1
|
Ismael M, Juliah K, Edwin M. Antimicrobial and Potent Anti-Biofilm Properties of Rationally Designed α-Helix Antimicrobial Peptides. J Pept Sci 2025; 31:e70027. [PMID: 40326595 DOI: 10.1002/psc.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The antimicrobial resistance (AMR) crisis represents a significant global threat. Unlike traditional antibiotics, antimicrobial peptides offer a promising pathway because of their primary mechanisms. This study aimed to evaluate and rationally design novel AMPs based on tobacco nectar's AMP (Pep 6) to combat antibiotic resistance issues. Substitution and truncation of some amino acids were applied. Four peptides, KF19, KF16, LK16, and LR16, were designed with enhanced net charge hydrophobicity. They were evaluated for their in vitro antibacterial activity. However, only promising AMPs were further evaluated for their hemolytic activity, time-killing kinetics, mode of action, and anti-biofilm properties. The results showed that only KF19 and LR16 have potent activity against Staphylococcus aureus ATCC25923 and resistant isolates with MIC values from 7.81 to 15.62 μg/mL. Hemolysis ratios were 2.38% and 2.24% at 125 μg/mL for KF19 and LR16, respectively. Both peptides were able to kill S. aureus ATCC25923 within 2 h. SEM results showed their ability to target the cell membrane. Both peptides destroyed the S. aureus biofilms significantly at 62.5 and 125 μg/mL (**p < 0.01, ***p < 0.001, ****p < 0.0001). This study supported rational design in developing new antibacterial agents and demonstrated the therapeutic potency of novel peptides that could solve the resistance issues.
Collapse
Affiliation(s)
- Motasim Ismael
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
| | - Khayeli Juliah
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Madivoli Edwin
- Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Fahad Alharbi LN, Rehman S, Azmi S, Alamri A, Alnimr A, Ansari MA. Novel circular antimicrobial peptides to combat a critical listed bacterial pathogen multi drug resistant Acinetobacter baumannii. Microb Pathog 2025; 203:107448. [PMID: 40049251 DOI: 10.1016/j.micpath.2025.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Acinetobacter baumannii, acritical nosocomial pathogen, is one of the leading causes of human mortality, globally. The extraordinary genetic plasticity of A. baumannii leads to a high propensity antimicrobial resistance trait that demands urgent attention for alternative therapeutics. The current study involves synthesis and purification of two synthetic antimicrobial peptides, i.e., Cyclized melittin (CMEL) and its analog CMEL-M1, to investigate their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and mechanism of action on the ultrastructural alteration using scanning and transmission electron microscopy (SEM/TEM) against the clinical strains of multidrug-resistant A. baumannii. Mass spectrometry and Kaiser test was employed to assess the effect of cyclization and substitution of polar amino acids with basic amino acids, that created cyclic melittin and its analogue replacing threonine with arginine and lysine. By using broth dilution method, CMEL-M1 demonstrated 70 % strains had MIC value of 31.25 μg/mL, while in case of CMEL, only 20 % isolates exhibited MIC value of 31.25 μg/mL which suggested that CMEL-M1 is significantly effective against MDR- A. baumannii. Action mechanism of synthetic peptides using SEM/TEM depicted the altered cellular morphology leading to the disruption of membranes and the impairment of essential A. baumannii cellular functions. Hence, present findings clearly indicate the potential of CMEL and CMEL-M1 as therapeutic agents for the management of MDR- A. baumannii infections.
Collapse
Affiliation(s)
- Lina Naif Fahad Alharbi
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Sarfuddin Azmi
- Research Scientist, Scientific Research Center, Prince Sultan Military Medical City, Sulaimaniyah, Riyadh, 11159, Saudi Arabia.
| | - Aisha Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Amani Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
3
|
V V A, S N, P P A, M V A, K A, S Mohan A, M R R, Kesavan D, Philip R. Insights into the antifungal properties and modes of action of a recombinant hepcidin, rAd-Hep from the shrimp scad, Alepes djedaba (Forsskål, 1775). Microb Pathog 2025; 203:107518. [PMID: 40164398 DOI: 10.1016/j.micpath.2025.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Antimicrobial peptides are short, mostly cationic and amphipathic molecules crucial for host defence. Among these, hepcidins are a family of cysteine rich peptides, with HAMP1 hepcidins playing a dual role in iron metabolism and antimicrobial defense. Recently, recombinantly produced Alepes djedaba hepcidin, rAd-Hep was characterized and its antibacterial potential against various pathogens have been discerned. Herein, we investigated the antifungal nature and modes of action of rAd-Hep against some fungal pathogens. The peptide was found to be active against both filamentous fungi and yeasts viz., Aspergillus flavus, Aspergillus sydowii, Fusarium solani, Penicillium citrinum, Candida albicans and Saccharomyces cerevisiae. The peptide acted via membrane permeabilization creating pores of ∼0.7-1.4 nm radii, ROS generation, chromatin condensation and DNA binding. The recombinant hepcidin, rAd-Hep can be considered as a promising candidate for future endeavors in antifungal therapies.
Collapse
Affiliation(s)
- Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India; Department of Zoology, St. Albert's College, Kochi, Kerala, 682018, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Anjali S Mohan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Revathy M R
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Dhanya Kesavan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
4
|
Hou D, Zhao J, Guo M, Zhang X, Yu S, Li J, Forouzanfar T, Zhang Q, Pathak JL. Data-Driven Visualization of the Dynamics of Antimicrobial Peptides in Cell Death. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10578-3. [PMID: 40434503 DOI: 10.1007/s12602-025-10578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
This study explores the current status, research hotspots, and emerging trends in AMP-induced cell death through bibliometric and data-driven visual analysis. The findings aim to provide researchers and clinical professionals with new insights and potential research directions. A total of 1,897 articles and reviews published between 2006 and 2024 were retrieved from the Web of Science Core Collection. Bibliometric and visual analyses were conducted using CiteSpace, VOSviewer, Scimago Graphica, Origin 2022, and WordClouds. The analysis focused on publication trends, contributing institutions, journals, authors, cited references, and keywords. China contributed the largest share of publications (28.15%). The Chinese Academy of Sciences emerged as the most collaborative institution, demonstrating the highest centrality. The author with the highest composite index was Chen, Jyh-Yih (2,985.27). Recent research hotspots have centered on elucidating the mechanisms of AMP-induced cell death and exploring the potential applications of AMPs in cancer therapy. Keywords such as anticancer peptides, mechanism, design, and antibiotic resistance currently dominate the field, reflecting its evolving focus. Research on the application of AMPs in cancer treatment is gaining momentum. The forefront of this field involves modifying and designing AMPs to address antibiotic-resistant bacterial infections and advance cancer therapeutics. However, further investigation is needed to uncover the specific molecular mechanisms underlying AMP-induced cell death, including necrosis, pyroptosis, and ferroptosis.
Collapse
Affiliation(s)
- Dan Hou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
- Department of Oral and Maxillofacial Surgery/Oral Pathology, UMC and Academic Centre for Dentistry Amsterdam (ACTA), Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, The Netherlands
| | - Jiatong Zhao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Mingshi Guo
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xinran Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Shuiqing Yu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Jiayue Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, UMC and Academic Centre for Dentistry Amsterdam (ACTA), Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 51081 BT, Amsterdam, The Netherlands.
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
5
|
Yao Y, Zhang D, Fan H, Wu T, Su Y, Bin Y. Prediction of Chemically Modified Antimicrobial Peptides and Their Sub-functional Activities Using Hybrid Features. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10575-6. [PMID: 40397268 DOI: 10.1007/s12602-025-10575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Antimicrobial peptides (AMPs) demonstrate a broad spectrum of activities against various pathogens, thereby offering a promising strategy to mitigate the urgent challenge of antimicrobial resistance. Recent studies indicate that chemically modified AMPs (cmAMPs), which contain chemically modified amino acids, have the potential to alleviate the adverse effects commonly associated with conventional AMPs. Nevertheless, there remains a notable deficiency in computational methods specifically designed for the analysis and prediction of cmAMPs and their sub-function predictions. In this study, we proposed a two-layer model, termed as iCMAMP, aimed for the identification of cmAMPs and their sub-functional activities. The first layer, referred to as iCMAMP-1L, integrates three categories encompassing seven distinct groups of features, in conjunction with an ensemble method designed at enhancing predictive accuracy for cmAMPs. This ensemble approach effectively extracts relevant insights from a heterogeneous array of features sets while addressing potential dimensionality challenges. On the test dataset, iCMAMP-1L achieved an ACC of 0.934 and an MCC of 0.868, representing improvements of 3.4% and 6.8%, respectively, over AntiMPmod, which is the sole existing method for predicting cmAMPs. A comparative analysis between cmAMPs and their corresponding AMPs revealed that chemical modifications can significantly reduce hemolysis and toxicity associated with AMPs, while the functional characteristics of the peptides are primarily determined by their sequences. The second layer of our model, designated as iCMAMP-2L, employed a multi-label classification approach to predict the sub-functional activities of cmAMPs, with a specific focus on the dipeptide composition-based features. On the test dataset, iCMAMP-2L achieved an Accuracy of 0.390 and an Absolute true of 0.621. The data and Python code used in the iCMAMP model are available at https://github.com/swicher123/iCMAMP/tree/master .
Collapse
Affiliation(s)
- Yujie Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Daijun Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Henghui Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Ting Wu
- Department of Infectious Diseases & Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Institute of Bacterial Resistance & Anhui Center for Surveillance of Bacterial Resistance, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Yansen Su
- School of Artificial Intelligence, Anhui University, Hefei, 230601, Anhui, China.
| | - Yannan Bin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Zhao DW, Lohans CT. Combatting Pseudomonas aeruginosa with β-Lactam Antibiotics: A Revived Weapon? Antibiotics (Basel) 2025; 14:526. [PMID: 40426592 PMCID: PMC12108352 DOI: 10.3390/antibiotics14050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Pseudomonas aeruginosa is a significant threat to public health as an aggressive, opportunistic pathogen. The use of β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems remains a front-line treatment against P. aeruginosa. However, the widespread use of β-lactams has led to the emergence of β-lactam-resistant isolates that significantly increase the economic burden and risk of mortality in patients. With the declining productivity of the antibiotic discovery pipeline, research has investigated synergistic agents to revive the use of β-lactam antibiotics against β-lactam-resistant P. aeruginosa. In this review, we summarize the mechanism of β-lactam antibiotics and provide an overview of major mechanisms associated with β-lactam resistance in P. aeruginosa. We then describe the background and use of three promising classes of agents that have shown extensive beneficial effects with β-lactam antibiotics against P. aeruginosa, namely β-lactamase inhibitors, bacteriophages, and antimicrobial peptides. The current understanding of the mechanisms of these synergistic agents is discussed. Lastly, we provide an overview of the current barriers impeding antibiotic development, and offer a glimpse into recent advances of artificial intelligence-based discovery that may serve as a new foundation for antimicrobial discovery and treatment.
Collapse
Affiliation(s)
| | - Christopher T. Lohans
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
7
|
Sarkar T, Rajalakshmi VS, K R R, Thummer RP, Chatterjee S. Serum-Stable, Cationic, α-Helical AMPs to Combat Infections of ESKAPE Pathogens and C. albicans. ACS APPLIED BIO MATERIALS 2025; 8:3941-3957. [PMID: 40305093 DOI: 10.1021/acsabm.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Expedition in the rate of development of antimicrobial resistance accompanied by the slowdown in the development of new antimicrobials has led to a dire necessity to develop an alternate class of antimicrobial agents. Antimicrobial peptides (AMPs), available in nature, are effective molecules that can combat microbial infections. However, due to several inherent shortcomings such as salt sensitivity of their potency, short systemic half-lives owing to protease and serum degradation, and cytotoxicity, their commercial success is limited. Inspired by α helical AMPs present in nature, here in this work, we have developed two short, cationic, helical AMPs RR-12 and FL-13. Both peptides exhibited high broad-spectrum antimicrobial activity, salt tolerance, prompt bactericidal activity, considerable serum stability, remaining non-cytotoxic and non-hemolytic at relevant microbicidal concentrations. The designed AMPs were membranolytic toward the microbial strains, though there were subtle differences in the mechanism owing to the variation in the composition of the cell membranes in different microbes. Rigorous experimental techniques and molecular dynamics (MD) simulations were performed to understand the structure, activity, and their mechanisms in detail. Positive charge, balanced hydrophobicity-hydrophilicity, and helical conformation were the different attributes that led to the development of the superior performance of the AMPs, making them valuable additions to the repertoire of therapeutically promising antimicrobials.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | | | - Ronima K R
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | - Rajkumar P Thummer
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
8
|
García-Navarro L, Serna-Duque JA, Cuesta A, Esteban MÁ. Novel hepcidin genes in gilthead seabream: Implications for immune response and iron metabolism. Microb Pathog 2025; 205:107695. [PMID: 40373941 DOI: 10.1016/j.micpath.2025.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Antimicrobial peptides (AMPs) are highly conserved small molecules present in various organisms, including fish. In gilthead seabream (Sparus aurata), one hamp1 and 15 hamp2 genes have been identified. This study aimed to characterize two novel hamp2 genes, hamp2.0 and hamp2.15, located on chromosome 17 of the gilthead seabream genome. Evolutionary analysis revealed that orthologs of both genes first appeared in the Clupeocephala clade 229 million years ago. In silico analysis predicted that the mature peptides, Hamp2α and Hamp2Ω, possess antimicrobial properties. Both peptides exhibited bactericidal activity against Vibrio harveyi, with Hamp2α showing concentration-dependent inhibition and Hamp2Ω demonstrating time-dependent inhibition. Neither peptide displayed cytotoxicity against SAF-1 cells; instead, they promoted cell proliferation. Basal expression of both genes was observed in all tissues analyzed, with the highest levels in liver and gonad. In head kidney leucocytes (HKLs), expression of both genes increased upon stimulation with lypopolysaccharide, poly I:C, nodavirus, or V. anguillarum. In vivo, hamp2.0 expression significantly increased in various tissues of V. harveyi-infected fish, while hamp2.15 expression increased in liver, spleen, head kidney, skin, and brain. In nodavirus-infected fish, hamp2.15 expression decreased in head kidney and brain. Finally, both genes showed significantly increased expression in head kidney and liver 72 h post-iron dextran injection. These findings suggest that the two novel hamp2 genes in gilthead seabream play a role in the immune response to bacterial and viral infections and may be involved in iron metabolism regulation.
Collapse
Affiliation(s)
- Laura García-Navarro
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Angelova N, Iliev I, Nemska V, Dzimbova T, Georgieva N, Danalev D, Naydenova E. Design, Synthesis, and Biological Evaluation of New Analogs of Aurein 1.2 Containing Non-Proteinogenic Amino Acids. Molecules 2025; 30:2050. [PMID: 40363855 PMCID: PMC12074479 DOI: 10.3390/molecules30092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. To combat this challenge, researchers have turned to the antimicrobial peptides (AMPs). Aurein 1.2 (GLFDIIKKIAESF-NH2) was demonstrated to have broad spectrum bi-functionality against bacterial and cancer cells. The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of new analogs of aurein 1.2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. The antibacterial activity was estimated against Gram-positive and Gram-negative bacteria using broth microdilution method in concentrations from 0 to 320 µg/mL to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The antiproliferative activity test shows that the peptide analog EH [Orn]8 has the highest activity (IC50 = 44 ± 38 μM) for the three cell lines studied (MCF-12F, MCF-7, and MDA-MB-231). The same compound exhibited good antimicrobial activity. The obtained results reveal that replacement of Lys with non-proteinogenic amino acids can increase both the potency and activity spectra of natural template peptides, making them suitable candidates for new drug development.
Collapse
Affiliation(s)
- Nora Angelova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria;
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Veronica Nemska
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Tatyana Dzimbova
- Department Sport, Faculty of Public Health, Health Care and Sport, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Dancho Danalev
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (V.N.); (N.G.); (D.D.)
| | - Emilia Naydenova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria;
| |
Collapse
|
10
|
Laguera B, Golden MM, Wang F, Gnewou O, Tuachi A, Egelman EH, Wuest WM, Conticello VP. Amphipathic Antimicrobial Peptides Illuminate a Reciprocal Relationship Between Self-assembly and Cytolytic Activity. Angew Chem Int Ed Engl 2025; 64:e202500040. [PMID: 40073424 DOI: 10.1002/anie.202500040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Amphipathic character, encoded within the polar sequence patterns of antimicrobial peptides, is a critical structural feature that influences membrane disruptive behavior. Similarly, polar sequence patterns induce self-assembly of amphipathic peptides, which results in the formation of ordered supramolecular structures. The relationship between self-assembly and membrane activity remains an open question of relevance for the development of effective antimicrobial peptides. Here, we report the structural investigation of a class of lytic peptides that self-assemble into filamentous nanomaterials. CryoEM analysis was employed to determine the structure of one of the filaments, which revealed that the peptides are self-assembled into a bilayer nanotube, in which the interaction between layers of amphipathic α-helices was mediated through hydrophobic interactions. The relative stability of the filament peptide assemblies depended on the influence of sequence modifications on the helical conformation. Antimicrobial assays indicated that cytolytic activity was associated with dynamic disassociation of the filamentous assemblies under the assay conditions. Structural modifications of the peptides that stabilized the filaments abrogated lytic activity. These results illuminate a reciprocal relationship between self-assembly and antimicrobial activity in this class of amphipathic peptides and that reversible assembly was critical for the observation of biological activity.
Collapse
Affiliation(s)
- Breana Laguera
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Martina M Golden
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Fengbin Wang
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
11
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
12
|
Turgut BA, Örtücü S, Bezirganoğlu İ. Gene expression and characterization of an antimicrobial peptide from Medicago sativa "Sazova" cultivar. Biochem Biophys Res Commun 2025; 757:151617. [PMID: 40096787 DOI: 10.1016/j.bbrc.2025.151617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
In recent years, the discovery of new antimicrobial agents has become necessary because of the increase in antibiotic resistance, the development of herbicides and fungicides resistance. Among the antimicrobial agents, antimicrobial peptides (AMPs) stand out due to their stable structure. In this study, the aim was to identify a thermostable AMP from the seeds of M. sativa "Sazova" cultivar and to analyze gene expression during germination. Antimicrobial tests were performed for the seed peptides after heat treatment (85 °C for 10 min), revealing antimicrobial effects against S. aureus, E. coli, and C. albicans. Subsequently, the peptide band corresponding to the inhibition zone was identified as M. sativa Defensin 2.1 (MsDef2.1, MW: 5.2048 kDa). The gene expression analysis of MsDef2.1 in Sazova cultivar showed that the gene was expressed different plant organs, and the expression was decreased over time. As a result of the gene analysis of two cultivars (Sazova and LegenDairy) it was found that there are 5 base differences in the coding sequence and 3 amino acid differences between the sequences of MsDef2.1 isoforms from the LegenDairy and Sazova cultivars. The physiochemical properties, secondary, and tertiary structure of the Sazova Defensin 2.1 were predicted by using bioinformatic tools. Due to the amino acid substitutions in γ-core structures, the antimicrobial activity of the isoforms is expected to differ from each other. These findings demonstrated that the defensin MsDef2.1 can differ in M. sativa cultivars in respect of the gene and amino acid sequences and has a potential for future applications.
Collapse
Affiliation(s)
- Büşra Albayrak Turgut
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
| | - İsmail Bezirganoğlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| |
Collapse
|
13
|
Macedo JM, Souza MF, Lima AM, Francisco AF, Kayano AM, Gusmão MEMDL, de Araújo ECS, Salvador GHM, Fontes MRDM, Zuliani JP, Soares AM. Molecular interaction assays in silico of crotapotin from Crotalus durissus terrificus against the molecular target trypanothione reductase from Leishmania braziliensis. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240049. [PMID: 40190838 PMCID: PMC11970842 DOI: 10.1590/1678-9199-jvatitd-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/12/2024] [Indexed: 04/09/2025] Open
Abstract
Background Leishmaniasis is a neglected disease that mainly affects impoverished populations and receives limited attention from governments and research institutions. Current treatments are based on antimonial therapies, which present high toxicity and cause significant side effects, such as cardiotoxicity and hepatotoxicity. This study proposes using crotapotin, isolated from Crotalus durissus terrificus venom, as a potential inhibitor of the enzyme trypanothione reductase from Leishmania braziliensis (LbTR). Methods In silico assays were conducted to evaluate the interaction of crotapotin with LbTR using molecular docking and molecular dynamics techniques. Recombinant LbTR was expressed in E. coli, and its enzymatic activity was confirmed. The inhibitory action of crotapotin on LbTR was then tested in enzymatic assays. Results The stability of these interactions was confirmed over 200 ns molecular dynamics simulations, with a clustering analysis using the GROMACS method revealing a total of 12 distinct clusters. The five most representative clusters showed low RMSD values, indicating high structural stability of the LbTR-crotapotin complex. In particular, cluster 1, with 3,398 frames and an average RMSD of 0.189 nm from the centroid, suggests a dominant stable conformation of the complex. Additional clusters maintained average RMSD values between 0.173 nm and 0.193 nm, further reinforcing the robustness of the complex under physiological conditions. Recombinant LbTR expression was successful, yielding 4.8 mg/L with high purity, as verified by SDS-PAGE. In the enzymatic assays, crotapotin partially inhibited LbTR activity, with an IC50 of 223.4 μM. Conclusion The in silico findings suggest a stable and structured interaction between crotapotin and LbTR, with low structural fluctuation, although the inhibition observed in in vitro assays was moderate. These results indicate the potential of crotapotin as a promising basis for developing specific LbTR inhibitors, contributing to the bioprospecting of new antiparasitic agents.
Collapse
Affiliation(s)
- Jamile Mariano Macedo
- Federal Institute of Rondônia, Porto Velho Calama Campus, Porto
Velho, RO, Brazil
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Mateus Farias Souza
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Maciel Lima
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Tropical Medicine Research Center (CEPEM/SESAU-RO), Porto Velho,
RO, Brazil
| | - Maria Elisabeth Moreira de Lima Gusmão
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Erika Crhistina Santos de Araújo
- Postgraduate Program in Cellular and Molecular Biology, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Marcos Roberto de Mattos Fontes
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Department of Biophysics and Pharmacology, Institute of
Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Institute for Advanced Studies of the Sea (IEAMar), São Paulo State
University (UNESP), São Vicente, SP, Brazil
| | - Juliana Pavan Zuliani
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| |
Collapse
|
14
|
Pieve de Castro A, Brito JCM, Candido WA, Félix AS, Verly RM, Resende JM, Lopes-de-Souza L, Chávez-Olórtegui C, Fernandes SO, Cardoso VN. Jelleine-I Membrane Interaction-related Biological Properties and Antimicrobial Activity against MDR, XDR, and PDR- Acinetobacter baumannii Clinical Isolates. ACS OMEGA 2025; 10:10938-10948. [PMID: 40160761 PMCID: PMC11947796 DOI: 10.1021/acsomega.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Emerging bacterial infections pose a serious threat to human health. Acinetobacter baumannii is a particular concern due to its antimicrobial resistance phenotypes, especially to carbapenems. In this context, antimicrobial peptides appear as a promising class. Jelleine-I is a peptide identified from the royal jelly from Apis mellifera bee, which has demonstrated significant antibacterial effects against various microorganisms. This study aimed to characterize the activity of jelleine-I against clinical isolates of A. baumannii resistant to carbapenems (CRAB) and with different resistance phenotypes, in addition to investigating the peptide-membrane interaction in biomimetic media. Microbiological assays with jelleine-I performed against A. baumannii with MIC values of 8-16 μM were observed. Biophysical studies on the bacterial mimetic membrane show a possible disruption of the organization of the phospholipid bilayer. The significant affinity promoted by entropic and enthalpic contributions suggests that the main antimicrobial action occurs on the bacterial membrane. In addition, the negligible hemolytic activity and toxicity against VERO and HaCaT cells reveal jelleine-I as a potential novel antimicrobial agent, especially against microorganisms that exhibit high and diverse antimicrobial resistance, such as A. baumannii.
Collapse
Affiliation(s)
- Adrielle Pieve de Castro
- Laboratório
de Radioisótopos, Departamento de Análises Clínicas
e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Julio Cesar Moreira Brito
- Fundação
Ezequiel Dias; Diretoria de Pesquisa e Desenvolvimento, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Wanderson Aparecido
Brandão Candido
- Departamento
de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e
Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| | - Amanda Souza Félix
- Departamento
de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e
Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| | - Rodrigo Moreira Verly
- Departamento
de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e
Mucuri, Diamantina, Minas Gerais 39100-000, Brazil
| | - Jarbas Magalhães Resende
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Letícia Lopes-de-Souza
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Simone Odília
Antunes Fernandes
- Laboratório
de Radioisótopos, Departamento de Análises Clínicas
e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório
de Radioisótopos, Departamento de Análises Clínicas
e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| |
Collapse
|
15
|
Gafar MA, Omolo CA, Ibrahim UH, Peters XQ, Ismail EA, Khan R, Govender T. Antimicrobial peptide-fucoidan nanoplexes: A novel multifunctional biomimetic nanocarrier for enhanced vancomycin delivery against bacterial infections and sepsis. Int J Pharm 2025; 672:125344. [PMID: 39952418 DOI: 10.1016/j.ijpharm.2025.125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Sepsis, a critical medical emergency, continues to pose a substantial worldwide healthcare challenge that necessitates innovative approaches for enhanced treatment. Hence, this study aimed to develop multifunctional biomimetic vancomycin (VCM)-loaded nanoplexes (VCM-FU-PEP-NPs) utilizing a novel antimicrobial peptide (CC-19 peptide) and Fucoidan (FU) to target the Toll-like receptor (TLR) inflammatory pathway and augment the antibacterial efficacy against bacterial sepsis. The CC-19 peptide (CRPRKWIKIKFRCKSLKFC) was designed utilizing computer-aided drug design tools and subsequently synthesized. The biomimetic properties of FU were assessed through in silico and in vitro binding studies, demonstrating a strong affinity for TLR2. The formulated VCM-FU-PEP-NPs demonstrated appropriate physicochemical characteristics, physical stability, and biocompatibility. Moreover, VCM-FU-PEP-NPs exhibited a 2-fold increase in antibacterial efficacy against sensitive Staphylococcus aureus, superior and sustained antibacterial activity against MRSA over 72 h, 5-fold improvement in MRSA biofilm eradication, faster bacterial-killing kinetics, and significantly greater disruption of MRSA membranes, in comparison to bare VCM. Furthermore, VCM-FU-PEP-NPs exhibited excellent DPPH radical scavenging capacity and significant anti-inflammatory efficacy in cells exposed to bacterial toxins. Accordingly, VCM-FU-PEP-NPs demonstrate promise as a potential innovative, multifunctional antibiotic nanocarrier for advancing the treatment of sepsis.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum P. O. Box 1996, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
16
|
Rühl-Teichner J, Müller D, Stamm I, Göttig S, Leidner U, Semmler T, Ewers C. Inhibitory Effect of Antimicrobial Peptides Bac7(17), PAsmr5-17 and PAβN on Bacterial Growth and Biofilm Formation of Multidrug-Resistant Acinetobacter baumannii. Microorganisms 2025; 13:639. [PMID: 40142531 PMCID: PMC11944726 DOI: 10.3390/microorganisms13030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance demands alternative treatment strategies, such as antimicrobial peptides (AMPs). In this study, 45 human and companion animal MDR-A. baumannii isolates, belonging to the globally spread IC1, IC2 and IC7, were tested for antimicrobial resistance and biofilm-associated genes (BAGs) and their capacity for BF. Of these, 13 were used to test the inhibitory effect of AMPs on bacterial growth (BG) and BF through the application of a crystal violet assay. The two novel AMP variants Bac7(17) (target cell inactivation) and Pasmr5-17 (efflux pump inhibition) and the well-known AMP phenylalanine-arginine-β-naphthylamide (PAβN) were tested at concentrations of 1.95 to 1000 µg/mL. Based on whole-genome sequence data, identical patterns of BAGs were detected within the same IC. AMPs inhibited BG and BF in a dose-dependent manner. Bac7(17) and PAsmr5-17 were highly effective against BG, with growth inhibition (GI) of >99% (62.5 and 125 µg/mL, respectively). PAβN achieved only 95.7% GI at 1000 µg/mL. Similar results were obtained for BF. Differences between the ICs were found for both GI and BF when influenced by AMPs. PAsmr5-17 had hardly any inhibitory effect on the BF of IC1 isolates, but for IC2 and IC7 isolates, 31.25 µg/mL was sufficient. Our data show that the susceptibility of animal MDR-A. baumannii to AMPs most likely resembles that of human isolates, depending on their assignment to a particular IC. Even low concentrations of AMPs had a significant effect on BG. Therefore, AMPs represent a promising alternative in the treatment of MDR-A. baumannii, either as the sole therapy or in combination with antibiotics.
Collapse
Affiliation(s)
- Johanna Rühl-Teichner
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| | - Daniela Müller
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35032 Marburg, Germany;
| | - Ivonne Stamm
- Vet Med Labor GmbH, 70806 Kornwestheim, Germany;
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe University, 60596 Frankfurt, Germany;
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| | - Torsten Semmler
- NG1, Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Department of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.R.-T.); (U.L.)
| |
Collapse
|
17
|
Dastagir N, Liebsch C, Kutz J, Wronski S, Pich A, Obed D, Vogt PM, Bucan V, Strauß S. Identification of antimicrobial peptides from the Ambystoma mexicanum displaying antibacterial and antitumor activity. PLoS One 2025; 20:e0316257. [PMID: 40043049 PMCID: PMC11882074 DOI: 10.1371/journal.pone.0316257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 05/13/2025] Open
Abstract
Antibiotic resistance is a significant healthcare concern. Therefore, identifying target molecules that can serve as antibiotic substitutes is crucial. Among the promising candidates are antimicrobial peptides (AMPs). AMPs are defense mechanisms of the innate immune system which exist in almost all living organisms. Research on the AMPs of some amphibians has shown that, in addition to their antimicrobial effectiveness, AMPs also exhibit anti-inflammatory and anti-carcinogenic properties. In this study, we identify and characterize AMPs deriving from the skin mucus of the axolotl (Ambystoma mexicanum). Upon activity spectrum evaluation of the AMPs, we synthesized and ranked 22 AMPs according to antimicrobial efficacy by means of a prediction tool. To assess the AMPs' potential as antibacterial and anticarcinogenic compounds, we performed a minimum inhibitory concentration (MIC) assay for efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA), and an apoptosis assay on T-47D mammary carcinoma cells. We identified four AMPs that showed significant inhibition of MRSA, of which three also demonstrated anticarcinogenic activity. Gene expression analysis was performed on AMP-stimulated carcinoma cells using a breast cancer-specific RT-PCR array. In cells stimulated with the AMPs, gene expression analysis showed upregulation of tumor suppressor genes and downregulation of oncogenes. Overall, our work demonstrates the antimicrobial and anticarcinogenic activity of axolotl-derived AMPs. The results of this work serve as a basis to further investigate the mode of action and potential use of axolotl AMPs as therapeutic anticancer or antibiotic agents.
Collapse
Affiliation(s)
- Nadjib Dastagir
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Christina Liebsch
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jaqueline Kutz
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | - Doha Obed
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Maria Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Erriah P, Puan SL, Yahaya NM, Wan Ahmad Kamil WNI, Amin Nordin S, Muhamad A, Sabri S. Harnessing bacterial antimicrobial peptides: a comprehensive review on properties, mechanisms, applications, and challenges in combating antimicrobial resistance. J Appl Microbiol 2025; 136:lxae290. [PMID: 40036746 DOI: 10.1093/jambio/lxae290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 03/06/2025]
Abstract
Antimicrobial resistance (AMR) is a significant global health concern due to the persistence of pathogens and the emergence of resistance in bacterial infections. Bacterial-derived antimicrobial peptides (BAMPs) have emerged as a promising strategy to combat these challenges. Known for their diversity and multifaceted nature, BAMPs are notable bioactive agents that exhibit potent antimicrobial activities against various pathogens. This review explores the intricate properties and underlying mechanisms of BAMPs, emphasizing their diverse applications in addressing AMR. Additionally, the review investigates the mechanisms, analyses the challenges in utilizing BAMPs effectively, and examines their potential applications and associated deployment challenges providing comprehensive insights into how BAMPs can be harnessed to combat AMR across different domains. The significance of this review lies in highlighting the potential of BAMPs as transformative agents in combating AMR, offering sustainable and eco-friendly solutions to this pressing global health challenge.
Collapse
Affiliation(s)
- Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
de Cena GL, Tada DB, Lucchi DB, Santos TA, Heras M, Juliano M, Torres Braconi C, Castanho MA, Lopes-Ferreira M, Conceição K. Design of Natterins-based peptides improves antimicrobial and antiviral activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00867. [PMID: 39758971 PMCID: PMC11697409 DOI: 10.1016/j.btre.2024.e00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
The biochemical analysis of animal venoms has been intensifying over the years, enabling the prediction of new molecules derived from toxins, harnessing the therapeutic potential of these molecules. From the venom of the fish Thalassophryne nattereri, using in silico methods for predicting antimicrobial and cell-penetrating peptides, two peptides from Natterins with promising characteristics were synthesized and subjected to in vitro and in vivo analysis. The peptides were subjected to stability tests and antimicrobial assays, cytotoxicity in murine fibroblast cells, antiviral assays against the Chikungunya virus, and the toxicity on G. mellonella was also evaluated. The findings underscore the peptides' robust stability under varying temperatures and pH conditions and resistance to proteolytic degradation. The peptides demonstrated significant antimicrobial efficacy, minimal cytotoxicity, and low hemolytic activity. Although their antiviral efficacy was limited, they showed potential at specific stages of viral replication. The in vivo toxicity tests indicated a favorable safety profile. These findings suggest that this approach can aid in the development of antimicrobial agents, offering a faster and personalized method to combat microbial infections, and represent a promising discovery in venom biotechnology research.
Collapse
Affiliation(s)
- Gabrielle L. de Cena
- Laboratory of Peptide Biochemistry, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Dayane B. Tada
- Laboratory of Nanomaterials and Nanotoxicology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Danilo B.M. Lucchi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Tiago A.A. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Montserrat Heras
- Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | - Maria Juliano
- Department of Biophysics, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| | - Miguel A.R.B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mônica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil
| | - Katia Conceição
- Laboratory of Peptide Biochemistry, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
20
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
21
|
Walter JC, Kissmann AK, Gruber D, Alpízar-Pedraza D, Martell-Huguet EM, Preising N, Rodriguez-Alfonso A, Ständker L, Kleber C, Knoll W, Stenger S, Firacative C, Rosenau F. Antimicrobial Activity of the Peptide C14R Against Ab Initio Growing and Preformed Biofilms of Candida albicans, Candida parapsilosis and Candidozyma auris. Biomolecules 2025; 15:322. [PMID: 40149858 PMCID: PMC11939920 DOI: 10.3390/biom15030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Biofilms are the predominant lifeforms of microorganisms, contributing to over 80% of infections, including those caused by Candida species like C. albicans, C. parapsilosis and Candidozyma auris. These species form biofilms on medical devices, making infections challenging to treat, especially with the rise in drug-resistant strains. Candida infections, particularly hospital-acquired ones, are a significant health threat due to their resistance to antifungals and the risk of developing systemic infections (i.e., sepsis). We have previously shown that C14R reduces the viability of C. albicans and C. auris, but not of C. parapsilosis. Here, we show that C14R not only inhibits viability by pore formation, shown in a resazurin reduction assay, and in a C. parapsilosis and fluorescence-based permeabilization assay, but it also halts biofilm maturation and significantly reduces the biomass of preformed biofilms by over 70%. These findings suggest C14R could be an effective option for treating severe fungal infections, offering a potential new treatment approach for biofilm-related diseases. Further research is needed to fully understand its biofilm dispersal potential and to optimize its use for future applications as an antifungal in clinical settings.
Collapse
Affiliation(s)
- Jan-Christoph Walter
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
| | - Daniel Gruber
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
| | - Daniel Alpízar-Pedraza
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
- Center for Pharmaceutical Research and Development (CIDEM), 26th Avenue, No. 1605, Nuevo Vedado, La Habana 10400, Cuba
| | - Ernesto M. Martell-Huguet
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
| | - Nico Preising
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (N.P.); (A.R.-A.); (L.S.)
| | - Armando Rodriguez-Alfonso
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (N.P.); (A.R.-A.); (L.S.)
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (N.P.); (A.R.-A.); (L.S.)
| | - Christoph Kleber
- Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria; (C.K.); (W.K.)
| | - Wolfgang Knoll
- Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria; (C.K.); (W.K.)
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany;
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (J.-C.W.); (A.-K.K.); (D.G.); (D.A.-P.); (E.M.M.-H.)
| |
Collapse
|
22
|
Yassin MA, Komber H, Naguib M, Abdelraof M, Appelhans D, Voit B. Antimicrobial Polymer via ROMP of a Bioderived Tricyclic Oxanorbornene Lactam Derivative. ACS APPLIED BIO MATERIALS 2025; 8:1720-1731. [PMID: 39831605 DOI: 10.1021/acsabm.4c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria represents a critical global health threat, underscoring the urgent need for alternative antimicrobial strategies beyond conventional antibiotics. In this study, we report the synthesis of novel biobased antimicrobial polymers bearing quaternary ammonium salts, derived from sustainable feedstocks, maleic anhydride, dimethylaminobenzaldehyde, and furfurylamine. The functional tricyclic oxanorbornene lactam monomer is polymerized via ring opening metathesis polymerization, yielding well-defined polymers with controlled molar masses and low dispersity. Structural characterization is performed using 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and the polymerization kinetics is monitored by online 1H NMR spectroscopy. The quaternized biobased polymers demonstrate potent broad-spectrum antimicrobial activity against three clinically isolated MDR bacterial strains. They exhibit minimum inhibitory concentrations (MICs) that are significantly lower than those of several conventional antibiotics while also showing low hemolytic activity toward mammalian cells. This study highlights the potential of bioderived ROMP polymers as promising, sustainable antimicrobial polymers for combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed A Yassin
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Chemical Industries Research Institute, National Research Centre, El Buhouth St. 33, 12622 Giza, Egypt
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Mohamed Naguib
- Chemical Industries Research Institute, National Research Centre, El Buhouth St. 33, 12622 Giza, Egypt
| | - Mohamed Abdelraof
- Biotechnology Research Institute, National Research Centre, El Buhouth St. 33, 12622 Giza, Egypt
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
23
|
Roson-Calero N, Gomis Font MA, Ruiz-Soriano A, Just-Baringo X, Pachón-Ibáñez ME, Salvador JP, Marco MP, Giralt E, Oliver A, Ballesté-Delpierre C, Vila J. In vitro potentiation of tetracyclines in Pseudomonas aeruginosa by RW01, a new cyclic peptide. Antimicrob Agents Chemother 2025; 69:e0145924. [PMID: 39714156 PMCID: PMC11823630 DOI: 10.1128/aac.01459-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
The pipeline for new drugs against multidrug-resistant Pseudomonas aeruginosa remains limited, highlighting the urgent need for innovative treatments. New strategies, such as membrane-targeting molecules acting as adjuvants, aim to enhance antibiotic effectiveness and combat resistance. RW01, a cyclic peptide with low antimicrobial activity, was selected as an adjuvant to enhance drug efficacy through membrane permeabilization. RW01's activity was evaluated via antimicrobial susceptibility testing in combination with existing antibiotics on 10 P. aeruginosa strains and analog synthesis. Synergy was assessed using checkerboard assays, and one-step mutants were generated to identify altered pathways through whole-genome sequencing and variant analysis. Permeabilizing activity was studied using flow cytometry and real-time fluorescence measurement. In vivo toxicity was assessed in female C57BL/6J mice, and possible interaction with mouse serum was also evaluated. Susceptibility testing revealed specific synergy with tetracyclines, with up to a 16-fold reduction in minimum inhibitory concentrations. Sequencing revealed that resistance to the RW01-minocycline combination involved mutations in the pmrB gene, affecting outer membrane lipopolysaccharide composition. This was further confirmed by the identification of cross-resistance to colistin in these mutants. RW01 reduced the mutant prevention concentration of minocycline from 64 to 8 mg/L. RW01 was demonstrated to enhance membrane permeabilization and therefore minocycline uptake with statistical significance. Synthetic derivatives of RW01 showed a complete loss of activity, highlighting the importance of RW01's D-proline(NH2) residue. No acute or cumulative in vivo toxicity was observed in mice. These findings suggest that RW01 could revitalize obsolete antimicrobials and potentially expand therapeutic options against multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, Barcelona, Spain
| | - María A. Gomis Font
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Albert Ruiz-Soriano
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Just-Baringo
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - María Eugenia Pachón-Ibáñez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
| | - J. Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Architecture of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER_BBN), Madrid, Spain
| | - M. Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Architecture of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER_BBN), Madrid, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Antonio Oliver
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Clara Ballesté-Delpierre
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
24
|
Long W, Apitius L, Lenz P, Jakob F, Ruff AJ, Schwaneberg U. Secretory Production of Heterologous Antimicrobial Peptides in Corynebacterium glutamicum. Eng Life Sci 2025; 25:e70008. [PMID: 39974332 PMCID: PMC11835761 DOI: 10.1002/elsc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Antimicrobial peptides (AMPs) are host defense peptides that act against a broad spectrum of microorganisms. AMPs are of high interest as medicinal products, antimicrobial coatings, and for controlling biofilm formation. Applications and research of many AMPs are still hampered by insufficient titers and lack of production platforms that can tolerate high titers of AMPs. Corynebacterium glutamicum is an excellent microbial host for protein secretion and has been barely explored as a host for AMP production. Here, we report the successful production and secretion of two AMPs (amounts of up to 130 mg/L for liquid chromatography peak I [LCI] and 54 mg/L for Psoriasin) by C. glutamicum with low amounts of secreted byproducts.
Collapse
Affiliation(s)
- Wei Long
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
| | - Lina Apitius
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| | - Patrick Lenz
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
| | - Felix Jakob
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| | - Anna Joёlle Ruff
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
| | - Ulrich Schwaneberg
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| |
Collapse
|
25
|
Jayawardena A, Hung A, Qiao G, Hajizadeh E. Molecular Dynamics Simulations of Structurally Nanoengineered Antimicrobial Peptide Polymers Interacting with Bacterial Cell Membranes. J Phys Chem B 2025; 129:250-259. [PMID: 39686718 DOI: 10.1021/acs.jpcb.4c06691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Multidrug resistance (MDR) to conventional antibiotics is one of the most urgent global health threats, necessitating the development of effective and biocompatible antimicrobial agents that are less inclined to provoke resistance. Structurally nanoengineered antimicrobial peptide polymers (SNAPPs) are a novel and promising class of such alternatives. These star-shaped polymers are made of a dendritic core with multiple arms made of copeptides with varying amino acid sequences. Through a comprehensive set of in vivo experiments, we previously showed that SNAPPs with arms made of random blocks of lysine (K) and valine (V) residues exhibit sub-μM efficacy against Gram-negative and Gram-positive bacteria tested. Cryo-TEM images suggested pore formation by a SNAPP with random block copeptide arms as one of their modes of actions. However, the molecular mechanisms responsible for this mode of action of SNAPPs are not fully understood. To address this gap, we employed an atomistic molecular dynamics simulation technique to investigate the influence of three different sequences of amino acids, namely (1) alt-block KKV, (2) ran-block, and (3) diblock motifs on the secondary structure of their arms and SNAPP's overall configuration as well as their interactions with lipid bilayer. We, for the first time, identified a step-by-step mechanism through which alt-block and random SNAPPs interact with lipid bilayer and lead to "pore formation", hence, cell death. These insights provide a strong foundation for further optimization of the chemical structure of SNAPPs for maximum performance against MDR bacteria, therefore offering a promising avenue for addressing antibiotic resistance and the development of effective antibacterial agents.
Collapse
Affiliation(s)
- Amal Jayawardena
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Greg Qiao
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elnaz Hajizadeh
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Owliaee I, Khaledian M, Shojaeian A, Madanchi H, Yarani R, Boroujeni AK, Shoushtari M. Antimicrobial Peptides Against Arboviruses: Mechanisms, Challenges, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10430-0. [PMID: 39776036 DOI: 10.1007/s12602-024-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design. Furthermore, this review highlights the potential of AMP-based combination therapies to create synergistic effects that enhance overall treatment outcomes while minimizing the likelihood of resistance development. Challenges such as susceptibility to proteases, toxicity, and scalable production are discussed alongside strategies to address these limitations. Additionally, the expanding applications of AMPs as vaccine adjuvants and antiviral delivery systems are emphasized, underscoring their versatility beyond direct antiviral functions.
Collapse
Affiliation(s)
- Iman Owliaee
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Mehran Khaledian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
27
|
Pipiya SO, Ivanova AO, Mokrushina YA, Eliseev IE, Gabibov AG, Smirnov IV, Terekhov SS. Heterologous Production of Antimicrobial Peptides in Yeast Allows for Massive Assessment of the Activity of DNA-Encoded Antimicrobials In Situ. Acta Naturae 2025; 17:71-77. [PMID: 40264587 PMCID: PMC12011183 DOI: 10.32607/actanaturae.27355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/07/2024] [Indexed: 04/24/2025] Open
Abstract
Antibiotic resistance threatens global healthcare. In clinical practice, conventional antibiotics are becoming gradually less effective. Moreover, the introduction of new antimicrobial agents into clinical practice leads to the emergence of resistant pathogenic strains within just a few years. Hence, the development of platforms for massive creation and screening of new antimicrobial agents is of particular importance. Massive parallel screening will greatly reduce the time required to identify the most promising drug candidates. Meanwhile, DNA-encoded antimicrobial agents offer unique opportunities for the high-throughput development of new antibiotics. Here, the yeast Pichia pastoris was engineered to produce a panel of antimicrobial peptides (AMPs), followed by high-throughput screening of AMP producers that inhibit bacterial growth in situ. Yeast clones producing thanatin and protegrin-1 exhibited the highest level of antimicrobial activity among the panel of AMPs under investigation. The production level of recombinant thanatin was significantly higher than that of protegrin-1, which correlates with its low toxicity. The designed technique of massive assessment of the activity of DNA-encoded antimicrobial agents enables the identification of drug candidates with an increased therapeutic index. Further development of methods for a rational design of artificial diversity in AMPs, followed by deep functional profiling of antimicrobial activity, will yield new AMPs with improved therapeutic characteristics.
Collapse
Affiliation(s)
- S. O. Pipiya
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. O. Ivanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Yu. A. Mokrushina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - I. E. Eliseev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - I. V. Smirnov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - S. S. Terekhov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
28
|
Pandey P, Srivastava A. sAMP-VGG16: Force-field assisted image-based deep neural network prediction model for short antimicrobial peptides. Proteins 2025; 93:372-383. [PMID: 38520179 DOI: 10.1002/prot.26681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
During the last three decades, antimicrobial peptides (AMPs) have emerged as a promising therapeutic alternative to antibiotics. The approaches for designing AMPs span from experimental trial-and-error methods to synthetic hybrid peptide libraries. To overcome the exceedingly expensive and time-consuming process of designing effective AMPs, many computational and machine-learning tools for AMP prediction have been recently developed. In general, to encode the peptide sequences, featurization relies on approaches based on (a) amino acid (AA) composition, (b) physicochemical properties, (c) sequence similarity, and (d) structural properties. In this work, we present an image-based deep neural network model to predict AMPs, where we are using feature encoding based on Drude polarizable force-field atom types, which can capture the peptide properties more efficiently compared to conventional feature vectors. The proposed prediction model identifies short AMPs (≤30 AA) with promising accuracy and efficiency and can be used as a next-generation screening method for predicting new AMPs. The source code is publicly available at the Figshare server sAMP-VGG16.
Collapse
Affiliation(s)
- Poonam Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Parsad R, Ahlawat S, Bagiyal M, Gera R, Chhabra P, Sharma U, Arora R, Sharma R. Cathelicidins in farm animals: Structural diversity, mechanisms of action, and therapeutic potential in the face of antimicrobial resistance. Vet Immunol Immunopathol 2025; 279:110866. [PMID: 39708585 DOI: 10.1016/j.vetimm.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Cathelicidins are a diverse family of antimicrobial peptides found across many vertebrate species, playing a pivotal role in the innate immune system. These peptides exhibit a variety of structural motifs, including α-helices, β-hairpins, and random coils, contributing to their broad-spectrum antimicrobial activity. The structural diversity of cathelicidins allows them to interact with a wide range of microbial targets, thereby enhancing their antimicrobial efficacy. Distinct species produce specific cathelicidins, each adapted to meet their unique immune requirements. Cathelicidins primarily function by disrupting microbial membranes, leading to cell lysis. Beyond their direct antimicrobial action, they possess immunomodulatory properties that bolster host defense mechanisms. These properties include promoting chemotaxis, enhancing phagocytosis, and inducing cytokine production, thereby modulating the host immune response. The therapeutic potential of cathelicidins is significant, especially in light of the growing challenge of antimicrobial resistance (AMR). As conventional antibiotics lose efficacy, cathelicidins emerge as promising alternatives due to their unique mechanisms of action and reduced likelihood of inducing resistance. Recent research underscores their potential in treating infections, inflammatory diseases, and even cancer. Advances in synthetic biology offer promising prospects for effective cathelicidin-based therapies in the future. This review summarizes the diversity, modes of action, and clinical prospects of cathelicidins specific to farm animals.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
30
|
Brizuela CA, Liu G, Stokes JM, de la Fuente‐Nunez C. AI Methods for Antimicrobial Peptides: Progress and Challenges. Microb Biotechnol 2025; 18:e70072. [PMID: 39754551 PMCID: PMC11702388 DOI: 10.1111/1751-7915.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models. Initially, classical ML approaches dominated the field, but recently there has been a shift towards deep learning (DL) models. Despite significant contributions, existing reviews have not thoroughly explored the potential of large language models (LLMs), graph neural networks (GNNs) and structure-guided AMP discovery and design. This review aims to fill that gap by providing a comprehensive overview of the latest advancements, challenges and opportunities in using AI methods, with a particular emphasis on LLMs, GNNs and structure-guided design. We discuss the limitations of current approaches and highlight the most relevant topics to address in the coming years for AMP discovery and design.
Collapse
Affiliation(s)
| | - Gary Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic DiscoveryMcMaster UniversityHamiltonOntarioCanada
| | - Jonathan M. Stokes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic DiscoveryMcMaster UniversityHamiltonOntarioCanada
| | - Cesar de la Fuente‐Nunez
- Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Chemistry, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for Computational ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
31
|
Haddad H, da Franca Rodrigues KA, Othman H, Veras LMC, Rodrigues RRL, Ouahchi I, Ouni B, Zaϊri A. In vitro Antileishmanial Activity and In silico Molecular Modeling Studies of Novel Analogs of Dermaseptins S4 and B2. Curr Pharm Biotechnol 2025; 26:276-288. [PMID: 39257149 DOI: 10.2174/0113892010296038240427050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Leishmaniasis is responsible for approximately 65,000 annual deaths. Various Leishmania species are the predominant cause of visceral, cutaneous, or mucocutaneous leishmaniasis, affecting millions worldwide. The lack of a vaccine, emergence of resistance, and undesirable side effects caused by antileishmanial medications have prompted researchers to look for novel therapeutic approaches to treat this disease. Antimicrobial peptides (AMPs) offer an alternative for promoting the discovery of new drugs. METHODS In this study, we detail the synthesis process and investigate the antileishmanial activity against Leishmania (Viannia) braziliensis for peptides belonging to the dermaseptin (DS) family and their synthetic analogs. The MTT assay was performed to investigate the cytotoxicity of these peptides on the murine macrophage cell line RAW 264.7. Subsequently, we performed molecular modeling analysis to explore the structure-function correlation of the derivatives interacting with the parasitic membrane. RESULTS All examined derivatives displayed concentration-dependent antileishmanial effect at low concentrations. Their effectiveness varied according to the peptide's proprieties. Notably, peptides with higher levels of charge demonstrated the most pronounced activities. Cytotoxicity assays showed that all the tested peptides were not cytotoxic compared to the tested conventional drug. The structure-function relationships demonstrated that the charged N-terminus could be responsible for the antileishmanial effect observed on promastigotes. CONCLUSION Collectively, these results propose that dermaseptins (DS) might offer potential as promising candidates for the development of effective antileishmanial therapies.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, 5000 Monastir, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | | | - Houcemeddine Othman
- Laboratory of Cytogenetics and Reproductive Biology, CHU Farhat Hached, 4000 Sousse, Tunisia
| | - Leiz Maria Costa Veras
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratory of Infectious Diseases, Ladic, Campus Ministro Reis Velloso, Federal University of Delta do Parnaíba, 64202-020, Brazil
| | - Ines Ouahchi
- Biodiversity Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, 4000 Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | - Amira Zaϊri
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| |
Collapse
|
32
|
Prusty JS, Kumar A. In silico-driven identification and experimental confirmation of antifungal proteins (AFPs) against Candidaalbicans. Biochimie 2025; 228:44-57. [PMID: 39134296 DOI: 10.1016/j.biochi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mycoses infect millions of people annually across the world. The most common mycosis agent, Candida albicans is responsible for a great deal of illness and death. C. albicans infection is becoming more widespread and the current antifungals polyenes, triazoles, and echinocandins are less efficient against it. Investigating antifungal peptides (AFPs) as therapeutic is gaining momentum. Therefore, we used MALDI-TOF/MS analysis to identify AFPs and protein-protein docking to analyze their interactions with the C. albicans target protein. Some microorganisms with strong antifungal action against C. albicans were selected for the isolation of AFPs. Using MALDI-TOF/MS, we identified 3 AFPs Chitin binding protein (ACW83017.1; Bacillus licheniformis), the bifunctional protein GlmU (BBQ13478.1; Stenotrophomonas maltophilia), and zinc metalloproteinase aureolysin (BBA25172.1; Staphylococcus aureus). These AFPs showed robust interactions with C. albicans target protein Sap5. We deciphered some important residues in identified APFs and highlighted interaction with Sap5 through hydrogen bonds, protein-protein interactions, and salt bridges using protein-protein docking and MD simulations. The three discovered AFPs-Sap5 complexes exhibit different levels of stability, as seen by the RMSD analysis and interaction patterns. Among protein-protein interactions, the remarkable stability of the BBQ25172.1-2QZX complex highlights the role of salt bridges and hydrogen bonds. Identified AFPs could be further studied for developing successful antifungal candidates and peptide-based new antifungal therapeutic strategies as fresh insights into addressing antifungal resistance also.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India.
| |
Collapse
|
33
|
Cebeci S, Polat T, Ünübol N. Roles of NET Peptides With Known Antimicrobial Activity and Toxicity in Immune Response. J Immunol Res 2024; 2024:5528446. [PMID: 39759156 PMCID: PMC11698612 DOI: 10.1155/jimr/5528446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in all living organisms, playing a vital role in the body's defense against diseases and infections. The immune system's primary functions include preventing disease-causing agents from entering the body and eliminating them without causing harm. These peptides exhibit broad-spectrum activity against bacteria, viruses, fungi, parasites, and cancer cells. They are secreted by innate and epithelial cells and contribute to host defense by inducing cellular activities such as cell migration, proliferation, differentiation, cytokine production, angiogenesis, and wound healing. In response to the growing challenge of bacterial resistance to antimicrobial agents, alternative drugs and new antibacterial molecules are being explored. In a previous study, NET AMPs were synthesized and their antimicrobial effects were determined. The current study extends this work by assessing the effects of these peptides on the immune system through cell culture experiments and ELISA. Specifically, the study investigated how different concentrations of these peptides influence the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in mouse macrophages. Among the synthesized peptides, NET1 and NET2 demonstrated low cytotoxicity in TIB-71 RAW 264.7 macrophages. These peptides induced an anti-inflammatory response and reduced IL-6 expression in the absence of LPS stimulation, while simultaneously increasing IFN-γ and TNF-α secretion. These findings suggest that NET1 and NET2 peptides possess both anti-inflammatory and pro-inflammatory properties, highlighting their potential role in modulating immune responses.
Collapse
Affiliation(s)
- Sinan Cebeci
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Tuba Polat
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Nihan Ünübol
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Medical Laboratory Technician Program, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
34
|
Al-Omari AM, Akkam YH, Zyout A, Younis S, Tawalbeh SM, Al-Sawalmeh K, Al Fahoum A, Arnold J. Accelerating antimicrobial peptide design: Leveraging deep learning for rapid discovery. PLoS One 2024; 19:e0315477. [PMID: 39705302 DOI: 10.1371/journal.pone.0315477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Antimicrobial peptides (AMPs) are excellent at fighting many different infections. This demonstrates how important it is to make new AMPs that are even better at eliminating infections. The fundamental transformation in a variety of scientific disciplines, which led to the emergence of machine learning techniques, has presented significant opportunities for the development of antimicrobial peptides. Machine learning and deep learning are used to predict antimicrobial peptide efficacy in the study. The main purpose is to overcome traditional experimental method constraints. Gram-negative bacterium Escherichia coli is the model organism in this study. The investigation assesses 1,360 peptide sequences that exhibit anti- E. coli activity. These peptides' minimal inhibitory concentrations have been observed to be correlated with a set of 34 physicochemical characteristics. Two distinct methodologies are implemented. The initial method involves utilizing the pre-computed physicochemical attributes of peptides as the fundamental input data for a machine-learning classification approach. In the second method, these fundamental peptide features are converted into signal images, which are then transmitted to a deep learning neural network. The first and second methods have accuracy of 74% and 92.9%, respectively. The proposed methods were developed to target a single microorganism (gram negative E.coli), however, they offered a framework that could potentially be adapted for other types of antimicrobial, antiviral, and anticancer peptides with further validation. Furthermore, they have the potential to result in significant time and cost reductions, as well as the development of innovative AMP-based treatments. This research contributes to the advancement of deep learning-based AMP drug discovery methodologies by generating potent peptides for drug development and application. This discovery has significant implications for the processing of biological data and the computation of pharmacology.
Collapse
Affiliation(s)
- Ahmad M Al-Omari
- Biomedical Systems and Informatics Engineering Department, College of Engineering, Yarmouk University, Irbid, Jordan
| | - Yazan H Akkam
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ala'a Zyout
- Biomedical Systems and Informatics Engineering Department, College of Engineering, Yarmouk University, Irbid, Jordan
| | - Shayma'a Younis
- Biomedical Systems and Informatics Engineering Department, College of Engineering, Yarmouk University, Irbid, Jordan
| | - Shefa M Tawalbeh
- Biomedical Systems and Informatics Engineering Department, College of Engineering, Yarmouk University, Irbid, Jordan
| | - Khaled Al-Sawalmeh
- Department of Basic Pathological Sciences, College of Medicine, Yarmouk University, Irbid, Jordan
| | - Amjed Al Fahoum
- Biomedical Systems and Informatics Engineering Department, College of Engineering, Yarmouk University, Irbid, Jordan
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
35
|
Fernandes MCS, Branco R, Pereira P, Coelho JFJ, Morais PV, Serra AC. Antimicrobial Activity of Copolymer Structures from Bio-Based Monomers. Biomacromolecules 2024; 25:7915-7925. [PMID: 39540900 DOI: 10.1021/acs.biomac.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol-1). Hydrophobicity was evaluated using the theoretical Log Poct values and surface areas (SAs). Biological assays included antimicrobial activity against Escherichia coli and Staphylococcus aureus standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.
Collapse
Affiliation(s)
- Mónica C S Fernandes
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Rita Branco
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Patrícia Pereira
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Paula V Morais
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Arménio C Serra
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
36
|
Qiu Z, Ran J, Yang Y, Wang Y, Zeng Y, Jiang Y, Hu Z, Zeng Z, Peng J. OmpH is Involved in the Decrease of Acinetobacter baumannii Biofilm by the Antimicrobial Peptide Cec4. Drug Des Devel Ther 2024; 18:5795-5810. [PMID: 39664965 PMCID: PMC11633299 DOI: 10.2147/dddt.s481225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) poses great difficulties in clinical treatment, and has been listed by the World Health Organization as a class of pathogens in urgent need of new antibiotic development. In our previous report, the novel antimicrobial peptide Cec4 showed great potential in decreasing the clinical CRAB biofilm, but its mechanism of action is still illusive. Therefore, in order to evaluate the clinical therapeutic potential of Cec4, it is necessary to explore the mechanism of how Cec4 decreases mature biofilms. Methods Key genes involved in the removal of CRAB biofilms by Cec4 were analyzed using transcriptomics. Based on the results of the bioinformatics analysis, the CRISPR-Cas9 method was used to construct the deletion strain of the key gene. The pYMAb2 plasmid was used for the complementation strain construction. Finally, the roles of key genes in biofilm removal by Cec4 were determined by crystal violet staining, podocyte staining, laser confocal imaging, and MBC and MBEC50. Results Combined with transcriptome analysis, we hypothesized that OmpH is a key gene involved in the removal of CRAB biofilms by Cec4. Deletion of the OmpH gene did not affect A. baumannii growth, but decreased A. baumannii capsule thickness, increasing biofilm production, and made biofilm-state A. baumannii more sensitive to Cec4. Conclusion Cec4 decreases biofilms formed by CRAB targeting OmpH. Deletion of the OmpH gene results in an increase in biofilms and greater sensitivity to Cec4, which enhances the removal of A. baumannii biofilms by Cec4.
Collapse
Affiliation(s)
- Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jun Ran
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yifan Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yang Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yinhui Jiang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| |
Collapse
|
37
|
Matsumoto S, Tatsuoka H, Yoshii M, Nagao T, Shimizu T, Shingubara S, Tanaka S, Ito T. Anti-Biofilm Performance of Resin Nanopillars Inspired from Cicada Wing Surface for Staphylococcus spp. Biomimetics (Basel) 2024; 9:739. [PMID: 39727743 DOI: 10.3390/biomimetics9120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The increase in infections derived from biofilms from Staphylococcal spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties. Thus, they are not only expected to reduce the damage caused by chemical antimicrobial agents to human health and the environment, but also to serve as a potential countermeasure against the emergence of antimicrobial-resistant bacteria (ARB). In this study, we evaluated the anti-biofilm effects of cyclo-olefin polymer (COP) nanopillars by changing the wettability of surfaces ranging in height from 100 to 500 nm against Staphylococcus spp., such as Staphylococcus aureus NBRC 100910 (MSSA), Staphylococcus aureus JCM 8702 methicillin-resistant S. aureus (MRSA), and Staphylococcus epidermidis ATCC 35984. The results clearly show that the fabricated nanopillar structures exhibited particularly strong biofilm inhibition against MRSA, with inhibition rates ranging from 51.2% to 62.5%. For MSSA, anti-biofilm effects were observed only at nanopillar heights of 100-300 nm, with relatively low hydrophobicity, with inhibition rates ranging from 23.9% to 40.8%. Conversely, no significant anti-biofilm effect was observed for S. epidermidis in any of the nanopillar structures. These findings suggest that the anti-biofilm properties of nanopillars vary among bacteria of the same species. In other words, by adjusting the height of the nanopillars, selective anti-biofilm effects against specific bacterial strains can be achieved.
Collapse
Affiliation(s)
- Satoka Matsumoto
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Hiroaki Tatsuoka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Miki Yoshii
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Tomohiro Shimizu
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Shoso Shingubara
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Shigemitsu Tanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Takeshi Ito
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| |
Collapse
|
38
|
Swangsri T, Reamtong O, Saralamba S, Rakthong P, Thaenkham U, Saralamba N. Exploring the antimicrobial potential of crude peptide extracts from Allium sativum and Allium oschaninii against antibiotic-resistant bacterial strains. PHARMACEUTICAL BIOLOGY 2024; 62:666-675. [PMID: 39205473 PMCID: PMC11363733 DOI: 10.1080/13880209.2024.2395517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Plant peptides garner attention for their potential antimicrobial properties amid the rising concern over antibiotic-resistant bacteria. OBJECTIVE This study investigates the antibacterial potential of crude peptide extracts from 27 Thai plants collected locally. MATERIALS AND METHODS Peptide extracts from 34 plant parts, derived from 27 Thai plants, were tested for their antimicrobial efficacy against four highly resistant bacterial strains: Streptococcus aureus MRSA, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The stability of these peptide extracts was examined at different temperatures, and the synergistic effects of two selected plant peptide extracts were investigated. Additionally, the time-kill kinetics of the individual extracts and their combination were determined against the tested pathogens. RESULTS Peptides from Allium sativum L. and Allium oschaninii O. Fedtsch (Amaryllidaceae) were particularly potent, inhibiting bacterial growth with MICs ranging from 1.43 to 86.50 µg/mL. The consistent MICs and MBCs of these extracts across various extraction time points highlight their reliability. Stability tests reveal that these peptides maintain their antimicrobial activity at -20 °C for over a month, emphasizing their durability for future exploration and potential applications in addressing antibiotic resistance. Time-kill assays elucidate the time and concentration-dependent nature of these antimicrobial effects, underscoring their potent initial activity and sustained efficacy over time. DISCUSSION AND CONCLUSIONS This study highlights the antimicrobial potential of Allium-derived peptides, endorsing them for combating antibiotic resistance and prompting further investigation into their mechanisms.
Collapse
Affiliation(s)
- Thitiluck Swangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pakavadee Rakthong
- Faculty of Science and Technology, Rajabhat Suratthani University, Surat Thani, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Kumar N, Bhagwat P, Singh S, Pillai S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction. Biochimie 2024; 227:99-115. [PMID: 38944107 DOI: 10.1016/j.biochi.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
40
|
Lan Z, Guo L, Fletcher A, Ang N, Whitfield-Cargile C, Bryan L, Welch S, Richardson L, Cosgriff-Hernandez E. Antimicrobial hydrogel foam dressing with controlled release of gallium maltolate for infection control in chronic wounds. Bioact Mater 2024; 42:433-448. [PMID: 39308545 PMCID: PMC11415875 DOI: 10.1016/j.bioactmat.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Effective treatment of infection in chronic wounds is critical to improve patient outcomes and prevent severe complications, including systemic infections, increased morbidity, and amputations. Current treatments, including antibiotic administration and antimicrobial dressings, are challenged by the increasing prevalence of antibiotic resistance and patients' sensitivity to the delivered agents. Previous studies have demonstrated the potential of a new antimicrobial agent, Gallium maltolate (GaM); however, the high burst release from the GaM-loaded hydrogel gauze required frequent dressing changes. To address this need, we developed a hydrogel foam-based wound dressing with GaM-loaded microspheres for sustained infection control. First, the minimal inhibitory and bactericidal concentrations (MIC and MBC) of GaM against two Staphylococcus aureus strains isolated from chronic wounds were identified. No significant adverse effects of GaM on dermal fibroblasts were shown at the MIC, indicating an acceptable selectivity index. For the sustained release of GaM, electrospraying was employed to fabricate microspheres with different release kinetics. Systematic investigation of loading and microsphere size on release kinetics indicated that the larger microsphere size and lower GaM loading resulted in a sustained GaM release profile over the target 5 days. Evaluation of the GaM-loaded hydrogel dressing demonstrated cytocompatibility and antibacterial activities with a zone of inhibition test. An equine distal limb wound model was developed and utilized to demonstrate the efficacy of GaM-loaded hydrogel foam in vivo. This antimicrobial hydrogel foam dressing displayed the potential to combat methicillin-resistant S. aureus (MRSA) infection with controlled GaM release to improve chronic wound healing.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Leopold Guo
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan Fletcher
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Nicolai Ang
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Laura Bryan
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Shannara Welch
- Clinical Microbiology Lab, Veterinary Teaching Hospital, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Richardson
- Department of Large Animal Medicine, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
41
|
Ahmed SAH, Saif B, Qian L. Antimicrobial Peptides From Different Sources: Isolation, Purification, and Characterization to Potential Applications. J Sep Sci 2024; 47:e70043. [PMID: 39654018 DOI: 10.1002/jssc.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Antimicrobial peptides (AMPs) are excellent promising candidates for biomedical applications owing to their structural properties, high biocompatibility, good biodegradability, and functional diversity. Unlike conventional antibiotics, AMPs have been shown to have broad-spectrum antimicrobial activity toward Gram-positive/negative bacteria, as well as antifungal and antiviral activity. These peptides have also been found to be cytotoxic to sperm and cancer cells. A range of AMPs has been isolated from various organisms, such as bacteria, fungi, plants, and animals. This review summarizes the latest studies on AMPs, covering their isolation, purification, and characterization as well as their potential biomedical applications and beyond.
Collapse
Affiliation(s)
- Shadi Ali Hassen Ahmed
- College of Pharmaceutical Sciences, Hangzhou Institute of Innovative Medicine & Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi'an, China
- Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Linghui Qian
- College of Pharmaceutical Sciences, Hangzhou Institute of Innovative Medicine & Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Wang Y, Fang C. Cycle-ESM: Generation-assisted classification of antifungal peptides using ESM protein language model. Comput Biol Chem 2024; 113:108240. [PMID: 39437594 DOI: 10.1016/j.compbiolchem.2024.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
The rising prevalence of invasive fungal infections and the emergence of antifungal resistance highlight the urgent need for new antifungal medications. Antifungal peptides have emerged as promising alternatives to traditional antimicrobial agents. The identification of natural or synthetic antifungal peptides is crucial for advancing antifungal drug development. Typically, the availability of antifungal samples is limited, and significant sequence diversity exists among antifungal peptides, posing challenges for high-throughput screening. To address the identification challenge of antifungal peptides with limited sample availability, this study introduces the Cycle ESM method. Initially, the method utilises the ESM protein language model to generate additional data on antifungal peptides, serving as a data augmentation technique to enhance model training effectiveness. Subsequently, the ESM is employed in conjunction with a textCNN model to construct a classifier for peptide prediction, with a comprehensive exploration of peptide characteristics to improve prediction accuracy. Experimental results demonstrate that the performance of the Cycle ESM method surpasses that of existing methods across three distinct antifungal peptide datasets. This study presents a novel approach to antifungal peptide prediction and offers innovative insights for addressing classification problems with limited sample availability.
Collapse
Affiliation(s)
- YiMing Wang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chun Fang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
43
|
Zhong G, Liu H, Deng L. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification. Interdiscip Sci 2024; 16:951-965. [PMID: 38972032 DOI: 10.1007/s12539-024-00640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The emergence of antibiotic-resistant microbes raises a pressing demand for novel alternative treatments. One promising alternative is the antimicrobial peptides (AMPs), a class of innate immunity mediators within the therapeutic peptide realm. AMPs offer salient advantages such as high specificity, cost-effective synthesis, and reduced toxicity. Although some computational methodologies have been proposed to identify potential AMPs with the rapid development of artificial intelligence techniques, there is still ample room to improve their performance. This study proposes a predictive framework which ensembles deep learning and statistical learning methods to screen peptides with antimicrobial activity. We integrate multiple LightGBM classifiers and convolution neural networks which leverages various predicted sequential, structural and physicochemical properties from their residue sequences extracted by diverse machine learning paradigms. Comparative experiments exhibit that our method outperforms other state-of-the-art approaches on an independent test dataset, in terms of representative capability measures. Besides, we analyse the discrimination quality under different varieties of attribute information and it reveals that combination of multiple features could improve prediction. In addition, a case study is carried out to illustrate the exemplary favorable identification effect. We establish a web application at http://amp.denglab.org to provide convenient usage of our proposal and make the predictive framework, source code, and datasets publicly accessible at https://github.com/researchprotein/amp .
Collapse
Affiliation(s)
- Guolun Zhong
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
44
|
Akram M, Fujimura NA, Tahir S, Abbas R, Khan MA, Malik K, Ahmed N. Synergistic anticancer effects of interleukin-21 combined with therapeutic peptides in multiple cancer cells. Biotechnol Lett 2024; 47:7. [PMID: 39609311 DOI: 10.1007/s10529-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Interleukin-21 (IL-21) is a cytokine produced by various cell types, including T cells, natural killer cells, myeloid cells, and B cells, and has a broad range of potential applications in cancer therapy. To improve the therapeutic index, we explored the use of fusion technologies that involved linking other anticancer peptides to the IL-21 gene using specific linkers. OBJECTIVES This study aimed to compare the anticancer potential of IL-21 and IL-21 fusion proteins. METHODS Antimicrobial peptides possessing anticancer properties were fused with IL-21 gene using a flexible linker (-GGGGS-), and the resulting construct was inserted into the pSecTag2a mammalian expression vector. The cassette was transfected into several cancer cell lines including H1 HeLa, HepG2, MCF-7, MDA-MB-231, HCT-116, HCC-1954, HEK-293, and SF-767. The cytotoxic effects of IL-21 and fusion proteins were evaluated using MTT, Caspase-3, LDH, and scratch assays. RESULTS The IL-21-Tachyplesin I fusion protein had the strongest antiproliferative activity against all tested cancer cells, followed by IL21-LPSBD2 and IL-21. In contrast, IL21-Cop A3, IL21-CSP I-Plus, and IL21-RGD Temporin-Las did not inhibit the viability of cancer cells. CONCLUSION Fusion technology is a promising therapeutic technique that can be used to enhance the cytotoxicity and antiproliferative activity of anticancer proteins such as IL-21.
Collapse
Affiliation(s)
- Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
45
|
Hetta HF, Sirag N, Alsharif SM, Alharbi AA, Alkindy TT, Alkhamali A, Albalawi AS, Ramadan YN, Rashed ZI, Alanazi FE. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2024; 17:1555. [PMID: 39598464 PMCID: PMC11597525 DOI: 10.3390/ph17111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as broad-spectrum antimicrobial molecules and are essential parts of the innate immune system in mammals, fungi, and plants. AMPs have unique antibacterial mechanisms that offer benefits over conventional antibiotics in combating drug-resistant bacterial infections. Currently, scientists have conducted multiple studies on AMPs for combating drug-resistant bacterial infections and found that AMPs are a promising alternative to conventional antibiotics. On the other hand, bacteria can develop several tactics to resist and bypass the effect of AMPs. Therefore, it is like a battle between the bacterial community and the AMPs, but who will win? This review provides thorough insights into the development of antibiotic resistance as well as detailed information about AMPs in terms of their history and classification. Furthermore, it addresses the unique antibacterial mechanisms of action of AMPs, how bacteria resist these mechanisms, and how to ensure AMPs win this battle. Finally, it provides updated information about FDA-approved AMPs and those that were still in clinical trials. This review provides vital information for researchers for the development and therapeutic application of novel AMPs for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Nizar Sirag
- Division of Pharmacognosy, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Shumukh M. Alsharif
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
46
|
Ba Z, Wang Y, Yang Y, Ren B, Li B, Ouyang X, Zhang J, Yang T, Liu Y, Zhao Y, Yang P, Wu X, Mao W, Zhong C, Liu H, Zhang Y, Gou S, Ni J. Phosphorylation as an Effective Tool to Improve Stability and Reduce Toxicity of Antimicrobial Peptides. J Med Chem 2024; 67:18807-18827. [PMID: 39383315 DOI: 10.1021/acs.jmedchem.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Developing a straightforward and effective strategy to modify antimicrobial peptides (AMPs) is crucial in overcoming the challenges posed by their instability and toxicity. Phosphorylation can reduce toxicity and improve the stability of AMPs. Based on these, we designed a series of peptides and their corresponding phosphorylated forms. The results showed that all phosphorylated peptides displayed reduced toxicity and enhanced stability compared to their unphosphorylated counterparts. Among them, W3BipY8-P stood out as the most promising peptide, exhibiting similar antibacterial activity as its unphosphorylated analog W3BipY8 but with significantly reduced hemolytic activity (19-fold decrease), cytotoxicity (3.3-fold decrease), and an extended serum half-life 6.3 times longer than W3BipY8. W3BipY8-P exerted bactericidal effects by disrupting bacterial membranes. Notably, W3BipY8-P significantly prolonged the survival of bacteria-infected animals while its LD50 was 4.2 times higher than that of W3BipY8. These findings highlight phosphorylation as an effective strategy for improving the antimicrobial properties of AMPs.
Collapse
Affiliation(s)
- Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingqian Ren
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing 100050, P. R. China
| |
Collapse
|
47
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8164-8175. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
48
|
Maleš M, Juretić D, Zoranić L. Role of Peptide Associations in Enhancing the Antimicrobial Activity of Adepantins: Comparative Molecular Dynamics Simulations and Design Assessments. Int J Mol Sci 2024; 25:12009. [PMID: 39596078 PMCID: PMC11593906 DOI: 10.3390/ijms252212009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Adepantins are peptides designed to optimize antimicrobial biological activity through the choice of specific amino acid residues, resulting in helical and amphipathic structures. This paper focuses on revealing the atomistic details of the mechanism of action of Adepantins and aligning design concepts with peptide behavior through simulation results. Notably, Adepantin-1a exhibits a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, while Adepantin-1 has a narrow spectrum of activity against Gram-negative bacteria. The simulation results showed that one of the main differences is the extent of aggregation. Both peptides exhibit a strong tendency to cluster due to the amphipathicity embedded during design process. However, the more potent Adepantin-1a forms smaller aggregates than Adepantin-1, confirming the idea that the optimal aggregations, not the strongest aggregations, favor activity. Additionally, we show that incorporation of the cell penetration region affects the mechanisms of action of Adepantin-1a and promotes stronger binding to anionic and neutral membranes.
Collapse
Affiliation(s)
- Matko Maleš
- Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Davor Juretić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
49
|
Bina M, Coats JP, Skowicki M, Malekovic M, Mihali V, Palivan CG. Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23178-23188. [PMID: 39453821 DOI: 10.1021/acs.langmuir.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth. This approach combines the inherent antifouling properties of poly(ethylene oxide) as the hydrophilic domain of one copolymer with the antimicrobial effect of a peptide covalently attached to the hydrophilic domain of the second copolymer. The planar membranes are generated by self-assembly of the amphiphilic copolymer mixture deposited by Langmuir-Blodgett and Langmuir-Schaffer methods on a solid support, followed by covalent attachment of the antimicrobial peptides to one of the copolymers, specifically functionalized. Combining both copolymers, in terms of their properties and functionalities on the same surface, significantly limitsEscherichia colibiofilm formation and effectively eradicates bacteria during short-term incubation. While such multifunctional antimicrobial planar polymer membranes show promising potential in the design of fine coatings for small surgical or implantable devices, they are not limited to this application. Their use can be completely changed by attaching other active molecules or assemblies to induce specific multifunctionality for the targeted application.
Collapse
Affiliation(s)
- Maryame Bina
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - John P Coats
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Mirela Malekovic
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| |
Collapse
|
50
|
Rice MC, Imun M, Jung SW, Park CY, Kim JS, Lai RW, Barr CR, Son JM, Tor K, Kim E, Lu RJ, Cohen I, Benayoun BA, Lee C. The Human Mitochondrial Genome Encodes for an Interferon-Responsive Host Defense Peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530691. [PMID: 39553971 PMCID: PMC11565950 DOI: 10.1101/2023.03.02.530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mitochondrial DNA (mtDNA) can trigger immune responses and directly entrap pathogens, but it is not known to encode for active immune factors. The immune system is traditionally thought to be exclusively nuclear-encoded. Here, we report the identification of a mitochondrial-encoded host defense peptide (HDP) that presumably derives from the primordial proto-mitochondrial bacteria. We demonstrate that MOTS-c (mitochondrial open reading frame from the twelve S rRNA type-c) is a mitochondrial-encoded amphipathic and cationic peptide with direct antibacterial and immunomodulatory functions, consistent with the peptide chemistry and functions of known HDPs. MOTS-c targeted E. coli and methicillin-resistant S. aureus (MRSA), in part, by targeting their membranes using its hydrophobic and cationic domains. In monocytes, IFNγ, LPS, and differentiation signals each induced the expression of endogenous MOTS-c. Notably, MOTS-c translocated to the nucleus to regulate gene expression during monocyte differentiation and programmed them into macrophages with unique transcriptomic signatures related to antigen presentation and IFN signaling. MOTS-c-programmed macrophages exhibited enhanced bacterial clearance and shifted metabolism. Our findings support MOTS-c as a first-in-class mitochondrial-encoded HDP and indicates that our immune system is not only encoded by the nuclear genome, but also by the co-evolved mitochondrial genome.
Collapse
|