1
|
Ríos Colombo NS, Paul Ross R, Hill C. Synergistic and off-target effects of bacteriocins in a simplified human intestinal microbiome: implications for Clostridioides difficile infection control. Gut Microbes 2025; 17:2451081. [PMID: 39817466 PMCID: PMC11740676 DOI: 10.1080/19490976.2025.2451081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Clostridioides difficile is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against C. difficile. We engineered Lactococcus lactis strains to produce these bacteriocins individually or in combination, aiming to enhance their activity against C. difficile. Our results show that lacticin 3147 and pediocin PA-1 display synergy, resulting in higher anti-C. difficile activity. We then evaluated the effects of these L. lactis strains in a Simplified Human Intestinal Microbiome (SIHUMI-C) model, a bacterial consortium of eight diverse human gut species that includes C. difficile. After introducing the bacteriocin-producing L. lactis strains into SIHUMI-C, samples were collected over 24 hours, and the genome copies of each species were assessed using qPCR. Contrary to expectations, the combined bacteriocins increased C. difficile levels in the consortium despite showing synergy against C. difficile in agar-based screening. This can be rationally explained by antagonistic inter-species interactions within SIHUMI-C, providing new insights into how broad-spectrum antimicrobials might fail to control targeted species in complex gut microbial communities. These findings highlight the need to mitigate off-target effects in complex gut microbiomes when developing bacteriocin-based therapies with potential clinical implications for infectious disease treatment.
Collapse
Affiliation(s)
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Ye N, Hou B, Song J, Dunn DW, Ma ZS, Wang RW. Metabolic byproduct utilization and the evolution of mutually beneficial cooperation in Escherichia coli. Evolution 2025; 79:779-790. [PMID: 39946095 DOI: 10.1093/evolut/qpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/17/2025]
Abstract
Understanding how cooperation evolves in microbial populations, particularly under environmental stress such as antibiotic exposure, remains a key topic in evolutionary biology. Here, we investigate cooperative interactions between antibiotic-resistant and antibiotic-sensitive strains of Escherichia coli. Under antibiotic stress, a small number of antibiotic-sensitive strains rapidly evolve into antibiotic-resistant strains. Resistant E. coli produce indole, which induces a protective response in sensitive cells, enabling them to survive in antibiotic stress conditions. In turn, antibiotic-sensitive E. coli could help reduce toxic accumulation of indole, indirectly benefiting the resistant strain. Indole is harmful to the growth of the antibiotic-resistant strain but benefits the antibiotic-sensitive strain by helping turn-on the multi-drug exporter to neutralize the antibiotic. This mutual exchange leads to increased fitness for both strains in cocultures, demonstrating a mechanism by which mutually beneficial cooperation can evolve in bacterial communities. Our findings provide insight into how mutualism can emerge under antibiotic pressure through metabolic byproduct exchange, revealing new dynamics in the evolution of bacterial cooperation.
Collapse
Affiliation(s)
- Nan Ye
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Beibei Hou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Derek W Dunn
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Rui-Wu Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Lin SL, Nie QC, Law COK, Pham HQ, Chau HF, Lau TCK. A novel plasmid-encoded transposon-derived small RNA reveals the mechanism of sRNA-regulated bacterial persistence. mBio 2025; 16:e0381424. [PMID: 39998215 PMCID: PMC11980398 DOI: 10.1128/mbio.03814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Small regulatory RNAs (sRNAs) in bacteria are crucial for controlling various cellular functions and provide immediate response to the environmental stresses. Antibiotic persistence is a phenomenon that a small subpopulation of bacteria survives under the exposure of a lethal concentration of antibiotics, potentially leading to the development of drug resistance in bacteria. Here, we reported a novel transposon-derived sRNA called stnpA, which can modulate fosfomycin persistence of the bacteria. The stnpA sRNA located in the transposon with its own promoter is highly conserved among the prevalent multidrug resistance (MDR) plasmids in various pathogenic bacteria and expressed in response to the fosfomycin stress. It can directly bind to the ABC transporter, YadG, whereas this protein-RNA interaction modulated the export of fosfomycin and led to the enhancement of bacterial persistence. According to our knowledge, stnpA is the first identified transposon-derived sRNA, which controlled antibiotic persistence of bacteria, and our work demonstrated that nonresistance genes on MDR plasmids such as plasmid-encoded sRNA can provide additional survival advantages to the bacterial host against the antibiotics. In addition, the stnpA sRNA can be potentially utilized as the druggable target for the development of novel therapeutic strategies to overcome bacterial persistence. IMPORTANCE This study unveils a groundbreaking discovery in the realm of bacterial antibiotic persistence, highlighting the pivotal role of a newly identified small RNA (sRNA) called stnpA, which is a multidrug resistance plasmid-encoded transposon-derived sRNA that interacts directly with ABC transporter YadG to modulate the efflux of fosfomycin. Our findings elucidate a novel mechanism of small RNA-regulated fosfomycin persistence in bacteria that provides the potential pathway for the emergence of drug resistance in bacteria upon antibiotic treatment. Importantly, this study provides the first example of linking sRNA regulation to antibiotic persistence, presenting stnpA sRNA as a potential therapeutic target. This study underscores the critical role of noncoding RNAs in bacterial adaptation and offers valuable insights for developing new strategies to combat antibiotic persistence.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Carmen Oi-Kwan Law
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Ho-Fai Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Hussain A, Bhando T, Casius A, Gupta R, Pathania R. Deciphering meropenem persistence in Acinetobacter baumannii facilitates discovery of anti-persister activity of thymol. Antimicrob Agents Chemother 2025; 69:e0138124. [PMID: 39976427 PMCID: PMC11963602 DOI: 10.1128/aac.01381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Decades of antibiotic misuse have accelerated the emergence of multi- and extensively drug-resistant bacteria. Bacterial pathogens employ several strategies such as antibiotic resistance, tolerance, and biofilm formation in response to extreme environments and antibiotic stress. Another crucial survival mechanism involves the stochastic generation of bacterial subpopulations known as persisters, which can endure high concentrations of antibiotics. Upon removal of antibiotic stress, these subpopulations revert back to their original phenotype which links them to the relapse and recalcitrance of chronic infections, a significant problem in clinical settings. Persistent infections are particularly notable in Acinetobacter baumannii, a top-priority ESKAPE pathogen, where carbapenems serve as last-resort antibiotics. Several reports indicate the rising therapeutic failure of carbapenems due to persistence, underscoring the importance of developing anti-persister therapeutics. In this study, we explored the mechanisms of transient persister formation in A. baumannii against meropenem. Our investigation revealed significant changes in membrane properties and energetics in meropenem persisters of A. baumannii, including a noteworthy increase in tolerance to other antibiotics. This understanding guided the evaluation of an in-house collection of GRAS status compounds for their potential anti-persister activity. The compound thymol demonstrated remarkable inhibitory activity against meropenem persisters of A. baumannii and other ESKAPE pathogens. Further investigation revealed its impact on persister cell physiology, including efflux pump inhibition and disruption of cellular respiration. Given our results, we propose a compelling strategy where thymol could be employed either as a monotherapy or in combination with meropenem in anti-persister therapeutics.
Collapse
Affiliation(s)
- Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ananth Casius
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
5
|
Chines E, Vertillo Aluisio G, Santagati M, Mezzatesta ML, Cafiso V. Fitness Burden for the Stepwise Acquisition of First- and Second-Line Antimicrobial Reduced-Susceptibility in High-Risk ESKAPE MRSA Superbugs. Antibiotics (Basel) 2025; 14:244. [PMID: 40149055 PMCID: PMC11939686 DOI: 10.3390/antibiotics14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The fitness costs (FCs) of antimicrobial resistance (AMR) are crucial issues in antimicrobial resistance (AMR) onset, spread, and, consequently, public health. In Staphylococcus aureus, AMR can induce significant FCs due to slow growth, low competitiveness, and virulence. Here, we investigated the genomics and FCs emerging for progressively acquiring daptomycin (DAP) and glycopeptide (GLY) reduced susceptibility in MRSA. Methods: Genomics was carried out using Illumina-MiSeq Whole-genome sequencing and bioinformatics. The biological FCs of isogenic MRSA strain pairs progressively acquiring DAP and GLY-reduced susceptibility, under DAP/GLY mono or combined therapy, were performed by in-vitro independent and competitive mixed growth, phenotypic in-vitro virulence analysis, and in-vivo G. mellonella larvae killing. Results: Genomics evidenced four different extremely resistant high-risk clones, i.e., ST-5 N315 HA-MRSA, ST-398 LA-MRSA, ST-22 USA-100 HA-EMRSA-15, and ST-1 MW2 CA-MRSA. In-vitro fitness assays revealed slow growth, lower competitiveness, and reduced virulence, predominantly in Galleria mellonella killing ability, in DAP-S hGISA, DAP-R GSSA, DAP-R hGISA, and DAP-R GISA strains. Conclusions: The occurrence of glycopeptide and daptomycin reduced susceptibility conferred increasing FCs, paid as a gradual reduction in virulence, competitiveness, and slow growth performance.
Collapse
Affiliation(s)
- Eleonora Chines
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (E.C.); (G.V.A.); (M.S.); (M.L.M.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental, and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gaia Vertillo Aluisio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (E.C.); (G.V.A.); (M.S.); (M.L.M.)
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (E.C.); (G.V.A.); (M.S.); (M.L.M.)
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (E.C.); (G.V.A.); (M.S.); (M.L.M.)
| | - Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (E.C.); (G.V.A.); (M.S.); (M.L.M.)
| |
Collapse
|
6
|
Riordan L, Lasserre P, Corrigan D, Duncan K. Quantification of Pseudomonas aeruginosa biofilms using electrochemical methods. Access Microbiol 2025; 7:000906.v4. [PMID: 39959466 PMCID: PMC11829079 DOI: 10.1099/acmi.0.000906.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Currently, 2.29% of deaths worldwide are caused by antimicrobial resistance (AMR), compared to 1.16% from malaria and 1.55% from human immunodeficiency virus and acquired immunodeficiency syndrome. Furthermore, deaths resulting from AMR are projected to increase to more than 10 million per annum by 2050. Biofilms are common in hospital settings, such as medical implants, and pose a particular problem as they have shown resistance to antibiotics up to 1000-fold higher than planktonic cells because of dormant states and reduced growth rates. This is compounded by the fact that many antibiotics target mechanisms of active metabolism and are therefore less effective. The work presented here aimed to develop a method for biofilm quantification, which could be translated into the clinical setting, as well as used in the screening of antibiofilm agents. This was carried out alongside crystal violet staining, as a published point of reference. This work builds upon work previously presented by Dunphy et al., in which the authors attempted to quantify the biofilm formation of Pseudomonas aeruginosa strain using hyperspectral imaging. Here, using electrochemical impedance spectroscopy and square wave voltammetry, the biofilm formation of two P. aeruginosa strains was detected within an hour after seeding P. aeruginosa on the sensor. A 40% decrease in impedance modulus was shown when P. aeruginosa biofilm had formed, compared to the media-only control. As such, this work offers a starting point for the development of real-time biofilm sensing technologies, which can be translated into implantable materials.
Collapse
Affiliation(s)
- Lily Riordan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Perrine Lasserre
- Department of Chemistry, University of Strathclyde, Glasgow, G1 1BX, UK
| | - Damion Corrigan
- Department of Chemistry, University of Strathclyde, Glasgow, G1 1BX, UK
| | - Katherine Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
7
|
Zahid ALN, Wang KC, Thomsen LE, Meier S, Jensen PR. In-cell NMR reveals metabolic adaptations in central carbon pathways driving antibiotic tolerance in Salmonella Typhimurium. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1062-1073. [PMID: 39791466 DOI: 10.1039/d4ay02023e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings. Bacterial metabolism is closely linked to antibiotic efficacy, and thus presents as a potential target for novel diagnostic methods. Recent advancements in nuclear magnetic resonance (NMR) spectroscopy, including dynamic nuclear polarization (DNP-NMR), enable a non-invasive real-time approach to analyzing bacterial metabolism. In this study, we applied both 1H and in-cell 13C NMR spectroscopy to investigate metabolic adaptations in a tolerance-evolved Salmonella Typhimurium strain, C10, developed through ten cycles of ampicillin treatment. Our results demonstrated that despite similar MICs and growth rates, the C10 strain exhibited a 25-fold increase in tolerance compared to the wild-type, while exhibiting lower metabolic activity. Under ampicillin stress, however, the C10 strain maintained higher metabolic activity and demonstrated greater resilience in glucose consumption and metabolite production relative to the wild-type. Using DNP-NMR, rapid metabolic shifts in the C10 strain were identified within 10 minutes of exposure to high concentrations of ampicillin, characterized by accumulation of key metabolites such as pyruvate and acetate. Overall, our findings underscore the potential of real-time NMR-based analyses to provide deeper insights into antibiotic tolerance and distinguish between susceptible and tolerant bacterial strains.
Collapse
Affiliation(s)
- Alexandra L N Zahid
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
8
|
Soares JM, Yakovlev VV, Blanco KC, Bagnato VS. Photodynamic inactivation and its effects on the heterogeneity of bacterial resistance. Sci Rep 2024; 14:28268. [PMID: 39550440 PMCID: PMC11569256 DOI: 10.1038/s41598-024-79743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a growing threat to global public health, requiring innovative approaches for its control. Photodynamic inactivation (PDI) with light-activated photosensitizers has emerged as a strategy to combat resistant bacteria, challenging the intrinsic heterogeneity of bacterial populations. This study evaluates the impact of PDI on both heterogeneity and shape of the distribution profile of resistant bacterial populations, specifically on strains of Staphylococcus aureus resistant to amoxicillin, erythromycin, and gentamicin, for exploring its potential as an adjuvant therapy in the fight against bacterial resistance. Curcumin (10 µM) was used as a photosensitizer and five cycles of PDI were applied on Staphylococcus aureus strains under 450 nm irradiation of 10 J/cm² energy density. The resistance variations amongst bacterial subpopulations were investigated by calculating the minimum inhibitory concentration (MIC) before and after PDI treatment. MIC was significantly reduced by the antibiotics tested post-PDI and a reduction in the heterogeneity of bacterial populations was recorded, suggesting PDI can effectively decrease the resistance diversity of Staphylococcus aureus. The result reinforces the potential of PDI as a valuable adjuvant therapy, offering a promising avenue for mitigating bacterial resistance and promoting more effective treatment strategies against resistant infections.
Collapse
Affiliation(s)
- Jennifer M Soares
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | | | - Kate C Blanco
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
11
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
12
|
Kunnath AP, Suodha Suoodh M, Chellappan DK, Chellian J, Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br J Biomed Sci 2024; 81:12958. [PMID: 39170669 PMCID: PMC11335562 DOI: 10.3389/bjbs.2024.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The global issue of antimicrobial resistance poses significant challenges to public health. The World Health Organization (WHO) has highlighted it as a major global health threat, causing an estimated 700,000 deaths worldwide. Understanding the multifaceted nature of antibiotic resistance is crucial for developing effective strategies. Several physiological and biochemical mechanisms are involved in the development of antibiotic resistance. Bacterial cells may escape the bactericidal actions of the drugs by entering a physiologically dormant state known as bacterial persistence. Recent findings in this field suggest that bacterial persistence can be one of the main sources of chronic infections. The antibiotic tolerance developed by the persister cells could tolerate high levels of antibiotics and may give rise to persister offspring. These persister offspring could be attributed to antibiotic resistance mechanisms, especially in chronic infections. This review attempts to shed light on persister-induced antibiotic resistance and the current therapeutic strategies.
Collapse
Affiliation(s)
- Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mohamed Suodha Suoodh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Dirkx L, Van Acker SI, Nicolaes Y, Cunha JLR, Ahmad R, Hendrickx R, Caljon B, Imamura H, Ebo DG, Jeffares DC, Sterckx YGJ, Maes L, Hendrickx S, Caljon G. Long-term hematopoietic stem cells trigger quiescence in Leishmania parasites. PLoS Pathog 2024; 20:e1012181. [PMID: 38656959 PMCID: PMC11073788 DOI: 10.1371/journal.ppat.1012181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara I. Van Acker
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yasmine Nicolaes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - João Luís Reis Cunha
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Rokaya Ahmad
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hideo Imamura
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Didier G. Ebo
- Department of Immunology–Allergology–Rheumatology, Faculty of Medicine and Health Science, Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Daniel C. Jeffares
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Ke W, Xie Y, Chen Y, Ding H, Ye L, Qiu H, Li H, Zhang L, Chen L, Tian X, Shen Z, Song Z, Fan X, Zong JF, Guo Z, Ma X, Xiao M, Liao G, Liu CH, Yin WB, Dong Z, Yang F, Jiang YY, Perlin DS, Chen Y, Fu YV, Wang L. Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe 2024; 32:276-289.e7. [PMID: 38215741 DOI: 10.1016/j.chom.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.
Collapse
Affiliation(s)
- Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leixin Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoning Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Fa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cui Hua Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuan-Ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Yihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu V Fu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Rahman KMT, Butzin NC. Counter-on-chip for bacterial cell quantification, growth, and live-dead estimations. Sci Rep 2024; 14:782. [PMID: 38191788 PMCID: PMC10774380 DOI: 10.1038/s41598-023-51014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely count Escherichia coli cells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
16
|
Costa SK, Antosca K, Beekman CN, Peterson RL, Penumutchu S, Belenky P. Short-Term Dietary Intervention with Whole Oats Protects from Antibiotic-Induced Dysbiosis. Microbiol Spectr 2023; 11:e0237623. [PMID: 37439681 PMCID: PMC10434222 DOI: 10.1128/spectrum.02376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Antibiotic-induced gut microbiome dysbiosis (AID) is known to be influenced by host dietary composition. However, how and when diet modulates gut dysbiosis remains poorly characterized. Thus, here, we utilize a multi-omics approach to characterize how a diet supplemented with oats, a rich source of microbiota-accessible carbohydrates, or dextrose impacts amoxicillin-induced changes to gut microbiome structure and transcriptional activity. We demonstrate that oat administration during amoxicillin challenge provides greater protection from AID than the always oats or recovery oats diet groups. In particular, the group in which oats were provided at the time of antibiotic exposure induced the greatest protection against AID while the other oat diets saw greater effects after amoxicillin challenge. The oat diets likewise reduced amoxicillin-driven elimination of Firmicutes compared to the dextrose diet. Functionally, gut communities fed dextrose were carbohydrate starved and favored respiratory metabolism and consequent metabolic stress management while oat-fed communities shifted their transcriptomic profile and emphasized antibiotic stress management. The metabolic trends were exemplified when assessing transcriptional activity of the following two common gut commensal bacteria: Akkermansia muciniphila and Bacteroides thetaiotaomicron. These findings demonstrate that while host diet is important in shaping how antibiotics effect the gut microbiome composition and function, diet timing may play an even greater role in dietary intervention-based therapeutics. IMPORTANCE We utilize a multi-omics approach to demonstrate that diets supplemented with oats, a rich source of microbiota-accessible carbohydrates, are able to confer protection against antibiotic-induced dysbiosis (AID). Our findings affirm that not only is host diet important in shaping antibiotics effects on gut microbiome composition and function but also that the timing of these diets may play an even greater role in managing AID. This work provides a nuanced perspective on dietary intervention against AID and may be informative on preventing AID during routine antibiotic treatment.
Collapse
Affiliation(s)
- Stephen K. Costa
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Katherine Antosca
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Rachel L. Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Schrader SM, Botella H, Vaubourgeix J. Reframing antimicrobial resistance as a continuous spectrum of manifestations. Curr Opin Microbiol 2023; 72:102259. [PMID: 36608373 DOI: 10.1016/j.mib.2022.102259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
To fight antimicrobial resistance (AMR), we must recognize and target all its manifestations. In this review, we briefly summarize the history that led to recognition of the various manifestations of AMR in bacterial pathogens and the ways in which they interrelate. We emphasize the importance of distinguishing between AMR arising from genetic alterations versus induction of endogenous machinery in response to environmental triggers, including - paradoxically - stresses from host immunity and antimicrobial therapy. We present an integrated view of AMR by reframing it as a spectrum of phenotypes within a continuous three-dimensional space defined by the growth rate, prevalence, and kill rate of cells displaying AMR. Finally, we reflect on strategies that may help stem the emergence of AMR.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hélène Botella
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Julien Vaubourgeix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
18
|
Abukhalid N, Rojony R, Danelishvili L, Bermudez LE. Metabolic pathways that permit Mycobacterium avium subsp. hominissuis to transition to different environments encountered within the host during infection. Front Cell Infect Microbiol 2023; 13:1092317. [PMID: 37124045 PMCID: PMC10140322 DOI: 10.3389/fcimb.2023.1092317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction M. avium subsp. hominissuis (M. avium) is an intracellular, facultative bacterium known to colonize and infect the human host through ingestion or respiratory inhalation. The majority of pulmonary infections occur in association with pre- existing lung diseases, such as bronchiectasis, cystic fibrosis, or chronic obstructive pulmonary disease. M. avium is also acquired by the gastrointestinal route in immunocompromised individuals such as human immunodeficiency virus HIV-1 patients leading to disseminated disease. A hallmark of M. avium pulmonary infections is the ability of pathogen to form biofilms. In addition, M. avium can reside within granulomas of low oxygen and limited nutrient conditions while establishing a persistent niche through metabolic adaptations. Methods Bacterial metabolic pathways used by M. avium within the host environment, however, are poorly understood. In this study, we analyzed M. avium proteome with a focus on core metabolic pathways expressed in the anaerobic, biofilm and aerobic conditions and that can be used by the pathogen to transition from one environment to another. Results Overall, 3,715 common proteins were identified between all studied conditions and proteins with increased synthesis over the of the level of expression in aerobic condition were selected for analysis of in specific metabolic pathways. The data obtained from the M. avium proteome of biofilm phenotype demonstrates in enrichment of metabolic pathways involved in the fatty acid metabolism and biosynthesis of aromatic amino acid and cofactors. Here, we also highlight the importance of chloroalkene degradation pathway and anaerobic fermentationthat enhance during the transition of M. avium from aerobic to anaerobic condition. It was also found that the production of fumarate and succinate by MAV_0927, a conserved hypothetical protein, is essential for M. avium survival and for withstanding the stress condition in biofilm. In addition, the participation of regulatory genes/proteins such as the TetR family MAV_5151 appear to be necessary for M. avium survival under biofilm and anaerobic conditions. Conclusion Collectively, our data reveal important core metabolic pathways that M. avium utilize under different stress conditions that allow the pathogen to survive in diverse host environments.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rajoana Rojony
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
- *Correspondence: Luiz E. Bermudez,
| |
Collapse
|
19
|
Gukowsky JC, He L. Investigating the origins of bacterial SERS responses to antibiotics observed in the extracellular matrix liquid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121680. [PMID: 35921750 DOI: 10.1016/j.saa.2022.121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been applied to analyze bacterial cells and their responses to antibiotic exposure. However, significant knowledge gaps remain regarding the origins of specific antibiotic response patterns and the necessary experimental steps required to see them clearly in the SERS spectra, particularly involving SERS responses observed in the extracellular matrix liquid of bacterial samples. In this study, a variety of experimental parameters were tested to assess the antibiotic response patterns seen in liquid samples from E. coli under different conditions. These include testing the impact of washing the cells with water after incubating them with antibiotics, as well as the effect of using different types of liquids with varying characteristics for incubating the bacteria with the antibiotics. It was found that the experimental procedure has a significant impact on the resulting SERS signals, and the target patterns could only be observed in specific conditions. In particular, the step of washing the bacteria with water is necessary for observing the antibiotic response patterns, and incubating the bacteria and antibiotics in a nutrient-rich growth medium is preferable to incubating the cells in a buffer or in distilled water. These findings can be used to improve existing methods for testing antibiotic responses with SERS, and could potentially help to further develop and optimize SERS-based procedures for assessing antibiotic sensitivity.
Collapse
Affiliation(s)
- Joshua C Gukowsky
- Department of Food Science, University of Massachusetts Amherst, 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
21
|
Abstract
Dental caries is a multifactorial biofilm- and sugar-dependent disease. This study investigated the influence of different agents on the induction of surviving Streptococcus mutans cells after successive treatment cycles and characterized the biofilms formed by these cells recovered posttreatment. The agents (with their main targets listed in parentheses) were compound 1771 (lipoteichoic acids), 4′ hydroxychalcone (exopolysaccharides), myricetin (exopolysaccharides), tt-farnesol (cytoplasmatic membrane), sodium fluoride (enolase—glycolysis), chlorhexidine (antimicrobial), and vehicle. Recovered cells from biofilms were generated from exposure to each agent during 10 cycles of consecutive treatments (modeled on a polystyrene plate bottom). The recovered cell counting was different for each agent. The recovered cells from each group were grown as biofilms on saliva-coated hydroxyapatite discs (culture medium with sucrose/starch). In S. mutans biofilms formed by cells recovered from biofilms previously exposed to compound 1771, 4′ hydroxychalcone, or myricetin, cells presented higher expression of the 16S rRNA, gyrA (DNA replication and transcription), gtfB (insoluble exopolysaccharides), and eno (enolase—glycolysis) genes and lower quantities of insoluble dry weight and insoluble exopolysaccharides than those derived from other agents. These findings were confirmed by the smaller biovolume of bacteria and/or exopolysaccharides and the biofilm distribution (coverage area). Moreover, preexposure to chlorhexidine increased exopolysaccharide production. Therefore, agents with different targets induce cells with distinct biofilm formation capacities, which is critical for developing formulations for biofilm control. IMPORTANCE This article addresses the effect of distinct agents with distinct targets in the bacterial cell (cytoplasmatic membrane and glycolysis), the cell’s extracellular synthesis of exopolysaccharides that are important for cariogenic extracellular matrix construction and biofilm buildup in the generation of cells that persisted after treatment, and how these cells form biofilms in vitro. For example, if preexposure to an agent augments the production of virulence determinants, such as exopolysaccharides, its clinical value may be inadequate. Modification of biofilm formation capacity after exposure to agents is critical for the development of formulations for biofilm control to prevent caries, a ubiquitous disease associated with biofilm and diet.
Collapse
|
22
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Wong EH, Abdul Rahim N. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 2022; 18:47. [PMID: 35781167 DOI: 10.1007/s11306-022-01903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rise of antimicrobial resistance at an alarming rate is outpacing the development of new antibiotics. The worrisome trends of multidrug-resistant Gram-negative bacteria have enormously diminished existing antibiotic activity. Antibiotic treatments may inhibit bacterial growth or lead to induce bacterial cell death through disruption of bacterial metabolism directly or indirectly. In light of this, it is imperative to have a thorough understanding of the relationship of bacterial metabolism with antimicrobial activity and leverage the underlying principle towards development of novel and effective antimicrobial therapies. OBJECTIVE Herein, we explore studies on metabolic analyses of Gram-negative pathogens upon antibiotic treatment. Metabolomic studies revealed that antibiotic therapy caused changes of metabolites abundance and perturbed the bacterial metabolism. Following this line of thought, addition of exogenous metabolite has been employed in in vitro, in vivo and in silico studies to activate the bacterial metabolism and thus potentiate the antibiotic activity. KEY SCIENTIFIC CONCEPTS OF REVIEW Exogenous metabolites were discovered to cause metabolic modulation through activation of central carbon metabolism and cellular respiration, stimulation of proton motive force, increase of membrane potential, improvement of host immune protection, alteration of gut microbiome, and eventually facilitating antibiotic killing. The use of metabolites as antimicrobial adjuvants may be a promising approach in the fight against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program, Department of Microbiology, Monash University, 3800, Victoria, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
23
|
Wurster JI, Peterson RL, Belenky P. Streptozotocin-Induced Hyperglycemia Is Associated with Unique Microbiome Metabolomic Signatures in Response to Ciprofloxacin Treatment. Antibiotics (Basel) 2022; 11:585. [PMID: 35625229 PMCID: PMC9137574 DOI: 10.3390/antibiotics11050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
It is well recognized that the microbiome plays key roles in human health, and that damage to this system by, for example, antibiotic administration has detrimental effects. With this, there is collective recognition that off-target antibiotic susceptibility within the microbiome is a particularly troublesome side effect that has serious impacts on host well-being. Thus, a pressing area of research is the characterization of antibiotic susceptibility determinants within the microbiome, as understanding these mechanisms may inform the development of microbiome-protective therapeutic strategies. In particular, metabolic environment is known to play a key role in the different responses of this microbial community to antibiotics. Here, we explore the role of host dysglycemia on ciprofloxacin susceptibility in the murine cecum. We used a combination of 16S rRNA sequencing and untargeted metabolomics to characterize changes in both microbiome taxonomy and environment. We found that dysglycemia minimally impacted ciprofloxacin-associated changes in microbiome structure. However, from a metabolic perspective, host hyperglycemia was associated with significant changes in respiration, central carbon metabolism, and nucleotide synthesis-related metabolites. Together, these data suggest that host glycemia may influence microbiome function during antibiotic challenge.
Collapse
Affiliation(s)
| | | | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA; (J.I.W.); (R.L.P.)
| |
Collapse
|
24
|
In Mycobacterium abscessus, the stringent factor Rel regulates metabolism, but is not the only (p)ppGpp synthase. J Bacteriol 2021; 204:e0043421. [PMID: 34898264 DOI: 10.1128/jb.00434-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response is a broadly conserved stress response system that exhibits functional variability across bacterial clades. Here, we characterize the role of the stringent factor Rel in the non-tuberculous mycobacterial pathogen, Mycobacterium abscessus (Mab). We found that deletion of rel does not ablate (p)ppGpp synthesis, and that rel does not provide a survival advantage in several stress conditions, or in antibiotic treatment. Transcriptional data show that RelMab is involved in regulating expression of anabolism and growth genes in stationary phase. However, it does not activate transcription of stress response or antibiotic resistance genes, and actually represses transcription of many antibiotic resistance genes. This work shows that there is an unannotated (p)ppGpp synthetase in Mab. Importance In this study, we examined the functional roles of the stringent factor Rel in Mycobacterium abscessus (Mab). In most species, stringent factors synthesize the alarmone (p)ppGpp, which globally alters transcription to promote growth arrest and survival under stress and in antibiotic treatment. Our work shows that in Mab, an emerging pathogen which is resistant to many antibiotics, the stringent factor Rel is not solely responsible for synthesizing (p)ppGpp. We find that RelMab downregulates many metabolic genes under stress, but does not upregulate stress response genes and does not promote antibiotic tolerance. This study implies that there is another critical but unannotated (p)ppGpp synthetase in Mab, and suggests that RelMab inhibitors are unlikely to sensitize Mab infections to antibiotic treatment.
Collapse
|
25
|
Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems 2021; 6:e0091320. [PMID: 34342537 PMCID: PMC8409726 DOI: 10.1128/msystems.00913-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is becoming one of the largest threats to public health worldwide, with the opportunistic pathogen Escherichia coli playing a major role in the AMR global health crisis. Unravelling the complex interplay between drug resistance and metabolic rewiring is key to understand the ability of bacteria to adapt to new treatments and to the development of new effective solutions to combat resistant infections. We developed a computational pipeline that combines machine learning with genome-scale metabolic models (GSMs) to elucidate the systemic relationships between genetic determinants of resistance and metabolism beyond annotated drug resistance genes. Our approach was used to identify genetic determinants of 12 AMR profiles for the opportunistic pathogenic bacterium E. coli. Then, to interpret the large number of identified genetic determinants, we applied a constraint-based approach using the GSM to predict the effects of genetic changes on growth, metabolite yields, and reaction fluxes. Our computational platform leads to multiple results. First, our approach corroborates 225 known AMR-conferring genes, 35 of which are known for the specific antibiotic. Second, integration with the GSM predicted 20 top-ranked genetic determinants (including accA, metK, fabD, fabG, murG, lptG, mraY, folP, and glmM) essential for growth, while a further 17 top-ranked genetic determinants linked AMR to auxotrophic behavior. Third, clusters of AMR-conferring genes affecting similar metabolic processes are revealed, which strongly suggested that metabolic adaptations in cell wall, energy, iron and nucleotide metabolism are associated with AMR. The computational solution can be used to study other human and animal pathogens. IMPORTANCEEscherichia coli is a major public health concern given its increasing level of antibiotic resistance worldwide and extraordinary capacity to acquire and spread resistance via horizontal gene transfer with surrounding species and via mutations in its existing genome. E. coli also exhibits a large amount of metabolic pathway redundancy, which promotes resistance via metabolic adaptability. In this study, we developed a computational approach that integrates machine learning with metabolic modeling to understand the correlation between AMR and metabolic adaptation mechanisms in this model bacterium. Using our approach, we identified AMR genetic determinants associated with cell wall modifications for increased permeability, virulence factor manipulation of host immunity, reduction of oxidative stress toxicity, and changes to energy metabolism. Unravelling the complex interplay between antibiotic resistance and metabolic rewiring may open new opportunities to understand the ability of E. coli, and potentially of other human and animal pathogens, to adapt to new treatments.
Collapse
|
26
|
Schrader SM, Botella H, Jansen R, Ehrt S, Rhee K, Nathan C, Vaubourgeix J. Multiform antimicrobial resistance from a metabolic mutation. SCIENCE ADVANCES 2021; 7:7/35/eabh2037. [PMID: 34452915 PMCID: PMC8397267 DOI: 10.1126/sciadv.abh2037] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 05/07/2023]
Abstract
A critical challenge for microbiology and medicine is how to cure infections by bacteria that survive antibiotic treatment by persistence or tolerance. Seeking mechanisms behind such high survival, we developed a forward-genetic method for efficient isolation of high-survival mutants in any culturable bacterial species. We found that perturbation of an essential biosynthetic pathway (arginine biosynthesis) in a mycobacterium generated three distinct forms of resistance to diverse antibiotics, each mediated by induction of WhiB7: high persistence and tolerance to kanamycin, high survival upon exposure to rifampicin, and minimum inhibitory concentration-shifted resistance to clarithromycin. As little as one base change in a gene that encodes, a metabolic pathway component conferred multiple forms of resistance to multiple antibiotics with different targets. This extraordinary resilience may help explain how substerilizing exposure to one antibiotic in a regimen can induce resistance to others and invites development of drugs targeting the mediator of multiform resistance, WhiB7.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hélène Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Robert Jansen
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kyu Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
27
|
Manoharan A, Das T, Whiteley GS, Glasbey T, Kriel FH, Manos J. The effect of N-acetylcysteine in a combined antibiofilm treatment against antibiotic-resistant Staphylococcus aureus. J Antimicrob Chemother 2021; 75:1787-1798. [PMID: 32363384 DOI: 10.1093/jac/dkaa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The WHO declared Staphylococcus aureus as a 'pathogen of high importance' in 2017. One-fifth of all bloodstream-related infections in Australia and 12 000 cases of bacteraemia in the UK (2017-18) were caused by the MRSA variant. To address the need for novel therapies, we investigated several permutations of an innovative combination therapy containing N-acetylcysteine (NAC), an antibiotic and an enzyme of choice in eradicating MRSA and MSSA biofilms. METHODS Biofilm viability (resazurin assay) and colony count methods were used to investigate the effect of NAC, antibiotics and enzymes on S. aureus biofilm disruption and killing. The effects of NAC and enzymes on the polysaccharide content of biofilm matrices were analysed using the phenol/sulphuric acid method and the effect of NAC on DNA cleavage was determined using the Qubit fluorometer technique. Changes in biofilm architecture when subjected to NAC and enzymes were visualized using confocal laser scanning microscopy (CLSM). RESULTS NAC alone displayed bacteriostatic effects when tested on planktonic bacterial growth. Combination treatments containing 30 mM NAC resulted in ≥90% disruption of biofilms across all MRSA and MSSA strains with a 2-3 log10 decrease in cfu/mL in treated biofilms. CLSM showed that NAC treatment drastically disrupted S. aureus biofilm architecture. There was also reduced polysaccharide production in MRSA biofilms in the presence of NAC. CONCLUSIONS Our results indicate that inclusion of NAC in a combination treatment is a promising strategy for S. aureus biofilm eradication. The intrinsic acidity of NAC was identified as key to maximum biofilm disruption and degradation of matrix components.
Collapse
Affiliation(s)
- Arthika Manoharan
- Department of Infectious Diseases and Immunology, Central Clinical School, The University of Sydney, Sydney, Australia
| | - Theerthankar Das
- Department of Infectious Diseases and Immunology, Central Clinical School, The University of Sydney, Sydney, Australia
| | | | - Trevor Glasbey
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago NSW 2319, Australia
| | - Frederik H Kriel
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago NSW 2319, Australia
| | - Jim Manos
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago NSW 2319, Australia
| |
Collapse
|
28
|
Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. J Bacteriol 2021; 203:e0010921. [PMID: 33972351 DOI: 10.1128/jb.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
Collapse
|
29
|
Suzuki E, Urushidani T, Maeda S. Bovine serum promotes the formation and phenotype memory retention of persister cells in Escherichia coli liquid cultures. World J Microbiol Biotechnol 2021; 37:110. [PMID: 34061238 DOI: 10.1007/s11274-021-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Persister cells, or persisters, are a fraction of bacterial cells that have become temporarily tolerant to antibiotics despite their lack of typical antibiotic-resistant genes. In a previous study, we found that colony-biofilm culture (i.e., biofilm formed at an air-solid interface) promoted the formation and phenotype memory retention of persisters of Escherichia coli and other bacteria. To assess whether these same effects are caused by other types of stimuli that bacterial cells encounter in the environment, we examined the effects of bovine serum on the formation and phenotype retention of ampicillin-tolerant persisters in E. coli liquid culture. Bovine serum did indeed exert these effects significantly, and its effects were negated by heat treatment. Similar effects were observed with bovine serum albumin, albeit weaker than those of BS. Given that serum is a component of blood and lymph and is thus a general substance within animal and human bodies, our findings suggest that bacteria encountering these body fluids may enhance their abilities for persister formation and phenotype memory retention to allow their longer survival in antibiotic-containing environments.
Collapse
Affiliation(s)
- Erika Suzuki
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan.,Kozo Keikaku Engineering Inc., Tokyo, Japan
| | - Tomoka Urushidani
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, 630-8506, Japan.
| |
Collapse
|
30
|
Hossain T, Deter HS, Peters EJ, Butzin NC. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B. iScience 2021; 24:102391. [PMID: 33997676 PMCID: PMC8091054 DOI: 10.1016/j.isci.2021.102391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is a growing problem, but bacteria can evade antibiotic treatment via tolerance and persistence. Antibiotic persisters are a small subpopulation of bacteria that tolerate antibiotics due to a physiologically dormant state. Hence, persistence is considered a major contributor to the evolution of antibiotic-resistant and relapsing infections. Here, we used the synthetically developed minimal cell Mycoplasma mycoides JCVI-Syn3B to examine essential mechanisms of antibiotic survival. The minimal cell contains only 473 genes, and most genes are essential. Its reduced complexity helps to reveal hidden phenomenon and fundamental biological principles can be explored because of less redundancy and feedback between systems compared to natural cells. We found that Syn3B evolves antibiotic resistance to different types of antibiotics expeditiously. The minimal cell also tolerates and persists against multiple antibiotics. It contains a few already identified persister-related genes, although lacking many systems previously linked to persistence (e.g. toxin-antitoxin systems, ribosome hibernation genes).
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Heather S. Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Eliza J. Peters
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
31
|
Wicaksono WA, Kusstatscher P, Erschen S, Reisenhofer-Graber T, Grube M, Cernava T, Berg G. Antimicrobial-specific response from resistance gene carriers studied in a natural, highly diverse microbiome. MICROBIOME 2021; 9:29. [PMID: 33504360 PMCID: PMC7841911 DOI: 10.1186/s40168-020-00982-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major threat to public health. Microorganisms equipped with AMR genes are suggested to have partially emerged from natural habitats; however, this hypothesis remains inconclusive so far. To understand the consequences of the introduction of exogenic antimicrobials into natural environments, we exposed lichen thalli of Peltigera polydactylon, which represent defined, highly diverse miniature ecosystems, to clinical (colistin, tetracycline), and non-clinical (glyphosate, alkylpyrazine) antimicrobials. We studied microbiome responses by analysing DNA- and RNA-based amplicon libraries and metagenomic datasets. RESULTS The analyzed samples consisted of the thallus-forming fungus that is associated with cyanobacteria as well as other diverse and abundant bacterial communities (up to 108 16S rRNA gene copies ng-1 DNA) dominated by Alphaproteobacteria and Bacteroidetes. Moreover, the natural resistome of this meta-community encompassed 728 AMR genes spanning 30 antimicrobial classes. Following 10 days of exposure to the selected antimicrobials at four different concentrations (full therapeutic dosage and a gradient of sub-therapeutic dosages), we observed statistically significant, antimicrobial-specific shifts in the structure and function but not in bacterial abundances within the microbiota. We observed a relatively lower response after the exposure to the non-clinical compared to the clinical antimicrobial compounds. Furthermore, we observed specific bacterial responders, e.g., Pseudomonas and Burkholderia to clinical antimicrobials. Interestingly, the main positive responders naturally occur in low proportions in the lichen holobiont. Moreover, metagenomic recovery of the responders' genomes suggested that they are all naturally equipped with specific genetic repertoires that allow them to thrive and bloom when exposed to antimicrobials. Of the responders, Sphingomonas, Pseudomonas, and Methylobacterium showed the highest potential. CONCLUSIONS Antimicrobial exposure resulted in a microbial dysbiosis due to a bloom of naturally low abundant taxa (positive responders) with specific AMR features. Overall, this study provides mechanistic insights into community-level responses of a native microbiota to antimicrobials and suggests novel strategies for AMR prediction and management. Video Abstract.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Sabine Erschen
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
32
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
33
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
34
|
Ross BN, Thiriot JD, Wilson SM, Torres AG. Predicting toxins found in toxin-antitoxin systems with a role in host-induced Burkholderia pseudomallei persistence. Sci Rep 2020; 10:16923. [PMID: 33037311 PMCID: PMC7547725 DOI: 10.1038/s41598-020-73887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei (Bpm) is a bacterial pathogen that causes Melioidosis, a disease with up to 40% mortality and an infection relapse of 15-23% despite antibiotic treatment. Ineffective clearance of Bpm by antibiotics is believed to be due to persistence, a hibernation-like survival mechanism modulated, in part, by toxin-antitoxin systems (TAS). Several organisms possess a repertoire of TASs but defining environmental cues eliciting their activity is hindered by laborious in vitro experiments, especially when there are many toxins with redundant function. Here, we identified which of 103 proteins in Bpm that share features found in toxins of the TAS and repurposed transcriptional data to identify which ones play a role in surviving intracellular host defenses. Putative toxins with the strongest transcriptional response were found to have low conservation between Bpm strains, while toxins that were constitutively expressed were highly conserved. Further examination of highly conserved toxins BPSS0899, BPSS1321, and BPSL1494 showed that they were functional, and their mutation led to reduce survival within macrophages and reduced in vivo persistence-associated pathology (abscesses) during treatment, but did not affect macrophages persistence. These findings highlight the utility of a data-driven approach to select putative toxins and suggests a selective role for some TAS in host survival.
Collapse
Affiliation(s)
- Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joseph D Thiriot
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shane M Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
35
|
Nikolaev YA, Tutel’yan AV, Loiko NG, Buck J, Sidorenko SV, Lazareva I, Gostev V, Manzen’yuk OY, Shemyakin IG, Abramovich RA, Huwyler J, El’-Registan GI. The use of 4-Hexylresorcinol as antibiotic adjuvant. PLoS One 2020; 15:e0239147. [PMID: 32960928 PMCID: PMC7508414 DOI: 10.1371/journal.pone.0239147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Ever decreasing efficiency of antibiotic treatment due to growing antibiotic resistance of pathogenic bacteria is a critical issue in clinical practice. The two generally accepted major approaches to this problem are the search for new antibiotics and the development of antibiotic adjuvants to enhance the antimicrobial activity of known compounds. It was therefore the aim of the present study to test whether alkylresorcinols, a class of phenolic lipids, can be used as adjuvants to potentiate the effect of various classes of antibiotics. Alkylresorcinols were combined with 12 clinically used antibiotics. Growth-inhibiting activity against a broad range of pro- and eukaryotic microorganisms was determined. Test organisms did comprise 10 bacterial and 2 fungal collection strains, including E. coli and S. aureus, and clinical isolates of K. pneumoniae. The highest adjuvant activity was observed in the case of 4-hexylresorcinol (4-HR), a natural compound found in plants with antimicrobial activity. 50% of the minimal inhibitory concentration (MIC) of 4-HR caused an up to 50-fold decrease in the MIC of antibiotics of various classes. Application of 4-HR as an adjuvant revealed its efficiency against germination of bacterial dormant forms (spores) and prevented formation of antibiotic-tolerant persister cells. Using an in vivo mouse model of K. pneumoniae-induced sepsis, we could demonstrate that the combination of 4-HR and polymyxin was highly effective. 75% of animals were free of infection after treatment as compared to none of the animals receiving the antibiotic alone. We conclude that alkylresorcinols such as 4-HR can be used as an adjuvant to increase the efficiency of several known antibiotics. We suggest that by this approach the risk for development of genetically determined antibiotic resistance can be minimized due to the multimodal mode of action of 4-HR.
Collapse
Affiliation(s)
- Y. A. Nikolaev
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Tutel’yan
- Central Research Institute of Epidemiology of Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor) and I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - N. G. Loiko
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow, Russia
| | - J. Buck
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - S. V. Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- I.I. Mechnikov North Western State Medical University, St Petersburg, Russia
| | - I. Lazareva
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- I.I. Mechnikov North Western State Medical University, St Petersburg, Russia
| | - V. Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- I.I. Mechnikov North Western State Medical University, St Petersburg, Russia
| | - O. Y. Manzen’yuk
- State Research Center for Applied Microbiology and Biotechnology of Russian Federal Service for Surveillance on Consumer Rights Protection and Human Welfare (Rospotrebnadzor), Obolensk, Russia
| | - I. G. Shemyakin
- State Research Center for Applied Microbiology and Biotechnology of Russian Federal Service for Surveillance on Consumer Rights Protection and Human Welfare (Rospotrebnadzor), Obolensk, Russia
| | - R. A. Abramovich
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - J. Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - G. I. El’-Registan
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
37
|
Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. mSystems 2020; 5:e00317-20. [PMID: 32723789 PMCID: PMC7394352 DOI: 10.1128/msystems.00317-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary composition and antibiotic use have major impacts on the structure and function of the gut microbiome, often resulting in dysbiosis. Despite this, little research has been done to explore the role of host diet as a determinant of antibiotic-induced microbiome disruption. Here, we utilize a multi-omic approach to characterize the impact of Western-style diet consumption on ciprofloxacin-induced changes to gut microbiome structure and transcriptional activity. We found that Western diet consumption dramatically increased Bacteroides abundances and shifted the community toward the metabolism of simple sugars and mucus glycoproteins. Mice consuming a Western-style diet experienced a greater expansion of Firmicutes following ciprofloxacin treatment than those eating a control diet. Transcriptionally, we found that ciprofloxacin reduced the abundance of tricarboxylic acid (TCA) cycle transcripts on both diets, suggesting that carbon metabolism plays a key role in the response of the gut microbiome to this antibiotic. Despite this, we observed extensive diet-dependent differences in the impact of ciprofloxacin on microbiota function. In particular, at the whole-community level we detected an increase in starch degradation, glycolysis, and pyruvate fermentation following antibiotic treatment in mice on the Western diet, which we did not observe in mice on the control diet. Similarly, we observed diet-specific changes in the transcriptional activity of two important commensal bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron, involving diverse cellular processes such as nutrient acquisition, stress responses, and capsular polysaccharide (CPS) biosynthesis. These findings demonstrate that host diet plays a role in determining the impacts of ciprofloxacin on microbiome composition and microbiome function.IMPORTANCE Due to the growing incidence of disorders related to antibiotic-induced dysbiosis, it is essential to determine how our "Western"-style diet impacts the response of the microbiome to antibiotics. While diet and antibiotics have profound impacts on gut microbiome composition, little work has been done to examine their combined effects. Previous work has shown that nutrient availability, influenced by diet, plays an important role in determining the extent of antibiotic-induced disruption to the gut microbiome. Thus, we hypothesize that the Western diet will shift microbiota metabolism toward simple sugar and mucus degradation and away from polysaccharide utilization. Because of bacterial metabolism's critical role in antibiotic susceptibility, this change in baseline metabolism will impact how the structure and function of the microbiome are impacted by ciprofloxacin exposure. Understanding how diet modulates antibiotic-induced microbiome disruption will allow for the development of dietary interventions that can alleviate many of the microbiome-dependent complications of antibiotic treatment.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
38
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
39
|
Hathroubi S, Zerebinski J, Clarke A, Ottemann KM. Helicobacter pylori Biofilm Confers Antibiotic Tolerance in Part via A Protein-Dependent Mechanism. Antibiotics (Basel) 2020; 9:E355. [PMID: 32599828 PMCID: PMC7345196 DOI: 10.3390/antibiotics9060355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori, a WHO class I carcinogen, is one of the most successful human pathogens colonizing the stomach of over 4.4 billion of the world's population. Antibiotic therapy represents the best solution but poor response rates have hampered the elimination of H. pylori. A growing body of evidence suggests that H. pylori forms biofilms, but the role of this growth mode in infection remains elusive. Here, we demonstrate that H. pylori cells within a biofilm are tolerant to multiple antibiotics in a manner that depends partially on extracellular proteins. Biofilm-forming cells were tolerant to multiple antibiotics that target distinct pathways, including amoxicillin, clarithromycin, and tetracycline. Furthermore, this tolerance was significantly dampened following proteinase K treatment. These data suggest that H. pylori adapts its phenotype during biofilm growth resulting in decreased antibiotic susceptibility but this tolerance can be partially ameliorated by extracellular protease treatment.
Collapse
Affiliation(s)
- Skander Hathroubi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Julia Zerebinski
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Aaron Clarke
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Karen M. Ottemann
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| |
Collapse
|
40
|
Shang Y, Wang X, Chen Z, Lyu Z, Lin Z, Zheng J, Wu Y, Deng Q, Yu Z, Zhang Y, Qu D. Staphylococcus aureus PhoU Homologs Regulate Persister Formation and Virulence. Front Microbiol 2020; 11:865. [PMID: 32670206 PMCID: PMC7326077 DOI: 10.3389/fmicb.2020.00865] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
PhoU homologs are one of the determinant factors in the regulation of persister formation and phosphate metabolism in many bacterial species; however, the functions of PhoU homologs exhibit species-specific characteristics. The pathogenesis of Staphylococcus aureus is closely correlated with persister formation and virulence factors. The functions of two PhoU homologs, PhoU1 and PhoU2, in S. aureus are unclear yet. In this study, single- and double-deletion mutants of phoU1 and phoU2 were generated in strain USA500 2395. The ΔphoU1 or ΔphoU2 mutants displayed a change in persister formation and virulence compared to the parent strain; the persisters to vancomycin and levofloxacin were decreased at least 1,000-fold, and the number of intracellular bacteria surviving in the A549 cells for 24 h decreased to 82 or 85%. The α-hemolysin expression and activity were increased in the ΔphoU2 mutants. Transcriptome analysis revealed that 573 or 285 genes were differentially expressed by at least 2.0-fold in the ΔphoU1 or ΔphoU2 mutant vs. the wild type. Genes involved in carbon and pyruvate metabolism were up-regulated, and virulence genes and virulence regulatory genes were down-regulated, including type VII secretion system, serine protease, leukocidin, global regulator (sarA, rot), and the two-component signal transduction system (saeS). Correspondingly, the deletion of the phoU1 or phoU2 resulted in increased levels of intracellular pyruvate and ATP. Deletion of the phoU2, but not the phoU1, resulted in the up-regulation of inorganic phosphate transport genes and increased levels of intracellular inorganic polyphosphate. In conclusion, both PhoU1 and PhoU2 in S. aureus regulate virulence by the down-regulation of multiple virulence factors (type VII secretion system, serine protease, and leucocidin) and the persister generation by hyperactive carbon metabolism accompanied by increasing intracellular ATP. The results in S. aureus are different from what we have previously found in Staphylococcus epidermis, where only PhoU2 regulates biofilm and persister formation. The different functions of PhoU homologs between the two species of Staphylococcus warrant further investigation.
Collapse
Affiliation(s)
- Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihui Lyu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Gollan B, Grabe G, Michaux C, Helaine S. Bacterial Persisters and Infection: Past, Present, and Progressing. Annu Rev Microbiol 2020; 73:359-385. [PMID: 31500532 DOI: 10.1146/annurev-micro-020518-115650] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Persisters are nongrowing, transiently antibiotic-tolerant bacteria within a clonal population of otherwise susceptible cells. Their formation is triggered by environmental cues and involves the main bacterial stress response pathways that allow persisters to survive many harsh conditions, including antibiotic exposure. During infection, bacterial pathogens are exposed to a vast array of stresses in the host and form nongrowing persisters that survive both antibiotics and host immune responses, thereby most likely contributing to the relapse of many infections. While antibiotic persisters have been extensively studied over the last decade, the bulk of the work has focused on how these bacteria survive exposure to drugs in vitro. The ability of persisters to survive their interaction with a host is important yet underinvestigated. In order to tackle the problem of persistence of infections that contribute to the worldwide antibiotic resistance crisis, efforts should be made by scientific communities to understand and merge these two fields of research: antibiotic persisters and host-pathogen interactions. Here we give an overview of the history of the field of antibiotic persistence, report evidence for the importance of persisters in infection, and highlight studies that bridge the two areas.
Collapse
Affiliation(s)
- Bridget Gollan
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Grzegorz Grabe
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Charlotte Michaux
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Sophie Helaine
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| |
Collapse
|
42
|
Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh P. Compounding Effects of Climate Warming and Antibiotic Resistance. iScience 2020; 23:101024. [PMID: 32299057 PMCID: PMC7160571 DOI: 10.1016/j.isci.2020.101024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance. This review examines these links by synthesizing results from laboratories, hospitals, and environmental studies. First, we describe the transient physiological responses to temperature that alter cellular behavior and lead to antibiotic tolerance and persistence. Second, we focus on the link between thermal stress and the evolution and maintenance of antibiotic resistance mutations. Finally, we explore how local and global changes in temperature are associated with increases in antibiotic resistance and its spread. We suggest that a multidisciplinary, multiscale approach is critical to fully understand how temperature changes are contributing to the antibiotic crisis.
Collapse
Affiliation(s)
| | - Natalie Lozano-Huntelman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mauricio Cruz-Loya
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Van Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
43
|
Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD, Li H, Belenky P. Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metab 2019; 30:800-823.e7. [PMID: 31523007 PMCID: PMC6948150 DOI: 10.1016/j.cmet.2019.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome. We found that antibiotics significantly alter the expression of key metabolic pathways at the whole-community and single-species levels. Notably, Bacteroides thetaiotaomicron, which blooms in response to amoxicillin, upregulated polysaccharide utilization. In vitro, we found that the sensitivity of this bacterium to amoxicillin was elevated by glucose and reduced by polysaccharides. Accordingly, we observed that dietary composition affected the abundance and expansion of B. thetaiotaomicron, as well as the extent of microbiome disruption with amoxicillin. Our work indicates that the metabolic environment of the microbiome plays a role in the response of this community to antibiotics.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Elizabeth M Reinhart
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - August Guang
- Center for Computation & Visualization, Brown University, Brown University, Providence, RI 02906, USA; Center for Computational Biology of Human Disease, Brown University, Providence, RI 02906, USA
| | - William H Sano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
44
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
Paranjape SS, Shashidhar R. Comparison of Starvation-Induced Persister Cells with Antibiotic-Induced Persister Cells. Curr Microbiol 2019; 76:1495-1502. [PMID: 31555855 DOI: 10.1007/s00284-019-01777-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
The phenotypic heterogeneity in a large population arises because of fluctuation in microenvironments and stochastic gene expressions. In this report, we isolated two types of persistent sub-populations of Vibrio cholerae, one triggered by starvation and another by antibiotics. We characterised starvation-induced (E-cells) and antibiotic-induced (P-cell) persister cells for stress tolerance, colony morphology and toxin gene expressions. Both the sub-populations differ with respect to morphology, temperature tolerance and oxidative stress tolerance. The E-cells were smaller than the P-cells and formed tiny colonies (1-2 mm). The E-cells were more sensitive to heat and oxidative stress compared with P-cells. The up-regulated genes of P-cells include, genes of antioxidant enzymes (>5 fold), cholera toxin (>26 fold) and toxin: antitoxin protein hipA (>100 fold). Upon nutrient up-shift, the E-cells recovered after lag time of 6 h. However, such lag extension was not visible during P-cell recovery, suggesting that P-cell physiology is more akin to normal cells than E-cells. This is the first comparative report on the two different persister sub-populations of V. cholerae. The E-cells and P-cells are similar regarding antibiotic tolerance. However, the sub-populations differ significantly in stress tolerance and other phenotypes studied.
Collapse
Affiliation(s)
- Shridhar S Paranjape
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (Deemed To Be University), Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India. .,Life Sciences, Homi Bhabha National Institute (Deemed To Be University), Mumbai, 400094, India.
| |
Collapse
|
46
|
Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins (Basel) 2019; 11:toxins11090535. [PMID: 31540335 PMCID: PMC6783909 DOI: 10.3390/toxins11090535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
The detection of borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a challenge to both, veterinary and human laboratories. Between 2015 and 2017, 19 equine S. aureus with elevated minimal inhibitory concentrations for oxacillin were detected in routine diagnostics. The aim of this study was to characterize these isolates to identify factors possibly associated with the BORSA phenotype. All S. aureus were subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). A quantifiable β-lactamase activity assay was performed for a representative subset of 13 isolates. The WGS data analysis of the 19 BORSA isolates identified two different genomic lineages, sequence type (ST) 1 and ST1660. The core genome multilocus sequence typing (cgMLST) revealed a close relatedness of all isolates belonging to either ST1 or ST1660. The WGS analysis identified the resistance genes aadD, dfrG, tet(L), and/or blaZ and aacA-aphD. Phenotypic resistance to penicillins, aminoglycosides, tetracyclines, fluoroquinolones and sulfamethoxazole/trimethoprim was observed in the respective isolates. For the penicillin-binding proteins 1-4, amino acid substitutions were predicted using WGS data. Since neither transglycosylase nor transpeptidase domains were affected, these alterations might not explain the BORSA phenotype. Moreover, β-lactamase activity was found to be associated with an inducible blaZ gene. The lineage-specific differences regarding the expression profiles were noted.
Collapse
|
47
|
Pace LR, Harrison ZL, Brown MN, Haggard WO, Jennings JA. Characterization and Antibiofilm Activity of Mannitol-Chitosan-Blended Paste for Local Antibiotic Delivery System. Mar Drugs 2019; 17:md17090517. [PMID: 31480687 PMCID: PMC6780707 DOI: 10.3390/md17090517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mannitol, a polyalcohol bacterial metabolite, has been shown to activate dormant persister cells within bacterial biofilm. This study sought to evaluate an injectable blend of mannitol, chitosan, and polyethylene glycol for delivery of antibiotics and mannitol for eradication of Staphylococcal biofilm. Mannitol blends were injectable and had decreased dissociation and degradation in the enzyme lysozyme compared to blends without mannitol. Vancomycin and amikacin eluted in a burst response, with active concentrations extended to seven days compared to five days for blends without mannitol. Mannitol eluted from the paste in a burst the first day and continued through Day 4. Eluates from the mannitol pastes with and without antibiotics decreased viability of established S. aureus biofilm by up to 95.5% compared to blends without mannitol, which only decreased biofilm when loaded with antibiotics. Cytocompatibility tests indicated no adverse effects on viability of fibroblasts. In vivo evaluation of inflammatory response revealed mannitol blends scored within the 2–4 range at Week 1 (2.6 ± 1.1) and at Week 4 (3.0 ± 0.8), indicative of moderate inflammation and comparable to non-mannitol pastes (p = 0.065). Clinically, this paste could be loaded with clinician-selected antibiotics and used as an adjunctive therapy for musculoskeletal infection prevention and treatment.
Collapse
Affiliation(s)
- Leslie R Pace
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Zoe L Harrison
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Madison N Brown
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Warren O Haggard
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - J Amber Jennings
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
48
|
Wang L, Zhu Z, Qian H, Li Y, Chen Y, Ma P, Gu B. Comparative genome analysis of 15 clinical Shigella flexneri strains regarding virulence and antibiotic resistance. AIMS Microbiol 2019; 5:205-222. [PMID: 31663057 PMCID: PMC6787350 DOI: 10.3934/microbiol.2019.3.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
Shigellosis is the major cause of dysentery globally. It is mainly attributed to two Shigella species, Shigella sonnei and Shigella flexneri, which leads to approximately 165 million infections and 1.1 million deaths each year. Rapid increase and widening of spectrum in antibiotics resistance make Shigella hard to be adequately controlled through existing prevention and treatment measures. It has also been observed that enhanced virulence and advent of antibiotic resistance (AR) could arise almost simultaneously. However, genetic linkages between the two factors are missing or largely ignored, which hinders experimental verification of the relationship. In this study, we sequenced 15 clinically isolated S. flexneri strains. Genome assembly, annotation and comparison were performed through routine pipelines. Differential resistant profiles of all 15 S. flexneri strains to nine antibiotics were experimentally verified. Virulence factors (VFs) belonging to 4 categories and 31 functional groups from the Virulence Factor Database (VFDB) were used to screen all Shigella translated CDSs. Distribution patterns of virulence factors were analysed by correlating with the profiles of bacterial antibiotics resistance. In addition, multi-resistant S. flexneri strains were compared with antibiotic-sensitive strains by focusing on the abundance or scarcity of specific groups of VFs. By doing these, a clear view of the relationships between virulence factors and antibiotics resistance in Shigella could be achieved, which not only provides a set of genetic evidence to support the interactions between VFs and AR but could also be used as a guidance for further verification of the relationships through manipulating specific groups of virulence factors.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| | - Zuobin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huimin Qian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Ying Li
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Chen
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
49
|
Salmonella enterica persister cells form unstable small colony variants after in vitro exposure to ciprofloxacin. Sci Rep 2019; 9:7232. [PMID: 31076596 PMCID: PMC6510897 DOI: 10.1038/s41598-019-43631-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/27/2019] [Indexed: 01/12/2023] Open
Abstract
Persistence phenotype and small colony variants (SCVs) can be part of a bacterial bet-hedging strategy for survival under environmental stresses, such as antimicrobial exposure. These phenotypes are of particular concern in persistent and relapsing infections, since cells resume to normal growth after cessation of the stressful condition. In this context, we found persisters and unstable SCVs as phenotypic variants of Salmonella enterica that were able to survive ciprofloxacin exposure. A high heterogeneity in persister levels was observed among S. enterica isolates grown under planktonic and biofilm conditions and exposed to ciprofloxacin or ceftazidime, which may indicate persistence as a non-multidrug-tolerant phenotype. Nevertheless, a comparable variability was not found in the formation of SCVs among the isolates. Indeed, similar proportions of SCV in relation to normal colony phenotype (NCP) were maintained even after three successive cycles of ciprofloxacin exposure testing colonies from both origins (SCV or NCP). Additionally, we found filamentous and dividing cells in the same scanning electron microscopy images from both SCV and NCP. These findings lead us to hypothesize that besides variability among isolates, a single isolate may generate distinct populations of persisters, where cells growing under distinct conditions may adopt different and perhaps complementary survival strategies.
Collapse
|
50
|
Alford MA, Pletzer D, Hancock RE. Dismantling the bacterial virulence program. Microb Biotechnol 2019; 12:409-413. [PMID: 30864265 PMCID: PMC6465231 DOI: 10.1111/1751-7915.13388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the face of rising antimicrobial resistance, there is an urgent need for the development of efficient and effective anti-infective compounds. Adaptive resistance, a reversible bacterial phenotype characterized by the ability to surmount antibiotic challenge without mutation, is triggered to cope in situ with several stressors and is very common clinically. Thus, it is important to target stress-response effectors that contribute to in vivo adaptations and associated lifestyles such as biofilm formation. Interfering with these proteins should provide a means of dismantling bacterial virulence for treating infectious diseases, in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Robert E.W. Hancock
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|