1
|
Bhujbal S, Rupenthal ID, Patravale VB, Agarwal P. Transfersomes: a next-generation drug delivery system for topical ocular drug delivery. Expert Opin Drug Deliv 2025. [PMID: 40274417 DOI: 10.1080/17425247.2025.2497829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION The eye is a complex organ with several anatomical and physiological barriers that make ocular drug delivery an ongoing challenge. Transfersomes (TFS) are deformable vesicles that have extensively been applied to enhance transdermal drug delivery. However, their application in ocular drug delivery remains largely unexplored. AREAS COVERED This review highlights the challenges typically associated with ocular drug delivery and emphasizes the inherent properties of TFS that enable them to overcome these challenges. The influence of excipients and critical process parameters on TFS characteristics have been discussed in detail with an emphasis on the fabrication and characterization techniques typically employed for TFS development and optimization. Furthermore, recent studies evaluating the application of TFS in ocular drug delivery have been discussed in depth. EXPERT OPINION The unique stress-responsive and deformable nature of TFS makes them promising carriers for ocular drug delivery. However, further research in this direction is needed to understand their penetration mechanism and elucidate their potential for sustained and targeted drug delivery to ocular tissues. Moreover, further research is needed to optimize the stability and scalability of TFS to encourage their translation to the market.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Shalaby ES, Shalaby SI, Ismail SA. Advantages and therapeutic applications of different semisolids as vehicles for nano-based systems. Ther Deliv 2025:1-11. [PMID: 40118818 DOI: 10.1080/20415990.2025.2483151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 03/24/2025] Open
Abstract
The aim of this review is to highlight the role of semisolid systems as vehicles for nanovesicles and nanoparticles. In general, nanotechnology plays a critical role in facilitating the delivery of therapeutic agents to their active sites, and several nanocarrier systems have been explored for the topical administration of active components. The major disadvantage of the prepared nanosystems is their low viscosity, which reduces the time needed for enough absorption and negatively affects their stability and bioavailability. The role of semisolid systems is to overcome this limitation. In conclusion, this review presents an updated summary of recent advances in the use of semisolids as vehicles for various nanosystems through comprehensive scrutiny of the types of semisolids and their advantages and their role in enhancing the absorption of nanoparticles and nanovesicles.
Collapse
Affiliation(s)
- Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Samy I Shalaby
- Department of Animal Reproduction, Institute of Veterinary Researches, National Research Centre, Giza, Egypt
| | - Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Gabr H, Abdel-Halim M, Mourad B, Rady M, Mansour S. Hair follicle targeting via gelatin coated transferosomes loaded with tofacitinib citrate for enhanced treatment of alopecia areata: Clinical evaluation of alopecia areata patients. Int J Pharm 2025; 672:125307. [PMID: 39894089 DOI: 10.1016/j.ijpharm.2025.125307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Alopecia areata (AA) is a complex autoimmune disease that has a negative impact on the psychological well-being of patients. AA is associated with T-cells activation and cytokines release leading to collapse of immune privilege of hair follicles (HF). Tofacitinib, a JAK 1&3 inhibitor, exhibited effectiveness in AA treatment. The aim of this study was to develop gelatin-coated transferosomes (GLTS) to deliver tofactinib specifically to the HF to enhance the treatment of AA. GLTS were evaluated for ex vivo skin permeation, localization in skin layers by the tape stripping technique and Confocal microscopy. Finally, GLTS gel was applied topically for the treatment of AA patients, where seven AA patients with recalcitrant lesions (5 males and 2 females) were included in this study, then they were evaluated clinically and dermoscopically to assess the efficacy of treatment. GLTS of size 223.23 ± 16.43 nm, exhibited the highest HF localization by tape stripping (7.8561 ± 0.77 μg), and the highest mean fluorescence intensity in HF (84.63 ± 7.98 rfu). Additionally, hair regrowth in all AA patients was observed after 12 weeks with up to 80 % improvement. The present work proposed effective formulations for HF targeting of tofacitinib and proved enhanced clinical efficacy in recalcitrant AA patients with positive feedback.
Collapse
Affiliation(s)
- Hamss Gabr
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Basma Mourad
- Department of Dermatology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mai Rady
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital, Cairo, Egypt.
| | - Samar Mansour
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt; Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital, Cairo, Egypt
| |
Collapse
|
4
|
Manjushree H, Nayak D, Halagali P, Rathnanand M, Tawale R, Ananthmurthy K, Aranjani JM, Tippavajhala VK. Menthol-based Novel Ultra-Deformable Vesicle: Formulation, Optimization and Evaluation of an Antifungal Drug. AAPS PharmSciTech 2025; 26:23. [PMID: 39779535 DOI: 10.1208/s12249-024-03021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 23 full factorial design was used using Design-Expert® software. The optimized batch exhibited a vesicle size (107.6 nm), a polydispersity index (PDI) (0.248), entrapment efficiency (% EE) (76.9%), and a zeta potential (-33.7 mV). Results from ex vivo skin permeation studies and in vitro drug release demonstrated enhanced improved skin permeation and drug release compared to other formulations. An in vitro antifungal and in vivo pharmacodynamic study, elucidated the enhanced effectiveness of the optimized formulation against Candida albicans. In summary, menthosomes could serve as a potent vehicle to enhance drug penetration via the skin to improve its antifungal activity.
Collapse
Affiliation(s)
- Hema Manjushree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Roshan Tawale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Koteshwara Ananthmurthy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576107, India.
| |
Collapse
|
5
|
Dixena B, Madhariya R, Panday A, Ram A, Jain AK. Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications. Curr Drug Deliv 2025; 22:160-180. [PMID: 38178667 DOI: 10.2174/0115672018272012231213100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods such as injections and oral administration. These advantages include preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short half-life drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic drug. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for noninvasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications. OBJECTIVE The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. METHODS Data we searched from PubMed, Google Scholar, and ScienceDirect. RESULTS In this review, we have explored the various methods of preparation of transfersomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. CONCLUSION In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.
Collapse
Affiliation(s)
- Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Rashmi Madhariya
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Alpana Ram
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Akhlesh K Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| |
Collapse
|
6
|
Abdallah MH, Shawky S, Shahien MM, El-Horany HES, Ahmed EH, El-Housiny S. Development and Evaluation of Nano-Vesicular Emulsion-Based Gel as a Promising Approach for Dermal Atorvastatin Delivery Against Inflammation. Int J Nanomedicine 2024; 19:11415-11432. [PMID: 39530108 PMCID: PMC11552413 DOI: 10.2147/ijn.s477001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects. Methods ATV-loaded transethosomes (ATV-TEs) were optimized using the 33 Box-Behnken design. The ATV-TEs that were created were evaluated for their vesicle size, encapsulation efficiency (% EE), and percent release of drug. The optimum formulation was integrated into a hydroxypropyl methylcellulose (HPMC) emulsion-based gel (ATV-TEs emulgel) using jojoba oil. ATV-TEs emulgel was examined for its physical characteristics, ex vivo permeability, histological, and anti-inflammatory effect in a rat model of inflamed paw edema. Results The optimized transethosomes exhibited a vesicle size of 158.00 nm and an encapsulation efficiency of 80.14 ± 1.42%. Furthermore, the use of transethosomal vesicles effectively prolonged the release of ATV for a duration of 24 hours, in contrast to the pure drug suspension. In addition, the transethosomal emulgel loaded with ATV exhibited a 3.8-fold increase in the transdermal flow of ATV, in comparison to the pure drug suspension. ATV-TEs emulgel demonstrated a strong anti-inflammatory impact in the carrageenan-induced paw edema model. Discussion This was evident from the significant reduction in paw edema, which was equivalent to the effect of the standard anti-inflammatory medicine, Diclofenac sodium. Conclusion In summary, transethosomes, as a whole, might potentially serve as an effective method for delivering drugs via the skin. This could improve the ability of ATV to reduce inflammation by increasing its absorption through the skin.
Collapse
Affiliation(s)
- Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Seham Shawky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il, 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa El-Housiny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 4410240, Egypt
| |
Collapse
|
7
|
Hajhashemi V, Taheri A, Karimian F, Hajihashemi O, Talebi A. Preparation and evaluation of hair growth promoting effect of transferosomes containing red clover extract and caffeine alone or in combination. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:645-652. [PMID: 40259960 PMCID: PMC12009625 DOI: 10.22038/ajp.2024.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Objective Trifolium pratense L. (Red clover) belongs to the Leguminosae family. This study was designed to develop transferosome formulations containing red clover extract or caffeine alone or in combination and evaluate their effects on hair growth in mice. Materials and Methods Thin-lipid film hydration technique was used to make transferosomes. Six groups (n=6) of male Swiss mice (28-32 g) were used. One group was normal control. The second group received transferosome without drug. Groups 3 to 5 received 100 µl of transferosomes containing red clover extract (1%) or caffeine (0.002%) alone or in combination. The sixth group received minoxidil (2%). Treatments continued six days per week for 3 weeks and each week, the hair growth scores were recorded. At the end, sections of the skin were prepared for determining the percent of follicles in the anagen phase. Results Encapsulation efficiency was 84.3, 81.6 and 89.1% for red clover, caffeine and red clover+caffeine transferosomes respectively. After 24 hr, the cumulative release of red clover and caffeine formulations was 77.6 and 76.9%, respectively. Treatments produced no significant change in hair growth after two weeks but at the end of the third week, all treatments significantly increased the hair growth and the effects were comparable with minoxidil. The combination of red clover and caffeine was not more effective than either alone. Conclusion Transferosome formulations of caffeine and red clover alone demonstrated hair growth effect but their combination had no additive effect which might be due to a physicochemical or pharmacodynamic interaction.
Collapse
Affiliation(s)
- Valiollah Hajhashemi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Karimian
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Hajihashemi
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Xie Y, Li P, Fu D, Yang F, Sui X, Huang B, Liu J, Chi J. CBD-Loaded Nanostructured Lipid Carriers: Optimization, Characterization, and Stability. ACS OMEGA 2024; 9:40632-40643. [PMID: 39372028 PMCID: PMC11447858 DOI: 10.1021/acsomega.4c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Cannabidiol (CBD) has demonstrated its potential to enhance depression treatment through various biological pathways. However, the application potential of CBD is significantly impeded by its polymorphic nature, limited water solubility, and hepatic first-pass metabolism. To improve chemical stability and water solubility, nanostructured lipid carriers loaded with CBD (CBD-NLCs) were developed using a hot-melt emulsification method and optimized by response surface methodology (RSM). The process parameters were optimized using a four-factor and three-level Box-Behnken experimental design consisting of 29 experiments. The CBD-NLCs were formulated and characterized, demonstrating desirable properties, including a mean particle size of 54.33 nm, a PDI value of 0.118, a zeta potential of -29.7 mV, and an impressive encapsulation efficiency rate of 87.58%. The nanoparticles were found to possess an approximately spherical shape, as revealed by scanning and transmission electron microscopy. The stability studies have demonstrated that CBD-NLCs effectively mitigated the photodegradation of CBD and exhibited a stable behavior for 42 days when stored. The CBD-NLCs displayed a biphasic release profile characterized by an initial burst release (over 50% of CBD released within 20 min) followed by a subsequent gradual and sustained release, aligned with first-order kinetics and Fickian diffusion. These findings demonstrate the potential suitability of this formulation as a carrier for CBD in food fortification and pharmaceutical applications.
Collapse
Affiliation(s)
- Yang Xie
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Peng Li
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Dong Fu
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Fan Yang
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Xin Sui
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Bo Huang
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Jiaying Liu
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| | - Jialong Chi
- Heilongjiang Academy of
Sciences, Institute of Advanced Technology, Harbin 150020, China
| |
Collapse
|
9
|
BHATTACHARYYA S, Lakshmanan KT, MUTHUKUMAR A. Formulation and Evaluation of a Transferosomal Gel of Famciclovir for Transdermal Use. Turk J Pharm Sci 2024; 21:303-312. [PMID: 39224082 PMCID: PMC11589086 DOI: 10.4274/tjps.galenos.2023.46735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2024]
Abstract
Objectives Famciclovir, the drug of choice for cold sores and recurrent genital herpes, has poor oral bioavailability and is associated with numerous side effects. The study aimed to explore the possibility of transdermal application of famciclovir through a transferosome-loaded gelling system to localize the drug at the site of application with improved penetrability, therapeutic effects, and comfort. Materials and Methods Transferosomes of famciclovir were prepared using tween 80, phospholipid, and cholesterol. To optimize drug entrapment and the vesicular size of the transferosomes, a central composite design was employed. The optimized formulation was evaluated for physicochemical characteristics, surface morphology, and degree of deformability. The optimized product was included in the Carbopol 940 gelling system. The gel was evaluated for ex vivo permeation, skin irritation, drug deposition at various skin layers, and histopathological analysis. Results The design optimization yielded an optimized product (FAMOPT) of nanosized (339 nm) stable vesicles of the transferosome of famciclovir. The surface morphology analysis revealed the formation of nanovesicles without aggregation. Compatibility between the drug and excipients was established. The elasticity of the vesicles demonstrated resistance to leakage. The permeation of the drug was enhanced by 2.8 times. The gel was found to be non-irritating and non-sensitizing to the animal skin. The drug deposition at various skin layers was remarkably improved, indicating effective drug penetration. The histopathological examination further demonstrated the penetration of nano-vesiculate drugs through deeper layers of the skin. Conclusion Hence, nano-vesicular famciclovir delivery is a promising alternative to conventional famciclovir delivery with enhanced local and systemic action for herpes treatment.
Collapse
|
10
|
SOHAIL S, ARSHAD S, KHALID S, DAR MJ, IQBAL K, SOHAIL H. Development and Evaluation of Methotrexate and Baicalin-Loaded Nanolipid Carriers for Psoriasis Treatment. Turk J Pharm Sci 2024; 21:327-339. [PMID: 39224396 PMCID: PMC11589095 DOI: 10.4274/tjps.galenos.2023.71242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2024]
Abstract
Objectives Psoriasis is a chronic inflammatory, T-lymphocyte immune-mediated skin disease. In this study, skin-permeating nanolipid carriers (NLCs) of Methotrexate (MTX) and Baicalin (BL) were formulated. This further gave formulation of nano-lipid encapsulated carriers for dual-drug delivery of the hydrophilic and hydrophobic drugs through the liposomal gel. Materials and Methods Optimization of the formulation of NLCs was performed and characterized by determining their particle size, drug permeation, skin irritation, drug loading capacity, stability, in vitro drug release behavior, and in vitro cellular viability. Ex vivo skin permeation and in vivo psoriatic efficiency were also evaluated and compared. Results Results revealed that the amount of MTX permeating the skin was 2.4 to 4.4 fold greater for dual-drug s than for single NLCs. The optimized dual-drug loaded NLCs had an average particle size (150.20 ± 3.57 nm) and polydispersity index (0.301 ± 0.01) and high entrapment (86.32 ± 2.78% w/w). The MTX nanoparticles exhibit a positive Zeta potential of 38.6 mV. The psoriasis area and severity index scoring showed the lowest skin erythema, skin thickness and scaling. MTX-BL NLCs were inhibited the expression of inflammatory cytokines (tumor necrosis factor-alpha, and interleukin-17) . Conclusion It can be concluded that newer targeting strategies for NLCs for dual-drug delivery of nano-lipid carriers could be administered topically for the treatment of psoriasis.
Collapse
Affiliation(s)
- Sundus SOHAIL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Saloma ARSHAD
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Sidra KHALID
- Drug Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Muhammad Junaid DAR
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Kashif IQBAL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
- IBADAT International University Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| | - Hassan SOHAIL
- University of Lahore (Islamabad Campus) Faculty of Pharmacy, Department of Pharmacy, Islamabad, Pakistan
| |
Collapse
|
11
|
El-Helaly SN, Rashad AA. Mirtazapine loaded polymeric micelles for rapid release tablet: A novel formulation-In vitro and in vivo studies. Drug Deliv Transl Res 2024; 14:2488-2498. [PMID: 38353837 PMCID: PMC11291528 DOI: 10.1007/s13346-024-01525-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 08/03/2024]
Abstract
Major depression is a prevalent disorder characterized by sadness, lack of interest or pleasure, interrupted sleep or food, and impaired concentration. Mirtazapine (MTZ), a tetracyclic antidepressant drug, is commonly used to treat moderate to severe depression. MTZ is classified as a BCS class II drug that has shown bioavailability of 50% due to extensive first-pass metabolism. The aim of this research is to develop a delivery platform with enhanced solubility and oral bioavailability of MTZ through formulating polymeric micelles modeled in a rapid release tablet. Mirtazapine loaded polymeric micelles (MTZ-PMs) were formulated to enhance the solubility. Solutol® HS 15 and Brij 58 were used as combined surfactants in a ratio of (20:1) to MTZ in addition to Transcutol® P as a penetration enhancer. The following in vitro tests were performed: particle size, PDI, zeta potential, solubility factor, stability index, and transmission electron microscopes. Afterward, MTZ-PMs were converted to dry free flowable powder through loading on the adsorptive surface of Aerosil 200; then, the powder mixture was directly compressed (MTZ-PMs-RRT) into 13 mm tablets. MTZ-PMs-RRT was further investigated using in vitro evaluation tests of the tablets, namely, weight variation, thickness, diameter, hardness, friability, disintegration time, drug content, and in vitro dissolution test, which complied with the pharmacopeial limits. The pharmacokinetic parameters of MTZ-PMs-RRT compared to Remeron® tablet were further investigated in rabbits. The results showed enhanced solubility of MTZ with improved percentage relative bioavailability to 153%. The formulation of MTZ in the form of MTZ-PMs-RRT successfully improved the solubility, stability, and bioavailability of MTZ using a simple and scalable manufacturing process.
Collapse
Affiliation(s)
- Sara Nageeb El-Helaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Rashad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo, Egypt
| |
Collapse
|
12
|
Chachlioutaki K, Iordanopoulou A, Katsamenis OL, Tsitsos A, Koltsakidis S, Anastasiadou P, Andreadis D, Economou V, Ritzoulis C, Tzetzis D, Bouropoulos N, Xenikakis I, Fatouros D. Tailored Sticky Solutions: 3D-Printed Miconazole Buccal Films for Pediatric Oral Candidiasis. AAPS PharmSciTech 2024; 25:190. [PMID: 39164432 DOI: 10.1208/s12249-024-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Anastasia Iordanopoulou
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Orestis L Katsamenis
- x μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anestis Tsitsos
- Laboratory of Animal Food Products Hygiene - Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki-N. Moudania, 57001, Thermi, Greece
| | - Pinelopi Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Animal Food Products Hygiene - Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400, Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki-N. Moudania, 57001, Thermi, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, 26504, Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504, Patras, Greece
| | - Iakovos Xenikakis
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| |
Collapse
|
13
|
Abruzzo A, Corazza E, Giordani B, Nicoletta FP, Vitali B, Cerchiara T, Luppi B, Bigucci F. Association of mucoadhesive polymeric matrices and liposomes for local delivery of miconazole: A new approach for the treatment of oral candidiasis. Int J Pharm 2024; 661:124461. [PMID: 38996824 DOI: 10.1016/j.ijpharm.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Since the local treatment of oral candidiasis usually requires long-term administration of the antifungal drug, an ideal dosage form should be able to maintain the drug release over an extended period, assuring an adequate concentration at the infection site. In this context, we have considered the possibility of a buccal delivery of miconazole nitrate (MN) by mucoadhesive polymeric matrices. The loading of the antifungal drug in a hydrophilic matrix was made possible by taking advantage of the amphiphilic nature of liposomes (LP). The MN-loaded LP were prepared by a thin film evaporation method followed by extrusion, while solid matrices were obtained by freeze-drying a suspension of the LP in a polymeric solution based on chitosan (CH), sodium hyaluronate (HYA), or hydroxypropyl methylcellulose (HPMC). MN-loaded LP measured 284.7 ± 20.1 nm with homogeneous size distribution, adequate drug encapsulation efficiency (86.0 ± 3.3 %) and positive zeta potential (+47.4 ± 3.3). CH and HYA-based formulations almost completely inhibited C. albicans growth after 24 h, even if the HYA-based one released a higher amount of the drug. The CH-based matrix also provided the best mucoadhesive capacity and therefore represents the most promising candidate for the local treatment of oral candidiasis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Elisa Corazza
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
14
|
Singh S, Awasthi R. Berberine HCl and diacerein loaded dual delivery transferosomes: Formulation and optimization using Box-Behnken design. ADMET AND DMPK 2024; 12:553-580. [PMID: 39091899 PMCID: PMC11289510 DOI: 10.5599/admet.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Berberine is a poorly water-soluble alkaloid compound showing significant anti-inflammatory characteristics. It reduces the levels of pro-inflammatory and inflammatory cytokines, including tumour necrosis factor (TNF-α, IFN-γ) and interleukin (IL-23, IL-12, and IL-23). Diacerein significantly reduces the splenomegaly associated with psoriasis. It downregulates the production of TNF-α and IL-12. Method This study reported the development of transferosomes containing berberine HCl and diacerein using a film hydration method followed by optimization using a Box-Behnken design. Sodium deoxycholate was used as an edge activator. The impact of independent variables (amount of phosphatidylcholine, amount of edge activator, and sonication cycles) on dependent variables (particle size and entrapment efficiency) was examined. The optimized formulation was characterized for polydispersity index, vesicle size, entrapment efficiency, ζ potential, spectral analysis like Fourier transform infrared, thermal analysis, X-ray diffraction, deformability, transmission electron microscopy, antioxidant assay, in-vitro release, and ex-vivo skin permeation studies. Results The optimized formulation had a particle size of 110.90±2.8 nm with high entrapment efficiency (89.50±1.5 of berberine HCl and 91.23±1.8 of diacerein). Deformability, polydispersity index, ζ potential, and antioxidant activity of the optimized formulation were 2.44, 0.296, -13.3, and 38.36 %, respectively. Optimized transferosomes exhibited 82.093±0.81 % and 85.02±3.81 % release of berberine HCl and diacerein after 24 h of dissolution study. The transdermal flux of optimized formulation was 0.0224 μg cm-2 h-1 (2.24 cm h-1 permeation coefficient) and 0.0462 μg cm-2 h-1 (4.62 cm h-1 permeation coefficient), respectively, for berberine HCl and diacerein. Raman analysis of treated pig skin confirmed that the transferosomes can permeate the skin. No change in the skin condition or irritation was observed in BALB/c mice. Formulation stored at 4 and 25±2 °C / 60±5 % relative humidity was stable for 3 months. Conclusions Thus, the results demonstrated successful optimization of the transferosomes for the efficient topical delivery of berberine HCl and diacerein in the effective management of psoriasis.
Collapse
Affiliation(s)
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Asghar Z, Jamshaid T, Jamshaid U, Madni A, Akhtar N, Lashkar MO, Gad HA. In Vivo Evaluation of Miconazole-Nitrate-Loaded Transethosomal Gel Using a Rat Model Infected with Candida albicans. Pharmaceuticals (Basel) 2024; 17:546. [PMID: 38794118 PMCID: PMC11123890 DOI: 10.3390/ph17050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Miconazole nitrate (MCNR), an antifungal drug, is used to treat superficial infections. The objective of the current study was to assess the antifungal effectiveness of MCNR-loaded transethosomal gel (MNTG) against Candida albicans in an in vivo rat model. The outcomes were compared with those of the miconazole nitrate gel (MNG) and marketed Daktarin® cream (2%) based on histopathological and hematological studies. The results of the skin irritation test revealed the safety profile of the MNTG. The MNTG demonstrated the greatest antifungal activity in the histological analysis and the visible restoration of the skin, and the rats revealed an apparent evidence of recovery. Compared to the untreated group, the treated group's lymphocyte and white blood cells counts increased, but their eosinophil counts decreased. In conclusion, MNTG exhibited the greatest antifungal activity, which might be connected to the improved skin permeability of the transethosome's nanosized vesicles. Therefore, it could be considered a promising carrier for topical usage and the treatment of cutaneous candidiasis. More clinical research needs to be performed in order to demonstrate its effectiveness and safe usage in humans.
Collapse
Affiliation(s)
- Zara Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (A.M.); (N.A.)
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (A.M.); (N.A.)
| | - Usama Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, Strasbourg University, 67084 Strasbourg, France;
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (A.M.); (N.A.)
| | - Naheed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (A.M.); (N.A.)
| | - Manar O. Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
16
|
Munir M, Zaman M, Waqar MA, Hameed H, Riaz T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res 2024; 34:203-218. [PMID: 37338000 DOI: 10.1080/08982104.2023.2221354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Drug delivery through transdermal route is one of the effective methods for the application of drugs. It overcomes many drawbacks which are encountered with the oral route. Moreover, many drugs are not able to pass through the stratum corneum, which is the main barrier for the transdermal drug delivery. Formation of ultra-deformable vesicles (UDVs) is a novel technique for the transdermal applications of the drugs. Transethosomes (TEs), ethosomes, and transferosomes are all part of the UDV. Because of the presence of increased concentrations of ethanol, phospholipids, and edge activators, TEs provide improved drug permeation through the stratum corneum. Because of the elasticity of TEs, drug penetration into the deeper layer of skin also increases. TEs can be prepared using a variety of techniques, including the cold method, hot method, thin film hydration method, and the ethanol injection method. It increases patient adherence and compliance because it is a non-invasive procedure of administering drugs. Characterization of the TEs includes pH determination, size and shape, zeta potential, particle size determination, transition temperature, drug content, vesicle stability, and skin permeation studies. These vesicular systems can be utilized to deliver a variety of medications transdermally, including analgesics, antibiotics, antivirals, and anticancer and arthritis medications. This review aims to describe vesicular approaches that had been used to overcome the barrier for the transdermal delivery of drug and also describes brief composition, method of preparation, characterization tests, mechanism of penetration of TEs, as well as highlighted various applications of TEs in medicine.
Collapse
Affiliation(s)
- Minahal Munir
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Tehseen Riaz
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Opatha SAT, Chutoprapat R, Khankaew P, Titapiwatanakun V, Ruksiriwanich W, Boonpisuttinant K. Asiatic acid-entrapped transfersomes for the treatment of hypertrophic scars: In vitro appraisal, bioactivity evaluation, and clinical study. Int J Pharm 2024; 651:123738. [PMID: 38158144 DOI: 10.1016/j.ijpharm.2023.123738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Non-invasive treatment options for hypertrophic scars (HTS) are limited, and treating HTS remains challenging due to their unappealing appearance and associated social stigma. In this work, a novel transfersomal system named Asiatic acid-entrapped transfersomes (AATs) was prepared. AATs were evaluated for their skin permeability, anti-inflammatory activity, and other characteristic parameters to determine the most promising formulation. Asiatic acid-entrapped transfersomal gel (AATG), which was obtained by incorporating the lead AATs in a gel base, underwent testing in an 8-week, double-blind, placebo-controlled, split-skin clinical study. The net skin elasticity (R5), melanin index (MI), and skin surface hydration were analyzed employing Cutometer®, Mexameter®, and Corneometer®, respectively, in order to evaluate the effectiveness of the developed AATG. AATs exhibited vesicular sizes and zeta potential values within the range of (27.15 ± 0.95 to 63.54 ± 2.51 nm) and (-0.010 to -0.129 mV), respectively. TW80AAT gave the highest %EE (90.84 ± 2.99%), deformability index (101.70 ± 11.59 mgs-1), permeation flux at 8 h (0.146 ± 0.005 mg/cm2/h), and anti-inflammatory activity (71.65 ± 1.83%). The clinical study results of AATG indicated no adverse skin reactions. Furthermore, product efficacy tests demonstrated a significant reduction in MI and an increase in net skin elasticity at 2, 4, and 8 weeks. These pilot study outcomes support the effectiveness of the AATG.
Collapse
Affiliation(s)
- Shakthi Apsara Thejani Opatha
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Romchat Chutoprapat
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand.
| | - Pichanon Khankaew
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Varin Titapiwatanakun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| |
Collapse
|
18
|
Simrah, Hafeez A, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:639-673. [PMID: 37597094 DOI: 10.1007/s00210-023-02670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
The application of nanotechnology with integration of chemical sciences is increasing continuously in the management of diseases. The drug's physicochemical and pharmacological characteristics are enhanced by application of nanotechnological principles. Several nanotechnology-based formulations are being investigated to improve patient compliance. One such novel nanocarrier system is transfersome (TFS) and is composed of natural biocompatible phospholipids and edge activators. Morphologically, TFS are similar to liposomes but functionally, these are ultra-deformable vesicles which can travel through pores smaller than their size. Because of their amphipathic nature, TFS have the potential to deliver the drugs through sensitive biological membranes, especially the blood-brain barrier, skin layers, and nasal epithelium. Different molecular weight drugs can be transferred inside the cell by encapsulation into the TFS. Knowing the tremendous potentiality of TFS, the present work provides an in-depth and detailed account (pharmaceutical and preclinical characteristics) of TFS incorporating different categories of therapeutic moieties (anti-diabetic, anti-inflammatory, anti-cancer, anti-viral, anti-fungal, anti-oxidant, cardiovascular drugs, CNS acting drugs, vaccine delivery, and miscellaneous applications). It also includes information about the methods of preparation employed, significance of excipients used in the preparation, summary of clinical investigations performed, patent details, latest investigations, routes of administration, challenges, and future progresses related to TFS.
Collapse
Affiliation(s)
- Simrah
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | | | | |
Collapse
|
19
|
Fernandes NB, Velagacherla V, Spandana KJ, N B, Mehta CH, Gadag S, Sabhahit JN, Nayak UY. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int J Pharm 2024; 650:123686. [PMID: 38070658 DOI: 10.1016/j.ijpharm.2023.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.
Collapse
Affiliation(s)
- Neha B Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
20
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
21
|
Alsaidan OA, Zafar A, Al-Ruwaili RH, Yasir M, Alzarea SI, Alsaidan AA, Singh L, Khalid M. Niosomes gel of apigenin to improve the topical delivery: development, optimization, ex vivo permeation, antioxidant study, and in vivo evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:604-617. [PMID: 37910394 DOI: 10.1080/21691401.2023.2274526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Rayan Hamood Al-Ruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
22
|
Rasool M, Mazhar D, Afzal I, Zeb A, Khan S, Ali H. In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis. Int J Pharm 2023; 647:123563. [PMID: 37907141 DOI: 10.1016/j.ijpharm.2023.123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to fabricate Miconazole Nitrate transethosomes (MCZN TESs) embedded in chitosan-based gel for the topical treatment of Cutaneous Candidiasis. A thin film hydration method was employed to formulate MCZN TESs. The prepared MCZN TESs were optimized and analyzed for their physicochemical properties including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (%EE), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), deformability, and Transmission electron microscopy (TEM). In vitro release, skin permeation and deposition, skin irritation, antifungal assay, and in vivo efficacy against infected rats were evaluated. The optimized MCZN TESs showed PS of 224.8 ± 5.1 nm, ZP 21.1 ± 1.10 mV, PDI 0.207 ± 0.009, and % EE 94.12 ± 0.101 % with sustained drug release profile. Moreover, MCZN TESs Gel exhibited desirable pH, spreadability, and viscosity. Notably, the penetration and deposition capabilities of MCZN TESs Gel showed a 4-fold enhancement compared to MCZN TESs. Importantly, in vitro antifungal assay elaborated MCZN TESs Gel anti-fungal activity was 2.38-fold more compared to MCZN Gel. In vivo, studies showed a 1.5 times reduction in the duration of treatment MCZN TESs Gel treated animal group. Therefore, studies demonstrated that MCZN TESs could be a suitable drug delivery system with higher penetration and good antifungal potential.
Collapse
Affiliation(s)
- Maryam Rasool
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan.
| |
Collapse
|
23
|
Asghar Z, Jamshaid T, Sajid-ur-Rehman M, Jamshaid U, Gad HA. Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity. Pharmaceutics 2023; 15:2537. [PMID: 38004517 PMCID: PMC10675164 DOI: 10.3390/pharmaceutics15112537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against Candida albicans through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) (p ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.
Collapse
Affiliation(s)
- Zara Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Muhammad Sajid-ur-Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Usama Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, Strasbourg University, 67084 Strasbourg, France;
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
24
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
25
|
Naseri A, Taymouri S, Hosseini Sharifabadi A, Varshosaz J. Chrysin loaded bilosomes improve the hepatoprotective effects of chrysin against CCl4 induced hepatotoxicity in mice. J Biomater Appl 2023; 38:509-526. [PMID: 37632164 DOI: 10.1177/08853282231198948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In the present work, chrysin loaded bilosomes were formulated, characterized and evaluated to enhance the hepatoprotective activity of drug. Accordingly, chrysin loaded bilosomes were prepared by applying the thin film hydration method; also, fractional factorial design was used to optimize the production conditions of nanoformulations. The prepared formulations were subjected to different methods of characterization; then the hepatoprotective activity of the optimized one was evaluated in the CCl4 hepatointoxicated mice model. Optimized chrysin loaded bilosomes showed a spherical shape with a particle size of 232.97 ± 23 nm, the polydispersity index of 0.35 ± 0.01, the zeta potential of -44.5 ± 1.27 mv, the entrapment efficiency of 96.77 ± 0.18%, the drug loading % of 6.46 ± 0.01 and the release efficiency of 42.25 ± 1.04 during 48 h. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay demonstrated the superiority of the anti-oxidant potential of chrysin loaded bilosomes, as compared to pure chrysin. This was in agreement with histopathological investigations, showing significant improvement in serum hepatic biomarkers of CCl4 intoxicated mice treated with chrysin loaded bilosomes, as compared with free chrysin. These results, thus, showed the potential use of bilosomes to enhance the hepatoprotective activity of chrysin via oral administration.
Collapse
Affiliation(s)
- Atefeh Naseri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hosseini Sharifabadi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Hussain A, Altamimi MA, Ramzan M, Khuroo T. Hansen Solubility Parameters and QbD-Oriented HPLC Method Development and Validation for Dermatokinetic Study of a Miconazole-Loaded Cationic Nanoemulsion in Rat Model. ACS OMEGA 2023; 8:34746-34759. [PMID: 37780027 PMCID: PMC10536884 DOI: 10.1021/acsomega.3c03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Miconazole (MCZ) is a potential antifungal drug to treat skin infections caused by Candida, Tinea pedis (athlete's foot fungal infection), Tinea cruris (jock itching in the groin and buttocks), and Tinea corporis (red scaly rash on the skin). The current study focused on Hansen parameter-based solvent selection (HSPiP software) and method development optimization using an experimental design tool for sensitive, accurate, reproducible, economic, rapid, robust, and precise methodology to quantify MCZ in rat plasma. Moreover, a Taguchi design was used for screening two independent factors (flow rate and ACN content). Quality by design (QbD) was employed to optimize and identify the right ratio of mobile phase composition and its impact on the peak and retention time. The elution of MCZ was achieved using methanol and acetonitrile (15:85 v/v ratio) at a retention time of 6 min and optimal flow rate (1 mL/min). Finally, the method was validated based on accuracy, precision, linearity, selectiveness, and high recovery at varied concentrations as per the International Council for Harmonization (ICH) guidelines. The method was linear (r2 = 0.999) over the explored concentration range (250-2000 ng/mL) at 270 nm detection wavelength. The optimized method was used to quantify in vivo pharmacokinetic (PK) study after transdermal application of MCZ-loaded formulations (MCNE11, MNE11, MCZ-Sol, and MCZ-MKT). HSP-oriented solvent selection and quality by design-based optimized process variables and composition in the optimized analytical methodology were quite convincing and have been a cutting-edge MCZ analysis method so far. The validated method was robust, economic, and rapid with high specificity and selectivity.
Collapse
Affiliation(s)
- Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohhammad Ramzan
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwada 144411, Punjab, India
| | - Tahir Khuroo
- Department
of Pharmaceutics, Irma lerma College of Pharmacy, Texas A & M University, Kingsville, Texas 78363, United States
| |
Collapse
|
27
|
Qureshi MI, Jamil QA, Usman F, Wani TA, Farooq M, Shah HS, Ahmad H, Khalil R, Sajjad M, Zargar S, Kausar S. Tioconazole-Loaded Transethosomal Gel Using Box-Behnken Design for Topical Applications: In Vitro, In Vivo, and Molecular Docking Approaches. Gels 2023; 9:767. [PMID: 37754448 PMCID: PMC10530999 DOI: 10.3390/gels9090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Tioconazole (TCZ) is a broad-spectrum fungicidal BCS class II drug with reported activity against Candida albicans, dermatophytes, and certain Staphylococci bacteria. We report the use of TCZ-loaded transethosomes (TEs) to overcome the skin's barrier function. TCZ-loaded TEs were fabricated by using a cold method with slight modification. Box-Behnken composite design was utilized to investigate the effect of independent variables. The fabricated TEs were assessed with various physicochemical characterizations. The optimized formulation of TCZ-loaded TEs was incorporated into gel and evaluated for pH, conductivity, drug content, spreadability, rheology, in vitro permeation, ex vivo permeation, and in vitro and in vivo antifungal activity. The fabricated TCZ-loaded TEs had a % EE of 60.56 to 86.13, with particle sizes ranging from 219.1 to 757.1 nm. The SEM images showed spherically shaped vesicles. The % drug permeation was between 77.01 and 92.03. The kinetic analysis of all release profiles followed Higuchi's diffusion model. The FTIR, DSC, and XRD analysis showed no significant chemical interactions between the drug and excipients. A significantly higher antifungal activity was observed for TCZ-loaded transethosomal gel in comparison to the control. The in vivo antifungal study on albino rats indicated that TCZ-loaded transethosomal gel showed a comparable therapeutic effect in comparison to the market brand Canesten®. Molecular docking demonstrated that the TCZ in the TE composition was surrounded by hydrophobic excipients with increased overall hydrophobicity and better permeation. Therefore, TCZ in the form of transethosomal gel can serve as an effective drug delivery system, having the ability to penetrate the skin and overcome the stratum corneum barrier with improved efficacy.
Collapse
Affiliation(s)
- Muhammad Imran Qureshi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 66000, Pakistan; (M.I.Q.); (Q.A.J.)
| | - Qazi Adnan Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 66000, Pakistan; (M.I.Q.); (Q.A.J.)
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassir Farooq
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan;
| | - Hassan Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, 1-Khayabaan-e-Jinnah Road, Johar Town, Lahore 54000, Pakistan;
| | - Ruqaiya Khalil
- Centro De Investigaciones Biomédicas, University of Vigo (CINBO), 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Muhammad Sajjad
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Seema Zargar
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Safina Kausar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| |
Collapse
|
28
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
29
|
Squittieri R, Baldino L, Reverchon E. Production of Antioxidant Transfersomes by a Supercritical CO 2 Assisted Process for Transdermal Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1812. [PMID: 37368242 DOI: 10.3390/nano13121812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 and 3000 mg), kinds of edge activators (Span® 80 and Tween® 80), and phosphatidylcholine to edge activator weight ratio (95:5, 90:10, 80:20) were tested. Formulations prepared using Span® 80 and phosphatidylcholine at an 80:20 weight ratio produced stable transfersomes (-30.4 ± 2.4 mV ζ-potential) that were characterized by a mean diameter of 138 ± 55 nm. A prolonged ascorbic acid release of up to 5 h was recorded when the largest amount of phosphatidylcholine (3000 mg) was used. Moreover, a 96% ascorbic acid encapsulation efficiency and a quasi-100% DPPH radical scavenging activity of transfersomes were measured after supercritical processing.
Collapse
Affiliation(s)
- Raffaella Squittieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Center for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Center for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
30
|
Phechkrajang C, Phiphitphibunsuk W, Sukthongchaikool R, Nuchtavorn N, Leanpolchareanchai J. Development of Miconazole-Loaded Microemulsions for Enhanced Topical Delivery and Non-Destructive Analysis by Near-Infrared Spectroscopy. Pharmaceutics 2023; 15:1637. [PMID: 37376085 DOI: 10.3390/pharmaceutics15061637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The antifungal drug miconazole nitrate has a low solubility in water, leading to reduced therapeutic efficacy. To address this limitation, miconazole-loaded microemulsions were developed and assessed for topical skin delivery, prepared through spontaneous emulsification with oleic acid and water. The surfactant phase included a mixture of polyoxyethylene sorbitan monooleate (PSM) and various cosurfactants (ethanol, 2-(2-ethoxyethoxy) ethanol, or 2-propanol). The optimal miconazole-loaded microemulsion containing PSM and ethanol at a ratio of 1:1 showed a mean cumulative drug permeation of 87.6 ± 5.8 μg/cm2 across pig skin. The formulation exhibited higher cumulative permeation, permeation flux, and drug deposition than conventional cream and significantly increased the in vitro inhibition of Candida albicans compared with cream (p < 0.05). Over the course of a 3-month study conducted at a temperature of 30 ± 2 °C, the microemulsion exhibited favorable physicochemical stability. This outcome signifies its potential suitability as a carrier for effectively administering miconazole through topical administration. Additionally, a non-destructive technique employing near-infrared spectroscopy coupled with a partial least-squares regression (PLSR) model was developed to quantitatively analyze microemulsions containing miconazole nitrate. This approach eliminates the need for sample preparation. The optimal PLSR model was derived by utilizing orthogonal signal correction pretreated data with one latent factor. This model exhibited a remarkable R2 value of 0.9919 and a root mean square error of calibration of 0.0488. Consequently, this methodology holds potential for effectively monitoring the quantity of miconazole nitrate in various formulations, including both conventional and innovative ones.
Collapse
Affiliation(s)
- Chutima Phechkrajang
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Rapee Sukthongchaikool
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nantana Nuchtavorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
31
|
Ahmed MM, Ameen MSM, Abazari M, Badeleh SM, Rostamizadeh K, Mohammed SS. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Biomed Pharmacother 2023; 164:114943. [PMID: 37267634 DOI: 10.1016/j.biopha.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.
Collapse
Affiliation(s)
- Mohammed Mahmood Ahmed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| | | | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral sciences, Department of Pharmacology, School of medicine, University of Washington, WA, USA.
| | - Shahen Salih Mohammed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| |
Collapse
|
32
|
Katta C, Shaikh AS, Bhale N, Jyothi VGSS, Kaki VR, Dikundwar AG, Singh PK, Shukla R, Mishra K, Madan J. Naringenin-Capped Silver Nanoparticles Amalgamated Gel for the Treatment of Cutaneous Candidiasis. AAPS PharmSciTech 2023; 24:126. [PMID: 37226032 DOI: 10.1208/s12249-023-02581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
The current research was aimed to synthesize a phytomolecule, naringenin (NRG)-mediated silver nanoparticles (NRG-SNPs) to study their antifungal potential against Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The NRG-SNPs were synthesized by using NRG as a reducing agent. The synthesis of NRG-SNPs was confirmed by a color change and surface plasmon resonance (SPR) peak at 425 nm. Furthermore, the NRG-SNPs were analyzed for size, PDI, and zeta potential, which were found to be 35 ± 0.21 nm, 0.19 ± 0.03, and 17.73 ± 0.92 mV, respectively. In silico results demonstrated that NRG had a strong affinity towards the sterol 14α-demethylase. The docking with ceramide revealed the skin permeation efficiency of the NRG-SNPs. Next, the NRG-SNPs were loaded into the topical dermal dosage form (NRG-SNPs-TDDF) by formulating a gel using Carbopol Ultrez 10 NF. The MIC50 of NRG solution and TSC-SNPs against C. albicans was found to be 50 µg/mL and 4.8 µg/mL, respectively, significantly (P < 0.05) higher than 0.3625 µg/mL of NRG-SNPs-TDDF. Correspondingly, MIC50 results were calculated against C. glabrata and the results of NRG, TSC-SNPs, NRG-SNPs-TDDF, and miconazole nitrate were found to be 50 µg/mL, 9.6 µg/mL, 0.3625 µg/mL, and 3-µg/mL, respectively. Interestingly, MIC50 of NRG-SNPs-TDDF was significantly (P < 0.05) lower than MIC50 of miconazole nitrate against C. glabrata. The FICI (fractional inhibitory concentration index) value against both the C. albicans and C. glabrata was found to be 0.016 and 0.011, respectively, which indicated the synergistic antifungal activity of NRG-SNPs-TDDF. Thus, NRG-SNPs-TDDF warrants further in depth in vivo study under a set of stringent parameters for translating in to a clinically viable antifungal product.
Collapse
Affiliation(s)
- Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nagesh Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Renu Shukla
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
33
|
Aljohani AA, Alanazi MA, Munahhi LA, Hamroon JD, Mortagi Y, Qushawy M, Soliman GM. Binary ethosomes for the enhanced topical delivery and antifungal efficacy of ketoconazole. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
34
|
Li Y, Tai Z, Ma J, Miao F, Xin R, Shen C, Shen M, Zhu Q, Chen Z. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma. J Nanobiotechnology 2023; 21:139. [PMID: 37118807 PMCID: PMC10148442 DOI: 10.1186/s12951-023-01877-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Topical anticancer drugs offer a potential therapeutic modality with high compliance for treating cutaneous squamous cell carcinoma (cSCC). However, the existing topical treatments for cSCC are associated with limited penetrating ability to achieve the desired outcome. Therefore, there remains an urgent requirement to develop drugs with efficient anticancer activity suitable for treating cSCC and to overcome the skin physiological barrier to improve the efficiency of drug delivery to the tumor. RESULTS We introduced lycorine (LR) into the topical treatment for cSCC and developed a cell-penetrating peptide (CPP)-modified cationic transfersome gel loaded with lycorine-oleic acid ionic complex (LR-OA) (LR@DTFs-CPP Gel) and investigated its topical therapeutic effects on cSCC. The anti-cSCC effects of LR and skin penetration of LR-OA transfersomes were confirmed. Simultaneously, cationic lipids and modification of R5H3 peptide of the transfersomes further enhanced the permeability of the skin and tumor as well as the effective delivery of LR to tumor cells. CONCLUSIONS Topical treatment of cSCC-xenografted nude mice with LR@DTFs-CPP Gel showed effective anticancer properties with high safety. This novel formulation provides novel insights into the treatment and pathogenesis of cSCC.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Cuie Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
35
|
Nasr AM, Badawi NM, Tartor YH, Sobhy NM, Swidan SA. Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity. Antibiotics (Basel) 2023; 12:antibiotics12040707. [PMID: 37107069 PMCID: PMC10135108 DOI: 10.3390/antibiotics12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Treatment of dermatophytosis is quite challenging. This work aims to investigate the antidermatophyte action of Azelaic acid (AzA) and evaluate its efficacy upon entrapment into transethosomes (TEs) and incorporation into a gel to enhance its application. Optimization of formulation variables of TEs was carried out after preparation using the thin film hydration technique. The antidermatophyte activity of AzA-TEs was first evaluated in vitro. In addition, two guinea pig infection models with Trichophyton (T.) mentagrophytes and Microsporum (M.) canis were established for the in vivo assessment. The optimized formula showed a mean particle size of 219.8 ± 4.7 nm and a zeta potential of -36.5 ± 0.73 mV, while the entrapment efficiency value was 81.9 ± 1.4%. Moreover, the ex vivo permeation study showed enhanced skin penetration for the AzA-TEs (3056 µg/cm2) compared to the free AzA (590 µg/cm2) after 48 h. AzA-TEs induced a greater inhibition in vitro on the tested dermatophyte species than free AzA (MIC90 was 0.01% vs. 0.32% for T. rubrum and 0.032% for T. mentagrophytes and M. canis vs. 0.56%). The mycological cure rate was improved in all treated groups, specially for our optimized AzA-TEs formula in the T. mentagrophytes model, in which it reached 83% in this treated group, while it was 66.76% in the itraconazole and free AzA treated groups. Significant (p < 0.05) lower scores of erythema, scales, and alopecia were observed in the treated groups in comparison with the untreated control and plain groups. In essence, the TEs could be a promising carrier for AzA delivery into deeper skin layers with enhanced antidermatophyte activity.
Collapse
Affiliation(s)
- Ali M Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Nader M Sobhy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
36
|
Kharwade R, Ali N, Gangane P, Pawar K, More S, Iqbal M, Bhat AR, AlAsmari AF, Kaleem M. DOE-Assisted Formulation, Optimization, and Characterization of Tioconazole-Loaded Transferosomal Hydrogel for the Effective Treatment of Atopic Dermatitis: In Vitro and In Vivo Evaluation. Gels 2023; 9:gels9040303. [PMID: 37102915 PMCID: PMC10137874 DOI: 10.3390/gels9040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
The present study was performed to determine the therapeutic effects of tioconazole (Tz)-loaded novel transferosome carriers (TFs) for the treatment of atopic dermatitis (AD). Method: Tioconazole transferosomes suspension (TTFs) was formulated and optimized using a 32 factorial design. After that, the optimized batch of TTFs loaded into Carbopol 934 and sodium CMC was prepared with hydrogel and noted as TTFsH. Subsequently, it was evaluated for pH, spread ability, drug content, in vitro drug release, viscosity, in vivo scratching and erythema score, skin irritation, and histopathology study. Result: The optimized batch of TTFs (B4) showed the values of vesicle size, flux, and entrapment efficiency to be 171.40 ± 9.03 nm, 48.23 ± 0.42, and 93.89 ± 2.41, respectively. All batches of TTFsH showed sustained drug release for up to 24 h. The F2 optimized batch released Tz in an amount of 94.23 ± 0.98% with a flux of 47.23 ± 0.823 and followed the Higuchi kinetic model. The in vivo studies provided evidence that the F2 batch of TTFsH was able to treat atopic dermatitis (AD) by reducing the erythema and the scratching score compared to that of the marketed formulation (Candiderm cream, Glenmark). The histopathology study supported the result of the erythema and scratching score study with intact skin structure. It showed that a formulated low dose of TTFsH was safe and biocompatible to both the dermis and the epidermis layer of skin. Conclusion: Thus, a low dose of F2-TTFsH is a promising tool that effectively targeted the skin for the topical delivery of Tz to treat atopic dermatitis symptoms.
Collapse
Affiliation(s)
- Rohini Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Purushottam Gangane
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Kapil Pawar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Sachin More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abid R. Bhat
- Department of Emergency Medicine, University of Maryland School of Medicine, 685 West Baltimore St, HSFI Rm 280I, Baltimore, MD 21201, USA
| | - Abdullah F. AlAsmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| |
Collapse
|
37
|
Zaki RM, El Sayeh Abou El Ela A, Almurshedi AS, Aldosari BN, Aldossari AA, Ibrahim MA. Fabrication and Assessment of Orodispersible Tablets Loaded with Cubosomes for the Improved Anticancer Activity of Simvastatin against the MDA-MB-231 Breast Cancer Cell Line. Polymers (Basel) 2023; 15:polym15071774. [PMID: 37050387 PMCID: PMC10098580 DOI: 10.3390/polym15071774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Various factors limit the use of simvastatin as an anticancer drug. Therefore, this study aimed to analyse simvastatin (SIM)-loaded cubosome efficacy against breast cancer. SIM-loaded cubosomes were prepared using the emulsification method using different glyceryl monooleate, Pluronic F127 (PF-127), and polyvinyl alcohol (PVA) ratios. The best cubosomal formula was subjected to an in vitro cytotoxicity analysis using the human breast cancer cell line, MDA-MB-231 (MDA) (ATCC, HTB-26), and formulated as oral disintegrating tablets through direct compression. PF-127 and PVA positively affected drug loading, and the entrapment efficiency percentage of different SIM-cubosomal formulations ranged from 33.52% to 80.80%. Vesicle size ranged from 181.9 ± 0.50 to 316.6 ± 1.25 nm. PF-127 enhanced in vitro SIM release from cubosome formulations due to its solubilising action on SIM. The in vitro dissolution analysis indicated that SIM exhibited an initial dissolution of 10.4 ± 0.25% within the first 5 min, and 63.5 ± 0.29% of the loaded drug was released after 1 h. Moreover, cubosome formula F3 at 25 and 50 µg/mL doses significantly decreased MDA cell viability compared to the 12.5 µg/mL dose. The untreated SIM suspension and drug-free cubosomes at all doses had no significant influence on MDA cell viability compared to the control.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | | | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
39
|
Umam N, Ahmad M, Kushwaha P. Design and fabrication of Sesamol-loaded transfersomal gel for wound healing: physicochemical characterization and in-vivo evaluation. Drug Dev Ind Pharm 2023; 49:159-167. [PMID: 36931230 DOI: 10.1080/03639045.2023.2191726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVE In the present study, an attempt has been made to develop SL-loaded transfersomal gel for the effective treatment of delayed wound healing. SIGNIFICANCE The wound healing process consists of a complex series of biochemical events and changes in cellular activity that restore the integrity of the skin and the subcutaneous tissue. Sesamol (SL), which is a natural phenolic compound, is known for its antioxidant properties, anti-inflammatory properties, and wound-healing abilities. METHODS A thin-film hydration method was used to prepare SL-loaded transfersomes. Different formulations containing Tween-80 and Span-80 as edge activators were prepared and optimized. Various characteristics of vesicles were assessed, such as size, shape, loading efficiency, deformability, and in vitro skin penetration. The optimized formulation was then incorporated into 1% carbopol 940 gel. An in vivo wound healing potential of the selected formulation was assessed by an excision wound model. RESULTS The SL-loaded transfersomal gel displayed improved skin penetration and better skin deposition. Wound healing studies showed that the highest wound contraction was observed with SL-loaded transfersomes. Following 21 days of application of the transfersomal gel, a marked improvement in skin histological architecture was found. CONCLUSION The study findings suggest that transfersomal gel has great potential as a therapeutic option in wound healing.
Collapse
Affiliation(s)
- Nida Umam
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | |
Collapse
|
40
|
Preparation and Optimization of Itraconazole Transferosomes-Loaded HPMC Hydrogel for Enhancing Its Antifungal Activity: 2^3 Full Factorial Design. Polymers (Basel) 2023; 15:polym15040995. [PMID: 36850278 PMCID: PMC9964271 DOI: 10.3390/polym15040995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Itraconazole (ITZ) is a triazole antifungal agent characterized by broad-spectrum activity against fungal infections. The main drawback of ITZ, when applied topically, is the low skin permeability due to the stratum corneum, the outermost layer of the skin, which represents the main barrier for drug penetration. Therefore, this study aimed to prepare itraconazole as transferosomes (ITZ-TFS) to overcome the barrier function of the skin. ITZ-TFSs were prepared by thin lipid film hydration technique using different surfactants, sodium lauryl sulfate (SLS) and sodium deoxycholate (SDC). The prepared ITZ-TFS were evaluated for entrapment efficiency (EE) %, particle size, polydispersity index (PDI), zeta potential, and in vitro drug release to obtain an optimized formula. The surface morphology of the optimized formula of ITZ-TFS was determined by transmission electron microscope (TEM). The optimized formulation was prepared in the form of gel using hydroxyl propyl methyl cellulose (HPMC) gel base. The prepared ITZ-TFS gel was evaluated for homogeneity, drug content, spreadability, pH, and in vitro antifungal activity in comparison with the free ITZ gel. The prepared ITZ-TFS formulations exhibited high EE% ranging from 89.02 ± 1.65% to 98.17 ± 1.28% with particle size ranging from 132.6 ± 2.15 nm to 384.1 ± 3.46. The PDI for all ITZ-TFSs was less than 0.5 and had a negative zeta potential. The TEM image for the optimized formulation (ITZ-TFS4) showed spherical vesicles with a smooth surface. The prepared gels had good spreadability, pH, and acceptable drug content. ITZ-TFS gel showed higher antifungal activity than free ITZ gel as determined by zone of inhibition. ITZ was successfully prepared in form of TFSs with higher antifungal activity than the free drug.
Collapse
|
41
|
Imam SS, Gilani SJ, Zafar A, Jumah MNB, Alshehri S. Formulation of Miconazole-Loaded Chitosan-Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment. Pharmaceutics 2023; 15:pharmaceutics15020581. [PMID: 36839903 PMCID: PMC9959533 DOI: 10.3390/pharmaceutics15020581] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box-Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p < 0.05) slower drug release (58.54 ± 4.1%). MZBSoG2 was found to be a non-irritant because it achieved a score of zero (standard score) in the HET-CAM test. It also exhibited significant antifungal activity compared to pure MZ against Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year of Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Tayah DY, Eid AM. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve its Antifungal Activity. Saudi Pharm J 2023; 31:526-534. [PMID: 37063448 PMCID: PMC10102553 DOI: 10.1016/j.jsps.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Miconazole is a synthetic derivative of imidazole, a medication with a broad-spectrum antifungal agent that is used to treat localized vaginal, skin, and nail infections. The aim of the study was to develop an innovative technique to improve the permeability and efficacy of topical miconazole nitrate. A nanoemulgel of miconazole nitrate was formulated by the incorporation of a nanoemulsion and a hydrogel. The nanoemulsion was first optimized using a self-emulsifying technique, and the drug was then loaded into the optimum formulation and evaluated prior to mixing with the hydrogel. Miconazole nitrate nanoemulgel formulations were evaluated for their physical characteristics and antifungal activity. Based on the results, the formulation with 0.4 % Carbopol showed the highest release profile (41.8 mg/ml after 2 h); thus, it was chosen as the optimum formulation. A cell diffusion test was performed to examine the ability of the Miconazole nitrate nanoemulgel to penetrate the skin and reach the bloodstream. Percentage cumulative drug releases of 29.67 % and 23.79 % after 6 h were achieved for the MNZ nanoemulgel and the commercial cream, Daktazol, respectively. The antifungal activity of the novel MNZ nanoemulgel formulation was tested against Candida albicans and compared to Daktazol cream and almond oil; the results were: 40.9 ± 2.3 mm, 25.4 ± 2.7 mm and 18 ± 1.9 mm, respectively. In conclusion, a novel MNZ nanoemulgel showing superior antifungal activity compared to that of the commercial product has been developed. This nanotechnology technique is a step toward making pharmaceutical dosage forms that has a lot of promise.
Collapse
Affiliation(s)
| | - Ahmad M. Eid
- Corresponding author at: Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
43
|
Alenzi AM, Albalawi SA, Alghamdi SG, Albalawi RF, Albalawi HS, Qushawy M. Review on Different Vesicular Drug Delivery Systems (VDDSs) and Their Applications. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:18-32. [PMID: 35227188 DOI: 10.2174/1872210516666220228150624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colloidal dispersions, also known as vesicular drug delivery systems (VDDSs), are highly ordered assemblies composed of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water. OBJECTIVE VDDSs are important to target the entrapped drugs at specific sites inside the body, control the drug release, enhance the drug bioavailability, and reduce undesired side effects. METHODS There are different types of VDDSs suitable for the entrapment of both hydrophilic and lipophilic drugs. According to the patent composition, VDDSs are classified into lipid-based and nonlipid- based VDDSs. RESULTS There are different types of VDDSs which include liposomes, ethosomes, transferosomes, ufasomes, colloidosomes, cubosomes, niosomes, bilosomes, aquasomes, etc. Conclusion: This review article aims to address the different types of VDDSs, their advantages and disadvantages, and their therapeutic applications.
Collapse
Affiliation(s)
- Asma M Alenzi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sana A Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Shatha G Alghamdi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Rawan F Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hadeel S Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
| |
Collapse
|
44
|
Kanshide A, Peram MR, Chandrasekhar N, Jamadar A, Kumbar V, Kugaji M. Formulation, Optimization, and Antioxidant Evaluation of Tetrahydrocurcumin-Loaded Ultradeformable Nanovesicular Cream. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Zaid Alkilani A, Hamed R, Abdo H, Swellmeen L, Basheer HA, Wahdan W, Abu Kwiak AD. Formulation and Evaluation of Azithromycin-Loaded Niosomal Gel: Optimization, In Vitro Studies, Rheological Characterization, and Cytotoxicity Study. ACS OMEGA 2022; 7:39782-39793. [PMID: 36385887 PMCID: PMC9648136 DOI: 10.1021/acsomega.2c03762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
Several novel, innovative approaches for improving transdermal delivery of BCS class III drugs have been proposed. Despite their great aqueous solubility, BCS class III drugs have the drawback of limited permeability. The objective of the current work was to screen the suitability of niosomes as a nanocarrier in permeation enhancement of azithromycin (AZM) transdermal delivery. Niosomes were prepared by an ether injection method using a nonionic surfactant (Span 60) and cholesterol at different concentrations. The ζ potential (ZP), polydispersity index (PDI), and particle size (PS) of AZM-loaded niosomes were evaluated. The size of the niosomes was found to vary between 288 and 394 nm. The results revealed that the niosomes prepared in a ratio of 2:1 (Span 60: cholesterol) had larger vesicle sizes, but all of them were characterized by narrow size distributions (PDI <0.95). Niosomal gel was successfully prepared using different polymers. The appearance, pH, viscosity, and ex vivo drug release of niosomal gel formulations were all examined. The flow curves showed that the niosomal gel displayed lower viscosity values than its corresponding conventional gels. Niosomal and conventional gels exhibited a domination of the elastic modulus (G') over the viscous modulus (G″) (G'>G″) in the investigated frequency range (0.1-100 rad/s), indicating stable gels with more solid-like properties. Ex vivo skin permeation studies for the niosomal gel show 90.83 ± 3.19% of drug release in 24 h as compared with the conventional gel showing significantly lower (P < 0.001) drug release in the same duration (1.25 ± 0.12%). Overall, these results indicate that niosomal gel could be an effective transdermal nanocarrier for enhancing the permeability of AZM, a BCS class III drug. In conclusion, this study suggests that transdermal formulations of AZM in the niosomal gel were successfully developed and could be used as an alternative route of administration.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa13110, Jordan
- . Phone: 00962795294329, Fax: 0096253821120
| | - Rania Hamed
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman11733, Jordan
| | - Hajer Abdo
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa13110, Jordan
| | - Lubna Swellmeen
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa13133, Jordan
| | - Haneen A. Basheer
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa13110, Jordan
| | - Walaa Wahdan
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa13110, Jordan
| | - Amani D. Abu Kwiak
- Department
of Pharmacy, Faculty of Pharmacy, Zarqa
University, Zarqa13110, Jordan
| |
Collapse
|
46
|
Modi C, Bharadia P. Pareto chart‐enabled screening of influential factors in designing transfersomes. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chetna Modi
- Department of Pharmaceutics Anand Pharmacy College Anand India
| | - Praful Bharadia
- Department of Pharmaceutics L. M. College of Pharmacy Ahmedabad India
| |
Collapse
|
47
|
Preparation and optimization of medicated cold cream using Caralluma adscendens var. attenuata for the treatment of Candida skin infection. BIOTECHNOLOGIA 2022; 103:249-260. [PMID: 36605824 PMCID: PMC9642957 DOI: 10.5114/bta.2022.118668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Fungal skin infection is a major skin health issue worldwide. For the treatment of fungal infections, systematic antifungal therapies are frequently prescribed. The aim of this study is to prepare an antifungal cold cream from Caralluma adscendens var. attenuata to treat deep dermal fungal infection in the skin layer. To achieve this, different concentrations of plant extract-based cold cream were prepared, and their in vitro characteristic features such as color, texture, pH, viscosity, spreadability, stability, permeation, were analyzed together with ex vivo evaluation to identify their applicability in the treatment of acute rat skin irritation. After 72 h of induction of Candida albicans infection in rats (7 days, two times/day), C. adscendens var. attenuata cold cream was applied topically. In rats with C. albicans induction without any treatment, adverse skin damages were visible in the form of red rashes, whereas in those with the formulated cold cream application, significantly less skin damage and inflammation were observed on a dose-dependent basis. Moreover, the reduced microbial colonization and histopathology of the rat skin without any treatment indicated the successful invasion of C. albicans and showed the morphological changes caused by candidal infection. However, treatment with the C. adscendens var. attenuata cream significantly inhibited candida colonization and reversed the morphological changes. In addition, the formulated C. adscendens var. attenuata cold cream showed good spreadability, permeation, and viscosity. Hence, it can act as a potent antifungal topical agent for the treatment of C. albicans skin infection without any irritation, thus safeguarding the skin tissue.
Collapse
|
48
|
Todke P, Polaka S, Raval N, Gondaliya P, Tambe V, Maheshwari R, Kalia K, Tekade RK. 'Transfersome-embedded-gel' for dual-mechanistic delivery of anti-psoriatic drugs to dermal lymphocytes. J Microencapsul 2022; 39:495-511. [PMID: 35993180 DOI: 10.1080/02652048.2022.2116119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Develop a platform for co-delivering clobetasol propionate (CP) and cyclosporine (CyA) to the epidermis and dermis to treat psoriasis. METHODS The transfersomes were prepared by thin-film hydration method. Transfersomes were characterised by dynamic light scattering and transmission electron microscope (TEM). Then, the gel stability, viscosity, pH, and spreadability were measured. Cytotoxicity of the CyA-loaded transfersome embedded in CP-dispersed gel (TEG-CyA-CP) was assessed on both human keratinocyte cell line (HaCaT) and Jurkat cells. In vitro cellular uptake and ex vivo dermal distribution was measured. The expression of inflammatory markers was assessed by reverse-transcription PCR (RT-PCR). RESULTS Nanoscale (<150 nm) transferosomes with high CyA encapsulation efficiency (>86%) were made. TEG-CyA-CP demonstrated higher viscosity (4808.8 ± 12.01 mPas), which may help control dual drug release. Ex vivo results showed TEG-CyA-CP ability to deliver CyA in the dermis and CP in the epidermis. RT-PCR studies showed the optimised formulation helps reduce the tumour necrosis factor (TNF-α) and interleukin-1 (IL-1) levels to relieve psoriasis symptoms. CONCLUSION The developed TEG-CyA-CP represents a promising fit-to-purpose delivery platform for the dual-site co-delivery of CyA and CP in treating psoriasis.
Collapse
Affiliation(s)
- Pooja Todke
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Suryanarayana Polaka
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Nidhi Raval
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Piyush Gondaliya
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Vishakha Tambe
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rahul Maheshwari
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| |
Collapse
|
49
|
Enhanced potato tuber penetration of carboxin via ultradeformable liposomes. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Opatha SAT, Titapiwatanakun V, Boonpisutiinant K, Chutoprapat R. Preparation, Characterization and Permeation Study of Topical Gel Loaded with Transfersomes Containing Asiatic Acid. Molecules 2022; 27:molecules27154865. [PMID: 35956816 PMCID: PMC9369753 DOI: 10.3390/molecules27154865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to investigate the in vitro permeation of asiatic acid (AA) in the form of a topical gel after entrapment in transfersomes by Franz diffusion cells. Transfersomes composed of soybean lecithin and three different edge activators including Tween 80 (TW80), Span 80 (SP80) and sodium deoxycholate (SDC) at the ratio of 50:50, 90:10 and 90:10, respectively, together with 0.3% w/w of AA, were prepared by a high-pressure homogenization technique and further incorporated in gels (TW80AATG, SP80AATG and SDCAATG). All transfersomal gels were characterized for their AA contents, dynamic viscosity, pH and homogeneity. Results revealed that the AA content, dynamic viscosity and pH of the prepared transfersomal gels ranged from 0.272 ± 0.006 to 0.280 ± 0.005% w/w, 812.21 ± 20.22 to 1222.76 ± 131.99 Pa.s and 5.94 ± 0.03 to 7.53 ± 0.03, respectively. TW80AATG gave the highest percentage of AA penetration and flux into the Strat-M® membrane at 8 h (8.53 ± 1.42% and 0.024 ± 0.008 mg/cm2/h, respectively) compared to SP80AATG (8.00 ± 1.70% and 0.019 ± 0.010 mg/cm2/h, respectively), SDCAATG (4.80 ± 0.50% and 0.014 ± 0.004 mg/cm2/h, respectively), non-transfersomal gels (0.73 ± 0.44 to 3.13 ± 0.46% and 0.002 ± 0.001 to 0.010 ± 0.002 mg/cm2/h, respectively) and hydroethanolic AA solution in gel (1.18 ± 0.76% and 0.004 ± 0.003 mg/cm2/h, respectively). These findings indicate that the TW80AATG might serve as a lead formulation for further development toward scar prevention and many types of skin disorders.
Collapse
Affiliation(s)
- Shakthi Apsara Thejani Opatha
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Varin Titapiwatanakun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisutiinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand;
| | - Romchat Chutoprapat
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
- Correspondence:
| |
Collapse
|