungal drugs currently available in clinical settings, research into alternative targets in fungal cells and therapeutic approaches is required. The antifungal activity of miltefosine and four comparators, amphotericin B, voriconazole, itraconazole, and caspofungin, were tested in vitro against a collection of susceptible and resistant clinical (n = 68) and environmental (n = 42) Fusarium isolates. Amphotericin B (0.8 μg/mL) had the lowest geometric mean (GM) MICs/MECs values followed by miltefosine (1.44 μg/mL), voriconazole (2.15 μg/mL), caspofungin (7.23 μg/mL), and itraconazole (14.19 μg/mL). Miltefosine was the most effective agent against Fusarium isolates after amphotericin B indicating that miltefosine has the potential to be studied as a novel treatment for Fusarium infections.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran;
| | - Leila Faeli
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Seyed Reza Aghili
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, Infectious Diseases and Tropical Medicine Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 1717613151, Iran;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 3158777871, Iran;
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Maryam Salimi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mahsa Fattahi
- Centre for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran 1416613675, Iran;
| | - Hamid Badali
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Abdullah M. S. Al Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| |
Collapse
|
41
|
Liu J, Tang Y, Bao J, Wang H, Peng F, Tan P, Chu G, Liu S. A Stronger Rhizosphere Impact on the Fungal Communities Compared to the Bacterial Communities in Pecan Plantations. Front Microbiol 2022; 13:899801. [PMID: 35847123 PMCID: PMC9279573 DOI: 10.3389/fmicb.2022.899801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding microbial communities associated with bulk and rhizosphere soils will benefit the maintenance of forest health and productivity and the sustainable development of forest ecosystems. Based on MiSeq sequencing, we explored the differences between the bulk soil and the rhizosphere soil on bacterial and fungal communities of pecan plantation. Results suggested that rhizosphere-associated fungal rather than bacterial community structures differed from bulk soil, and rhizosphere soil had lower fungal diversity than bulk soil. Actinobacteria and Cantharellales were the bacterial and fungal biomarkers of the rhizosphere soil of pecan plantation, respectively. In addition, Pleosporales, which are mainly involved in saprophylaxis and plant pathogenic processes, was identified as one of the most important fungal biomarkers for the bulk soil, and the FunGuild predicted a higher relative abundance of pathogenic fungi in bulk soil compared to rhizosphere soil. The pH, ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total carbon (TC) contents drove microbial community structure and composition. The bacterial network was simpler in the rhizosphere soil than in the bulk soil. However, fungi showed the opposite network pattern. Keystone species in bacterial and fungal networks were mostly involved in nutrient cycling and the C cycling, and were found to be enriched in the rhizosphere soil. Overall, in terms of bacterial and fungal communities, the rhizosphere soil behaves more healthily than the bulk soil and has a higher potential for nutrient cycling.
Collapse
Affiliation(s)
- Junping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiashu Bao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hankun Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fangren Peng
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guolin Chu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shuai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
42
|
Mirghasempour SA, Studholme DJ, Chen W, Zhu W, Mao B. Molecular and Pathogenic Characterization of Fusarium Species Associated with Corm Rot Disease in Saffron from China. J Fungi (Basel) 2022; 8:515. [PMID: 35628770 PMCID: PMC9147734 DOI: 10.3390/jof8050515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Saffron (Crocus sativus L.) is a commercial spice crop well-known throughout the world, valued for culinary, colorant, and pharmaceutical purposes. In China, Fusarium nirenbergiae was detected as causative agent of saffron corm rot, the most pervasive disease for the first time in 2020. In the present study, 261 Fusarium-like isolates were recovered from 120 rotted corms in four saffron producing fields at Zhejiang, Shanghai, and Yunnan provinces, China, in 2021. A combination of morpho-cultural features and multilocus sequence analysis (MLSA) of the concatenated rpb2 (DNA-directed RNA polymerase II largest subunit) and tef1 (translation elongation factor 1-α) partial sequences showed that the isolates from saffron belong to Fusarium nirenbergiae as well as F. commune, and F. annulatum with isolation frequencies of 58.2%, 26.8%, and 14.9%, respectively. Notably, F. commune was more prevalent than F. annulatum in the collected samples. Pathogenicity tests confirmed that both species were pathogenic on saffron corm. This is the first report of F. annulatum and F. commune causing corm rot of saffron, globally. Outcomes of the current research demonstrate that Fusarium spp. associated with saffron corm rot are more diverse than previously reported. Furthermore, some plants were infected by two or more Fusarium species. Our findings broaden knowledge about Fusarium spp. that inflict corm rot and assist the development of control measures.
Collapse
Affiliation(s)
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Weiliang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.A.M.); (W.C.)
| | - Weidong Zhu
- Zhejiang Shouxiangu Pharmaceutical Co., Ltd., Wuyi 321200, China;
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.A.M.); (W.C.)
| |
Collapse
|
43
|
The Effects of Plant Health Status on the Community Structure and Metabolic Pathways of Rhizosphere Microbial Communities Associated with Solanum lycopersicum. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Powdery mildew disease caused by Oidium neolycopersici is one of the major diseases affecting tomato production in South Africa. Interestingly, limited studies exist on how this disease affects the community structure microbial communities associated with tomato plants employing shotgun metagenomics. In this study, we assess how the health status of a tomato plant affects the diversity of the rhizosphere microbial community. We collected soil samples from the rhizosphere of healthy (HR) and diseased (DR; powdery mildew infected) tomatoes, alongside bulk soil (BR), extracted DNA, and did sequencing using shotgun metagenomics. Our results demonstrated that the rhizosphere microbiome alongside some specific functions were abundant in HR followed by DR and bulk soil (BR) in the order HR > DR > BR. We found eighteen (18) bacterial phyla abundant in HR, including Actinobacteria, Acidobacteria, Aquificae, Bacteroidetes, etc. The dominant fungal phyla include; Ascomycota and Basidiomycota, while the prominent archaeal phyla are Thaumarchaeota, Crenarchaeota, and Euryarchaeota. Three (3) bacteria phyla dominated the DR samples; Bacteroidetes, Gemmatimonadetes, and Thermotoga. Our result also employed the SEED subsystem and revealed that the metabolic pathways involved were abundant in HR. The α-diversity demonstrates that there is no significant difference among the rhizosphere microbiomes across the sites, while β-diversity demonstrated a significant difference.
Collapse
|
44
|
Cárdenas-Laverde D, Rincón-Aceldas S, Coy-Barrera E. Identification of Antifungal Compounds from Piper Plants Against Fusarium oxysporum: An Untargeted Metabolite Profiling-Based Approach. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221089995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phytopathogen Fusarium oxysporum produces considerable losses in economically important crops, making alternative control measures urgently required. Piper plants are widely distributed in tropical regions, and they are also known to produce metabolites with biological activity against infectious agents. As part of our continuous search for antifungals, 18 Piper-derived ethanolic extracts were evaluated by their in vitro effect on F oxysporum mycelial growth inhibition. The total content of phenol and flavonoid measurements and liquid chromatography-electrospray ionization-mass spectrometry analysis served as the chemical characterization of the investigated extracts. Piper pulchrum, Piper barcoense, and Piper tuberculatum exhibited the highest mycelial growth inhibition (>74%). The integration of chemical fingerprints and bioactivity datasets led to recognizing 4 bioactive candidates among extracts through single- Y orthogonal partial least squares regression and univariate statistics. These candidates were 2 amides (1,3), an alkyl lactone (2), and a prenylated benzoquinone (4), subsequently isolated and identified by nuclear magnetic resonance spectroscopy. These isolated compounds exhibited reasonable antifungal activity (IC50 < 50 µM). The findings indicated that the correlative association is advantageous for identifying bioactive metabolites within active extracts.
Collapse
Affiliation(s)
- Diego Cárdenas-Laverde
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Sebastián Rincón-Aceldas
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| |
Collapse
|
45
|
Dauda WP, Abraham P, Glen E, Adetunji CO, Ghazanfar S, Ali S, Al-Zahrani M, Azameti MK, Alao SEL, Zarafi AB, Abraham MP, Musa H. Robust Profiling of Cytochrome P450s (P450ome) in Notable Aspergillus spp. Life (Basel) 2022; 12:451. [PMID: 35330202 PMCID: PMC8955511 DOI: 10.3390/life12030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/03/2023] Open
Abstract
Cytochrome P450s (P450ome) constitute an extended superfamily group of heme-thiolate enzymes identified in all biological domains. P450omes play a critical role in the oxidation of steroids and fatty acids, xenobiotic degradation of hydrophobic compounds, biosynthesis of hormones, and primary and secondary metabolism in organisms. Aspergillus species are among the most economically important fungal organisms in human medicine, industry, and agriculture worldwide. Exploring insight on the genome-wide annotations of cytochrome P450s in Aspergillus species is necessary for their biosynthetic applications. In this present study, we report the identification of 306 cytochrome P450s and their robust profiling in eight notable Aspergillus species (A. carbonarius, A. clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, and A. terreus). Based on the evolutionary relationship, the Aspergillus P450s families clustered into 15 clades, with clades V, I, and XIII recording higher percentages (17.3%, 15.00%, and 14.71%, respectively) of Cyp families. Cyps were classified into 120 families 64 clans, and their putative functions were also elucidated. P450s were predicted to be located in 13 subcellular components, but the endoplasm reticulum was the dominant location across the eight Aspergillus species. Cyps genes of Aspergillus species were associated with seven secondary metabolism-related gene clusters. Elucidating the genome-wide annotations of P450s enzymes in Aspergillus species will form vital potential biotechnological tools that could be harnessed for industrial, pharmaceutical, and agricultural use.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- Crop Science Unit, Department of Agronomy, Federal University Gashua, Gashua P.M.B 1005, Yobe State, Nigeria
| | - Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B 108, Gombe State, Nigeria; (P.A.); (M.P.A.)
| | - Elkanah Glen
- Department of Biochemistry, Federal University Lokoja, Lokoja P.M.B 1154, Kogi State, Nigeria;
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi P.M.B 04, Edo State, Nigeria;
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Majid Al-Zahrani
- Biological Science Department, College of Sciences and Art, King Abdulaziz University, Rabigh 80200, Saudi Arabia;
| | - Mawuli Kwamla Azameti
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sheik Emmanuel Laykay Alao
- Department of Crop Protection, Faculty of Agriculture, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria; (S.E.L.A.); (A.B.Z.)
| | - Afiniki Bawa Zarafi
- Department of Crop Protection, Faculty of Agriculture, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria; (S.E.L.A.); (A.B.Z.)
| | - Maryam Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B 108, Gombe State, Nigeria; (P.A.); (M.P.A.)
| | - Hannatu Musa
- Department of Botany, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| |
Collapse
|
46
|
Deroo W, De Troyer L, Dumoulin F, De Saeger S, De Boevre M, Vandenabeele S, De Gelder L, Audenaert K. A Novel In Planta Enrichment Method Employing Fusarium graminearum-Infected Wheat Spikes to Select for Competitive Biocontrol Bacteria. Toxins (Basel) 2022; 14:toxins14030222. [PMID: 35324719 PMCID: PMC8954829 DOI: 10.3390/toxins14030222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
This work introduces an alternative workflow for the discovery of novel bacterial biocontrol agents in wheat against Fusarium head blight (FHB). Unlike the mass testing of isolate collections, we started from a diverse inoculum by extracting microbiomes from ears of field-grown plants at grain filling stage. Four distinct microbial communities were generated which were exposed to 3 14-day culture-independent experimental enrichments on detached wheat spikes infected with F. graminearum PH1. We found that one bacterial community reduced infection symptoms after 3 cycles, which was chosen to subsequently isolate bacteria through limiting dilution. All 94 isolates were tested in an in vitro and in planta assay, and a selection of 14 isolates was further tested on detached ears. The results seem to indicate that our enrichment approach resulted in bacteria with different modes-of-action in regard to FHB control. Erwinia persicina isolate C3 showed a significant reduction in disease severity (Fv/Fm), and Erwinia persicina C3 and Pseudomonas sp. B3 showed a significant reduction in fungal biomass (cGFP). However, the mycotoxin analysis of both these treatments showed no reduction in DON levels. Nevertheless, Pantoea ananatis H3 and H11 and Erwinia persicina H2 were able to reduce DON concentrations by more than 50%, although these effects were not statistically significant. Lastly, Erwinia persicina H2 also showed a significantly greater glucosylation of DON to the less phytotoxic DON-3G. The bacterial genera isolated through the enrichment cycles have been reported to dominate microbial communities that develop in open habitats, showing strong indications that the isolated bacteria can reduce the infection pressure of F. graminearum on the spike phyllosphere.
Collapse
Affiliation(s)
- Waldo Deroo
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Larissa De Troyer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.T.); (K.A.)
| | - Fréderic Dumoulin
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (F.D.); (S.D.S.); (M.D.B.)
| | | | - Leen De Gelder
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.D.T.); (K.A.)
| |
Collapse
|
47
|
Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022; 11:273. [PMID: 35215215 PMCID: PMC8879208 DOI: 10.3390/pathogens11020273] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Food security has become a major concern worldwide in recent years due to ever increasing population. Providing food for the growing billions without disturbing environmental balance is incessantly required in the current scenario. In view of this, sustainable modes of agricultural practices offer better promise and hence are gaining prominence recently. Moreover, these methods have taken precedence currently over chemical-based methods of pest restriction and pathogen control. Adoption of Biological Control is one such crucial technique that is currently in the forefront. Over a period of time, various biocontrol strategies have been experimented with and some have exhibited great success and promise. This review highlights the different methods of plant-pathogen control, types of plant pathogens, their modus operandi and various biocontrol approaches employing a range of microorganisms and their byproducts. The study lays emphasis on the use of upcoming methodologies like microbiome management and engineering, phage cocktails, genetically modified biocontrol agents and microbial volatilome as available strategies to sustainable agricultural practices. More importantly, a critical analysis of the various methods enumerated in the paper indicates the need to amalgamate these techniques in order to improve the degree of biocontrol offered by them.
Collapse
Affiliation(s)
- Manisha Arora Pandit
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Saloni Gulati
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Neeru Bhandari
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Poonam Mehta
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Roma Katyal
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Jasleen Kaur
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| |
Collapse
|
48
|
Gao T, Zhang Y, Shi J, Mohamed SR, Xu J, Liu X. The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum. Front Microbiol 2021; 12:762844. [PMID: 34867894 PMCID: PMC8634675 DOI: 10.3389/fmicb.2021.762844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
Collapse
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yao Zhang
- School of Food Science And Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
49
|
Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules 2021; 26:molecules26216488. [PMID: 34770893 PMCID: PMC8588391 DOI: 10.3390/molecules26216488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to determine the effectiveness of selected seven commercial essential oils (EsO) (grapefruit, lemongrass, tea tree (TTO), thyme, verbena, cajeput, and Litsea cubeba) on isolates of common Central European parasitic fungal species of Fusarium obtained from infected wheat kernels, and to evaluate the oils as potential natural fungicides. The study was conducted in 2 stages. At each stage, the fungicidal activity of EsO (with concentrations of 0.025; 0.05; 0.125; 0.25; 0.50; 1.0, and 2.0%) against Fusarium spp. was evaluated using the disc plate method and zones of growth inhibition were measured. At the first stage, the fungistatic activity of EsO was evaluated against four species of Fusarium from the Polish population (F. avenaceum FAPL, F. culmorum FCPL, F. graminearum FGPL and F. oxysporum FOPL). The correlation coefficient between the mycelial growth rate index (T) and the fungistatic activity (FA) was calculated. At the second stage, on the basis of the mycelium growth rate index, the effectiveness of the EsO in limiting the development of Fusarium isolates from the German population (F. culmorum FC1D, F. culmorum FC2D, F. graminearum FG1D, F. graminearum FG2D and F. poae FP0D) was assessed. The first and second stage results presented as a growth rate index were then used to indicate essential oils (as potential natural fungicides) effectively limiting the development of various common Central European parasitic species Fusarium spp. Finally, the sensitivity of four Fusarium isolates from the Polish population and five Fusarium isolates from the German population was compared. The data were compiled in STATISTICA 13.0 (StatSoft, Inc, CA, USA) at the significance level of 0.05. Fusarium isolates from the German population were generally more sensitive than those from the Polish population. The sensitivity of individual Fusarium species varied. Their vulnerability, regardless of the isolate origin, in order from the most to the least sensitive, is as follows: F. culmorum, F. graminearum, F. poae, F. avenaceum and F. oxysporum. The strongest fungicidal activity, similar to Funaben T, showed thyme oil (regardless of the concentration). Performance of citral oils (lemongrass and Litsea cubeba) was similar but at a concentration above 0.025%.
Collapse
|
50
|
Omar HS, Abd El-Rahman SN, AlGhannam SM, Reyad NEHA, Sedeek MS. Antifungal Evaluation and Molecular Docking Studies of Olea europaea Leaf Extract, Thymus vulgaris and Boswellia carteri Essential Oil as Prospective Fungal Inhibitor Candidates. Molecules 2021; 26:6118. [PMID: 34684700 PMCID: PMC8539494 DOI: 10.3390/molecules26206118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/05/2022] Open
Abstract
Background: The present study investigated the antifungal activity and mode of action of four Olea europaea leaf extracts, Thymus vulgaris essential oil (EO), and Boswellia carteri EO against Fusarium oxysporum. Methods:Fusarium oxysporum Lactucae was detected with the internal transcribed spacer (ITS) region. The chemical compositions of chloroform and dichloromethane extracts of O. europaea leaves and T. vulgaris EO were analyzed using GC-MS analysis. In addition, a molecular docking analysis was used to identify the expected ligands of these extracts against eleven F. oxysporum proteins. Results: The nucleotide sequence of the F. oxysporum Lactucae isolate was deposited in GenBank with Accession No. MT249304.1. The T. vulgaris EO, chloroform, dichloromethane and ethanol efficiently inhibited the growth at concentrations of 75.5 and 37.75 mg/mL, whereas ethyl acetate, and B. carteri EO did not exhibit antifungal activity. The GC-MS analysis revealed that the major and most vital compounds of the T. vulgaris EO, chloroform, and dichloromethane were thymol, carvacrol, tetratriacontane, and palmitic acid. Moreover, molecular modeling revealed the activity of these compounds against F. oxysporum. Conclusions: Chloroform, dichloromethane and ethanol, olive leaf extract, and T. vulgaris EO showed a strong effect against F. oxysporum. Consequently, this represents an appropriate natural source of biological compounds for use in healthcare. In addition, homology modeling and docking analysis are the best analyses for clarifying the mechanisms of antifungal activity.
Collapse
Affiliation(s)
- Hanaa S. Omar
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- GMO Laboratory, Faculty of Agriculture, Cairo University, Research Park, CURP, Giza 12613, Egypt
| | - Soheir N. Abd El-Rahman
- Crops Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Sheikha M. AlGhannam
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Nour El-Houda A. Reyad
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mohamed S. Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|