1
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
2
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
3
|
Iqbal A, Javaid MA, Hussain MT, Raza ZA. Development of lactic acid based chain extender and soybean oil-derived polyurethanes for ecofriendly sustained drug delivery systems. Int J Biol Macromol 2024; 265:130717. [PMID: 38479673 DOI: 10.1016/j.ijbiomac.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the present study, a range of sustainable, biocompatible and biodegradable polyurethanes (PU-1 to PU-4) were synthesized using different combinations of biobased polyol (obtained through the epoxidation of soybean oil, followed by ring opening with ethanol) and polyethylene glycol (PEG) and isophorone diisocyanate. The sustainable chain extender used in this study was synthesized by the esterification of lactic acid with ethylene glycol (EG). The synthesized PU samples were characterized through scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Wetting ability and thermal degradation analysis (TGA) of the samples were also studied. Subsequently, these PUs were examined as potential drug delivery systems using Gabapentin as a model drug, which was loaded in the polymer matrix using the solvent evaporation method. The drug release studies were carried out in 0.06 N HCl as a release medium according to the method outlined in the United States Pharmacopeia. The maximum drug release was observed for sample PU-P1, which was found to be 53.0 % after 6 h. Moreover, a comparison of different PU samples revealed a trend wherein the values of drug release were decreased with an increase in the PEG content.
Collapse
Affiliation(s)
- Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan.
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| |
Collapse
|
4
|
Pierrard A, Melo SF, Thijssen Q, Van Vlierberghe S, Lancellotti P, Oury C, Detrembleur C, Jérôme C. Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants. Biomacromolecules 2024; 25:1810-1824. [PMID: 38360581 DOI: 10.1021/acs.biomac.3c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Collapse
Affiliation(s)
- Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Sofia F Melo
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Faculty of Medicine, University of Liège, Avenue Hippocrate 15, Quartier Hôpital, 4000 Liège, Belgium
| | - Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Department of Cardiology - Centre Hospitalier Universitaire (CHU) of Liège, University of Liège Hospital, 4000 Liège, Belgium
| | - Cécile Oury
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| |
Collapse
|
5
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
6
|
Bahmani E, Banihashem S, Shirinzad S, Bybordi S, Shikhi-Abadi PG, Jazi FS, Irani M. Incorporation of doxorubicin and CoFe 2O 4 nanoparticles into the cellulose acetate phthalate / polyvinyl alcohol (core)/ polyurethane (shell) nanofibers against A549 human lung cancer during chemotherapy/hyperthermia combined method. Int J Pharm 2024; 649:123618. [PMID: 37977290 DOI: 10.1016/j.ijpharm.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Cellulose acetate phthalate (CAP)/polyvinyl alcohol (PVA)/polyurethane (PU) nanofibers were synthesized by simple and coaxial electrospinning (ES) processes. Doxorubicin (DOX) and the CoFe2O4 nanoparticles were loaded into the nanofibers. The performance of the prepared nanofibers was investigated for the sustained release of DOX against A541 lung cancer cells under chemotherapy/external magnetic field (EMF) and alternating magnetic field (AMF, hyperthermia treatment) combined methods in both the in vitro and in vivo conditions. The sustained release of DOX from core-shell nanofibers containing 5 wt% cobalt ferrite was obtained within 300, 600 h, at pH of 5.5 and 7.4 without AMF and 168, 360 h, under an alternating magnetic field (AMF). More than 98.3 ± 0.2 % of A549 cancer cells were killed in the presence of core-shell nanofibers containing 100 μg DOX and 5 % cobalt ferrite nanoparticles in the presence of AMF. The flowcytometric results indicated that only 19.1 and 8.85 % cancer cells remained alive under EMF and AMF, respectively. The in vivo results revealed in stopping the growth of tumor volume and decrease in the relative tumor volume up to 0.5 were obtained using magnetic core-shell nanofibers containing 100 μg DOX and 5 % cobalt ferrite nanoparticles in the presence of EMF and AMF, respectively.
Collapse
Affiliation(s)
- Ehsan Bahmani
- Department of Chemical Engineering, Payam Noor University, Tehran, Iran
| | | | - Sara Shirinzad
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sara Bybordi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Strankowska J, Grzywińska M, Łęgowska E, Józefowicz M, Strankowski M. Transport Mechanism of Paracetamol (Acetaminophen) in Polyurethane Nanocomposite Hydrogel Patches-Cloisite ® 30B Influence on the Drug Release and Swelling Processes. MATERIALS (BASEL, SWITZERLAND) 2023; 17:40. [PMID: 38203894 PMCID: PMC10779657 DOI: 10.3390/ma17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
This article describes the swelling and release mechanisms of paracetamol in polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite). The transport mechanism, swelling and release processes of the active substance in nanocomposite matrix were studied using gravimetric and UV-Vis spectroscopic methods. Swelling and release processes depend on the amount of clay nanoparticles in these systems and the degree of crosslinking of PU/PEG/Cloisite® 30B hydrogel nanocomposites. The presence of clay causes, on the one hand, a reduction in free volumes in the polymer matrices, making the swelling process less effective; on the other hand, the high swelling and self-aggregation behavior of Cloisite® 30B and the interactions of paracetamol both with it and with the matrix, cause a change in the transport mechanism from anomalous diffusion to Fickian-like diffusion. A more insightful interpretation of the swelling and release profiles of the active substance was proposed, taking into account the "double swelling" process, barrier effect, and aggregation of clay. It was also proven that in the case of modification of polymer matrices with nanoparticles, the appropriate selection of their concentration is crucial, due to the potential possibility of controlling the swelling and release processes in drug delivery patches.
Collapse
Affiliation(s)
- Justyna Strankowska
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland
| | - Ewelina Łęgowska
- Academia Copernicana Interdisciplinary Doctoral School, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Michał Strankowski
- Department of Polymer Technology, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
Schmitz TC, van Genabeek B, Pouderoijen MJ, Janssen HM, van Doeselaar M, Crispim JF, Tryfonidou MA, Ito K. Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs: Initial in vitro characterization. J Biomed Mater Res A 2023; 111:1903-1915. [PMID: 37539663 DOI: 10.1002/jbm.a.37594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Gradinaru LM, Bercea M, Lupu A, Gradinaru VR. Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers (Basel) 2023; 15:polym15071697. [PMID: 37050311 PMCID: PMC10096672 DOI: 10.3390/polym15071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In situ-forming gels with self-assembling and self-healing properties are materials of high interest for various biomedical applications, especially for drug delivery systems and tissue regeneration. The main goal of this research was the development of an innovative gel carrier based on dynamic inter- and intramolecular interactions between amphiphilic polyurethane and peptide structures. The polyurethane architecture was adapted to achieve the desired amphiphilicity for self-assembly into an aqueous solution and to facilitate an array of connections with peptides through physical interactions, such as hydrophobic interactions, dipole-dipole, electrostatic, π–π stacking, or hydrogen bonds. The mechanism of the gelation process and the macromolecular conformation in water were evaluated with DLS, ATR-FTIR, and rheological measurements at room and body temperatures. The DLS measurements revealed a bimodal distribution of small (~30–40 nm) and large (~300–400 nm) hydrodynamic diameters of micelles/aggregates at 25 °C for all samples. The increase in the peptide content led to a monomodal distribution of the peaks at 37 °C (~25 nm for the sample with the highest content of peptide). The sol–gel transition occurs very quickly for all samples (within 20–30 s), but the equilibrium state of the gel structure is reached after 1 h in absence of peptide and required more time as the content of peptide increases. Moreover, this system presented self-healing properties, as was revealed by rheological measurements. In the presence of peptide, the structure recovery after each cycle of deformation is a time-dependent process, the recovery is complete after about 300 s. Thus, the addition of the peptide enhanced the polymer chain entanglement through intermolecular interactions, leading to the preparation of a well-defined gel carrier. Undoubtedly, this type of polyurethane/peptide-based carrier, displaying a sol–gel transition at a biologically relevant temperature and enhanced viscoelastic properties, is of great interest in the development of medical devices for minimally invasive procedures or precision medicine.
Collapse
|
10
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
11
|
Faverzani Magnago R, Carolina de Aguiar A, Fagundes Valezan I, Mendes de Moraes F, Luiza Ziulkoski A, Dal Pont Morisso F, Alberto Kanis L, Modolon Zepon K. Polycaprolactone triol-based polyurethane film conjugated ibuprofen to sustained release: synthesis, physicochemical, cytotoxic, and release studies. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Soh WWM, Teoh RYP, Zhu J, Xun Y, Wee CY, Ding J, Thian ES, Li J. Facile Construction of a Two-in-One Injectable Micelleplex-Loaded Thermogel System for the Prolonged Delivery of Plasmid DNA. Biomacromolecules 2022; 23:3477-3492. [PMID: 35878156 DOI: 10.1021/acs.biomac.2c00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanoparticle-hydrogel systems have recently emerged as a class of interesting hybrid materials with immense potential for several biomedical applications. Remarkably, the incorporation of nanoparticles into a hydrogel may yield synergistic benefits lacking in a singular system. However, most synthetic strategies require laborious steps to achieve the system, severely restricting the process of translational research. Herein, a facile strategy to access a two-in-one system comprising two distinct polyurethane (PU)-based micellar systems is demonstrated and applied as a novel sustained gene delivery platform, where the two PUs are synthesized similarly but with slightly different compositions. One PU forms cationic micelles that complex with plasmid DNA (pDNA), which are loaded into a thermogel formed by another PU micellar system for the prolonged release of pDNA micelleplexes. Specifically, a thermogelling multiblock PU copolymer (denoted as EPH) was synthesized via the step-growth polymerization of poly(ethylene glycol), poly(propylene glycol), and poly(3-hydroxybutyrate). By further introducing a cationic extender, 3-(dimethylamino)-1,2-propanediol, into the reaction feed, a series of cationic PUs (denoted as EPHD) with varying compositions were obtained. The EPHDs formed positively charged micelles in aqueous solutions, efficiently condensed pDNA into nano-sized micelleplexes (<200 nm) at optimized w/w ratios, and mediated transient green fluorescence protein expression in HEK293T cells at 48 h post-transfection. On the other hand, aqueous EPH solution (4 wt %) was injectable at 4 °C and rapidly gelled upon heating to 37 °C to form a stable hydrogel depot. EPHD/pDNA micelleplexes were easily loaded into EPH by mixing the solutions at 4 °C, before heating to 37 °C, leading to the resultant hydrogel system. The in vitro release study revealed that while free pDNA loaded in the thermogel was completely released in 2 weeks, the release of EPHD/pDNA micelleplexes was prolonged to at least 28 days, suggesting substantial micelleplex-hydrogel interactions. Intact, bioactive, and noncytotoxic EPHD/pDNA micelleplexes in the release media were proved by gel retardation, in vitro gene transfection, and CCK-8 cytotoxicity assay results, respectively. Collectively, this work presents a simple approach to achieving and optimizing a novel two-in-one nanoparticle-hydrogel system for the prolonged delivery of pDNA and may be promising for long-term gene delivery applications.
Collapse
Affiliation(s)
- Wilson Wee Mia Soh
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Rachel Yun Pei Teoh
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Chien Yi Wee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
13
|
Zou Y, Yan R, Wang H, Zhong K, Wang S. NIR‐Responsive Polyurethane Nanocomposites Based on PDA@FA Nanoparticles with Synergistic Antibacterial Effect. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuke Zou
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Rui Yan
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Kai Zhong
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
14
|
Screening of the Supercritical Impregnation of Olea europaea Leaves Extract into Filaments of Thermoplastic Polyurethane (TPU) and Polylactic Acid (PLA) Intended for Biomedical Applications. Antioxidants (Basel) 2022; 11:antiox11061170. [PMID: 35740066 PMCID: PMC9219857 DOI: 10.3390/antiox11061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The leaves of Olea europaea as agricultural waste represent a convenient source of antioxidants. In combination with supercritical CO2 (scCO2), assisted impregnation is an interesting strategy for the preparation of biomedical devices with specific bioactivity. For this purpose, 3D-printable filaments of thermoplastic polyurethane (TPU) and polylactic acid (PLA) were employed for the supercritical impregnation of ethanolic olive leaves extract (OLE) for biomedical application. The extraction of OLE was performed using pressurized liquids. The effect of pressure (100-400 bar), temperature (35-55 °C), and the polymer type on the OLE impregnation and the swelling degree were studied including a morphological analysis and the measurement of the final antioxidant activity. All the studied variables as well as their interactions showed significant effects on the OLE loading. Higher temperatures favored the OLE loading while the pressure presented opposite effects at values higher than 250 bar. Thus, the highest OLE loadings were achieved at 250 bar and 55 °C for both polymers. However, TPU showed c.a. 4 times higher OLE loading and antioxidant activity in comparison with PLA at the optimal conditions. To the best of our knowledge, this is the first report using TPU for the supercritical impregnation of a natural extract with bioactivity.
Collapse
|
15
|
Dissolution from Ethylene Vinyl Acetate Copolymer Long-Acting Implants: Effect of Model Active Ingredient Size and Shape. Pharmaceutics 2022; 14:pharmaceutics14061139. [PMID: 35745712 PMCID: PMC9231147 DOI: 10.3390/pharmaceutics14061139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
In recent pharmaceutical applications, an active pharmaceutical ingredient (API) can be mixed with a polymer material to yield a composite long-acting drug-delivery device. These devices boast higher patient compliance, localized drug delivery, and lower dosage concentrations, which can increase patient safety. As a laboratory-safe option, calcium carbonate (CaCO3) was used as a drug surrogate to mimic the release kinetics of a low-solubility API. The release of CaCO3 from a poly(ethylene vinyl acetate) (EVA) polymer matrix was studied in ultra-high-purity water. The geometry of CaCO3, along with the manufacturing technique, was manipulated to study the implications on surrogate drug release. It was found that injection molding proved to yield higher burst release, due to higher pressures achievable during manufacturing. The extrusion process can affect the surface concentration of the pharmaceutical ingredient when extruded through a water bath, resulting in a lower initial burst concentration. Regarding CaCO3 geometry, the particle size was more critical than the surface area in terms of CaCO3 release. Larger particles showed a higher release rate, though they also displayed higher variability in release. These data can be used to engineer specific release profiles when designing composite formulations and manufacturing methods for pharmaceutical-drug-delivery applications.
Collapse
|
16
|
Wu J, Sahoo JK, Li Y, Xu Q, Kaplan DL. Challenges in delivering therapeutic peptides and proteins: A silk-based solution. J Control Release 2022; 345:176-189. [PMID: 35157939 PMCID: PMC9133086 DOI: 10.1016/j.jconrel.2022.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Peptide- and protein-based therapeutics have drawn significant attention over the past few decades for the treatment of infectious diseases, genetic disorders, oncology, and many other clinical needs. Yet, protecting peptide- and protein-based drugs from degradation and denaturation during processing, storage and delivery remain significant challenges. In this review, we introduce the properties of peptide- and protein-based drugs and the challenges associated with their stability and delivery. Then, we discuss delivery strategies using synthetic polymers and their advantages and limitations. This is followed by a focus on silk protein-based materials for peptide/protein drug processing, storage, and delivery, as a path to overcome stability and delivery challenges with current systems.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
17
|
Alisani R, Rakhshani N, Abolhallaj M, Motevalli F, Abadi PGS, Akrami M, Shahrousvand M, Jazi FS, Irani M. Adsorption, and controlled release of doxorubicin from cellulose acetate/polyurethane/multi-walled carbon nanotubes composite nanofibers. NANOTECHNOLOGY 2022; 33:155102. [PMID: 34959231 DOI: 10.1088/1361-6528/ac467b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The cellulose acetate (CA)/poly (ε-caprolactone diol)/poly (tetramethylene ether) glycol-polyurethane (PCL-Diol/PTMG-PU)/multi-walled carbon nanotubes (MWCNTs) composite nanofibers were prepared via two-nozzle electrospinning on both counter sides of the collector. The performance of synthesized composite nanofibers was investigated as an environmental application and anticancer delivery system for the adsorption/release of doxorubicin (DOX). The synergic effect of MWCNTs and DOX incorporated into the nanofibers was investigated against LNCaP prostate cancer cells. The status of MWCNTs and DOX in composite nanofibers was demonstrated by SEM, FTIR and UV-vis determinations. The adsorption tests using nanofibrous adsorbent toward DOX sorption was evaluated under various DOX initial concentrations (100-2000 mg l-1), adsorption times (5-120 min), and pH values (pH:2-9). Due to the fitting of isotherm and kinetic data with Redlich-Peterson and pseudo-second order models, both chemisorption and surface adsorption of DOX molecules mechanisms have been predicted. The drug release from both nanofibers and MWCNTs-loaded nanofibers was compared. The better drug sustained release profiles verified in the presence of composite nanofibers. LNCaP prostate cancer and L929 normal cells were treated to investigate the cytotoxicity and compatibility of synthesized composite nanofibers. The apoptosis/necrosis of hybrid nanofibers and MWCNTs loaded-nanofibers was investigated. The obtained results demonstrated the synergic effects of MWCNTs and DOX loaded-nanofibers on the LNCaP prostate cancer cells death.
Collapse
Affiliation(s)
- Reza Alisani
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Navid Rakhshani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abolhallaj
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Foojan Motevalli
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, Chooka Branch, University of Tehran, PO Box 119-43841, 4386156387, Rezvanshahr Guilan Province, Iran
| | - Fariborz Sharifian Jazi
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Slobodinyuk A, Strelnikov V, Kiselkov D, Slobodinyuk D. Synthesis of oligotetramethylene oxides with terminal amino groups as curing agents for an epoxyurethane oligomer. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A method for the synthesis of oligotetramethylene oxides with terminal amino groups is presented. Its use as a hardener for urethane-containing oligomers has been demonstrated. The diamines were synthesized by a two-stage method based on oligotetramethylene oxide diol. The compounds can be used for the production of non-toxic, biocompatible and biodegradable segmented urethane-containing elastomers. The oligotetramethylene oxide diol with an average molecular mass of 1008 was chosen as a typical precursor component. Its dibromide was formed using a quasi-phosphonium reagent in various solvents. The corresponding amine was obtained by high-pressure amination. The compounds have been identified by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Alexey Slobodinyuk
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences , Ac. Korolev Str., 3, 614130 Perm , Russia
| | - Vladimir Strelnikov
- Corresponding Member, Russian Academy of Sciences, Director of Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences , Ac. Korolev Str., 3, 614130 Perm , Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences , Ac. Korolev Str., 3, 614130 Perm , Russia
| | - Daria Slobodinyuk
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences , Ac. Korolev Str., 3, 614130 Perm , Russia
| |
Collapse
|
19
|
Rafiei F, Tabesh H, Farzad S, Farzaneh F, Rezaei M, Hosseinzade F, Mottaghy K. Development of Hormonal Intravaginal Rings: Technology and Challenges. Geburtshilfe Frauenheilkd 2021; 81:789-806. [PMID: 34276064 PMCID: PMC8277443 DOI: 10.1055/a-1369-9395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Intravaginal rings (IVRs) are minimally invasive polymeric devices specifically designed to be used for the sustained and prolonged release of various type of drugs such as hormones. One of the benefits of using topical drug delivery systems (e.g., IVRs) is the fact that systemic drug delivery may cause drug resistance due to elevated drug levels. Topical drug delivery also provides higher concentrations of the drug to the target site and has fewer side effects. In addition, when a drug is administered vaginally, the hepatic first-pass effect is avoided, resulting in higher absorption. Contraception and treatments for specific diseases such as endometriosis and hormone deficiencies can be improved by the administration of hormones via an IVR. This article aims to classify and compare various designs of commercially available and non-commercial hormonal IVRs and to analyze their performance. Current challenges affecting the development of IVRs are investigated, and
proposed solutions are discussed. A comprehensive search of publications in MEDLINE/PubMed and of commercial product data of IVRs was performed, and the materials, designs, performance, and applications (e.g., contraception, endometriosis, estrogen deficiency and urogenital atrophy) of hormonal IVRs were thoroughly evaluated. Most hormonal IVRs administer female sex hormones, i.e., estrogen and progestogens. In terms of material, IVRs are divided into 3 main groups: silicone, polyurethane, and polyethylene-co-vinyl acetate IVRs. As regards their design, there are 4 major designs for IVRs which strongly affect their performance and the timing and rate of hormone release. Important challenges include reducing the burst release and maintaining the bioavailability of hormones at their site of action over a prolonged period of administration as well as lowering production costs. Hormonal IVRs are a promising method which could be used to facilitate combination therapies by
administering multiple drugs in a single IVR while eliminating the side effects of conventional drug administration methods. IVRs could considerably improve womenʼs quality of life all over the world within a short period of time.
Collapse
Affiliation(s)
- Fojan Rafiei
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Shayan Farzad
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Farah Farzaneh
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezaei
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fateme Hosseinzade
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Khosrow Mottaghy
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Koutsamanis I, Paudel A, Alva Zúñiga CP, Wiltschko L, Spoerk M. Novel polyester-based thermoplastic elastomers for 3D-printed long-acting drug delivery applications. J Control Release 2021; 335:290-305. [PMID: 34044092 DOI: 10.1016/j.jconrel.2021.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022]
Abstract
To improve patient compliance and personalised drug delivery, long-acting drug delivery devices (LADDDs), such as implants and inserts, greatly benefit from a customisation in their shape through the emerging 3D-printing technology, since their production usually follows a one-size-fits-most approach. The use of 3D-printing for LADDDs, however, is mainly limited by the shortage of flawlessly 3D-printable, yet biocompatible materials. The present study tackles this issue by introducing a novel, non-biodegradable material, namely a polyester-based thermoplastic elastomer (TPC) - a multi-block copolymer containing alternating semi-crystalline polybutylene terephthalate hard segments and poly-ether-terephthalate amorphous soft segments. Next to a detailed description of the material's 3D-printability by mechanical, rheological and thermal analyses, which was found to be superior to that of conventional polymers (ethylene-vinyl acetates (EVA)), this study establishes the fundamental understandings of the interactions between progesterone (P4) and TPC and drug-releasing properties of TPC for the first time. P4-loaded LADDDs based on TPC, prepared via an elaborated solvent-immersion technique, enable the release of P4 at pharmacologically relevant rates, similar to those of marketed formulations based on EVA and silicones. Additionally, TPC demonstrated an exceptional 3D-printability for a wide selection of implant sizes and complex geometries.
Collapse
Affiliation(s)
- Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria.
| | | | - Laura Wiltschko
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
21
|
Chalony C, Aguilar LE, Kim JY, Park CH, Kim CS. Development of electrospun core-shell polymeric mat using poly (ethyl-2) cyanoacrylate/polyurethane to attenuate biological adhesion on polymeric mesh implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111930. [PMID: 33641922 DOI: 10.1016/j.msec.2021.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Poly (ethyl-2) cyanoacrylate was used to create an adhesion-free biocompatible non-woven material reinforced by polyurethane core via a co-axial electrospinning set-up. The effect of relative humidity (RH) of (18, 30, 40, 60, and 68) % on the electrospinning process was examined, and found that in order to achieve well defined core-shell fiber structure, the optimal RH was 18%. If the RH is >18%, a phenomenon called Taylor cone cyclic destabilization occurs, which results in unfavorable surface and mechanical properties of the mat. The developed composite electrospun mat has the potential to be used in medical devices, such as repairing the viscera layer for intraperitoneal hernia mesh implants, which require the attenuation of biological elements, and adequate mechanical properties.
Collapse
Affiliation(s)
- Carmen Chalony
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Republic of Korea
| | - Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Republic of Korea
| | - Ju Yeon Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju City, 54001, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju City, 54001, Republic of Korea.
| |
Collapse
|
22
|
Star-hyperbranched waterborne polyurethane based on D-glucose-poly(ε-caprolactone) core as a biomaterial candidate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Busch L, Avlasevich Y, Zwicker P, Thiede G, Landfester K, Keck CM, Meinke MC, Darvin ME, Kramer A, Müller G, Kerscher M, Lademann J, Patzelt A. Release of the model drug SR101 from polyurethane nanocapsules in porcine hair follicles triggered by LED-derived low dose UVA light. Int J Pharm 2021; 597:120339. [PMID: 33545278 DOI: 10.1016/j.ijpharm.2021.120339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Hair follicles (HFs) are important drug delivery targets for the therapy of miscellaneous skin diseases and for skin antisepsis. Furthermore, HFs significantly contribute to drug delivery of topically applied substances. Nanoparticulate systems are excellently suited for follicular drug delivery as they entail the opportunity of directed drug transport into HFs. Moreover, they involve the possibility of an intrafollicular drug release initiated by extrinsic or intrinsic trigger mechanisms. In this study, we present a novel preclinical model for an anatomically and temporally targeted intrafollicular drug release. In vitro release kinetics of the model drug sulforhodamine 101 (SR101) from newly synthesized ultraviolet A (UVA)-responsive polyurethane nanocapsules (NCs) were investigated by fluorescence spectroscopy. Low power density UVA radiation provided by a UVA light emitting diode (LED) induced a drug release of over 50% after 2 min. We further utilized confocal laser scanning microscopy (CLSM) to investigate follicular penetration as well as intrafollicular drug release on an ex vivo porcine ear skin model. UVA-responsive degradation of the NCs at a mean follicular penetration depth of 509 ± 104 µm ensured liberation of SR101 in the right place and at the right time. Thus, for the first time a UVA-triggered drug release from NCs within HFs was demonstrated in the present study. Cytotoxicity tests revealed that NCs synthesized with isophorone diisocyanate show sufficient biocompatibility after UVA-induced cleavage. A considerable and controllable release of various water-soluble therapeutics could be reached by means of the presented system without risking any radiation-related tissue damage. Therefore, the implementation of the presented system into clinical routine, e.g. for preoperative antisepsis of HFs, appears very promising.
Collapse
Affiliation(s)
- Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany.
| | | | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Gisela Thiede
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Gerald Müller
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martina Kerscher
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexa Patzelt
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Gulmez F, Yercan A, Kocaaga B, Guner FS. pH-sensitive castor oil/PEG-based polyurethane films for drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Sam M, Dekamin MG, Alirezvani Z. Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci Rep 2021; 11:2399. [PMID: 33504833 PMCID: PMC7840758 DOI: 10.1038/s41598-020-80884-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
A new multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core-shell silica-coated magnetite (Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2) was designed and properly characterized by different spectroscopic or microscopic methods as well as analytical techniques used for mesoporous materials. It was found that the combination of both aromatic π-π stacking and boron-oxygen ligand interactions affords supramolecular arrays of dendrons. Furthermore, the use of boric acid makes this dendritic catalyst a good choice, from corrosion, recyclability and cost points of view. The catalytic activity of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, as an efficient magnetically recoverable catalyst, was investigated for the synthesis of polyhydroacridines (PHAs) as well as polyhydroquinolines (PHQs) via one-pot multicomponent reactions of dimedone and/or ethyl acetoacetate, different aldehydes and ammonium acetate in EtOH under reflux conditions. Very low loading of the catalyst, high to quantitative yields of the desired PHAs or PHQs products, short reaction times, wide scope of the substrates, eliminating any toxic heavy metals or corrosive reagents for the modification of the catalyst, and simple work-up procedure are remarkable advantages of this green protocol. An additional advantage of this magnetic nanoparticles catalyst is its ability to be separated and recycled easily from the reaction mixture with minimal efforts in six subsequent runs without significant loss of its catalytic activity. This magnetic and dendritic catalyst can be extended to new two- and three-dimensional covalent organic frameworks with different applications.
Collapse
Affiliation(s)
- Mahsa Sam
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran.
| | - Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| |
Collapse
|
26
|
Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 18:577-593. [PMID: 33275066 DOI: 10.1080/17425247.2021.1856072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.
Collapse
Affiliation(s)
- Ashley R Johnson
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Graciela Terife
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Michael Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
27
|
Glycolysis: an efficient route for recycling of end of life polyurethane foams. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02383-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2020; 12:21-36. [PMID: 33353422 DOI: 10.4155/tde-2020-0099] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burst release of encapsulated drug with release of a significant fraction of payload into release medium within a short period, both in vitro and in vivo, remains a challenge for translation. Such unpredictable and uncontrolled release is often undesirable, especially from the perspective of developing sustained-release formulations. Moreover, a brisk release of the payload upsets optimal release kinetics. This account strives toward understanding burst release noticed in nanocarriers and investigates its causes. Various mathematical models to explain such untimely release were also examined, including their strengths and weaknesses. Finally, the account revisits current techniques of limiting burst release from nanocarriers and prioritizes future directions that harbor potential of fruitful translation by reducing such occurrences.
Collapse
|
29
|
Karunakaran D, Simpson SM, Su JT, Bryndza-Tfaily E, Hope TJ, Veazey R, Dobek G, Qiu J, Watrous D, Sung S, Chacon JE, Kiser PF. Design and Testing of a Cabotegravir Implant for HIV Prevention. J Control Release 2020; 330:658-668. [PMID: 33347943 DOI: 10.1016/j.jconrel.2020.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Long-acting antiretroviral implants could help protect high-risk individuals from HIV infection. We describe the design and testing of a long-acting reservoir subcutaneous implant capable of releasing cabotegravir for several months. We compressed cabotegravir and excipients into cylindrical pellets and heat-sealed them in tubing composed of hydrophilic poly(ether-urethane) -. The implants have a 47 mm lumen length, 3.6 mm outer diameter, and 200 μm wall thickness. Four cabotegravir pellets were sealed in the membrane, with a total drug loading of 274 ± 3 mg. In vivo, the implants released 348 ± 107 μg/day (median value per implant, N = 41) of cabotegravir in rhesus macaques. Five implants generated an average cabotegravir plasma concentration of 373 ng/ml in rhesus macaques. The non-human primates tolerated the implant without gross pathology or microscopic signs of histopathology compared to placebo implants. Cabotegravir plasma levels in macaques dropped below detectable levels within two weeks after the removal of the implants.
Collapse
Affiliation(s)
- Dipu Karunakaran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Solange M Simpson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jonathan T Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Physics and Engineering, Elon University, Elon, NC, USA
| | - Ewa Bryndza-Tfaily
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Ronald Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Georgina Dobek
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA; Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiang Qiu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - David Watrous
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Samuel Sung
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jorge E Chacon
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Patrick F Kiser
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Koutsamanis I, Spoerk M, Arbeiter F, Eder S, Roblegg E. Development of Porous Polyurethane Implants Manufactured via Hot-Melt Extrusion. Polymers (Basel) 2020; 12:E2950. [PMID: 33321876 PMCID: PMC7764633 DOI: 10.3390/polym12122950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Implantable drug delivery systems (IDDSs) offer good patient compliance and allow the controlled delivery of drugs over prolonged times. However, their application is limited due to the scarce material selection and the limited technological possibilities to achieve extended drug release. Porous structures are an alternative strategy that can overcome these shortcomings. The present work focuses on the development of porous IDDS based on hydrophilic (HPL) and hydrophobic (HPB) polyurethanes and chemical pore formers (PFs) manufactured by hot-melt extrusion. Different PF types and concentrations were investigated to gain a sound understanding in terms of extrudate density, porosity, compressive behavior, pore morphology and liquid uptake. Based on the rheological analyses, a stable extrusion process guaranteed porosities of up to 40% using NaHCO3 as PF. The average pore diameter was between 140 and 600 µm and was indirectly proportional to the concentration of PF. The liquid uptake of HPB was determined by the open pores, while for HPL both open and closed pores influenced the uptake. In summary, through the rational selection of the polymer type, the PF type and concentration, porous carrier systems can be produced continuously via extrusion, whose properties can be adapted to the respective application site.
Collapse
Affiliation(s)
- Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
| | - Florian Arbeiter
- Institute of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria;
| | - Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; (I.K.); (M.S.); (S.E.)
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
31
|
Lu WC, Chuang FS, Venkatesan M, Cho CJ, Chen PY, Tzeng YR, Yu YY, Rwei SP, Kuo CC. Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate-Functionalized Waterborne Polyurethane. Polymers (Basel) 2020; 12:E2882. [PMID: 33271805 PMCID: PMC7761416 DOI: 10.3390/polym12122882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress-strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2-24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.
Collapse
Affiliation(s)
- Wen-Chi Lu
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
- Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan
| | - Fu-Sheng Chuang
- Department of Fashion and Design, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan;
| | - Manikandan Venkatesan
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Chia-Jung Cho
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Po-Yun Chen
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Yung-Ru Tzeng
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
| | - Syang-Peng Rwei
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Chi-Ching Kuo
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| |
Collapse
|
32
|
Abbasnezhad N, Zirak N, Shirinbayan M, Kouidri S, Salahinejad E, Tcharkhtchi A, Bakir F. Controlled release from polyurethane films: Drug release mechanisms. J Appl Polym Sci 2020. [DOI: 10.1002/app.50083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Metiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
- Arts et Metiers Institute of Technology, CNAM, PIMM HESAM University Paris France
| | - Nader Zirak
- Arts et Metiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
- Faculty of Materials Science and Engineering K. N. Toosi University of Technology Tehran Iran
| | - Mohammadali Shirinbayan
- Arts et Metiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
- Arts et Metiers Institute of Technology, CNAM, PIMM HESAM University Paris France
| | | | - Erfan Salahinejad
- Faculty of Materials Science and Engineering K. N. Toosi University of Technology Tehran Iran
| | - Abbas Tcharkhtchi
- Arts et Metiers Institute of Technology, CNAM, PIMM HESAM University Paris France
| | - Farid Bakir
- Arts et Metiers Institute of Technology, CNAM, LIFSE HESAM University Paris France
| |
Collapse
|
33
|
Hao L, Li X, Wang Y. Synthesis of mesoporous silicate molecular sieves by the aerosol-assisted method for loading and release of drug. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200650. [PMID: 33204450 PMCID: PMC7657891 DOI: 10.1098/rsos.200650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The mesoporous silicate molecular sieves were synthesized with polyether F127 as the template by the aerosol-assisted method for loading and release of ibuprofen (IBU). The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption-desorption isotherms. The drug IBU was applied as a model drug to investigate the drug release behaviour by ultraviolet spectrophotometry measurements. The investigation results demonstrate that mesoporous silicate molecular sieves by the aerosol-assisted method are spherical with a core-shell structure. As the drug carrier, it has good structural stability and can achieve drug controlled release which is expected. It exhibits safety to a certain degree. Therefore, the aerosol-assisted synthesis method provides a new idea for the synthesis of sustained-release drug carriers.
Collapse
Affiliation(s)
| | | | - Yang Wang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
34
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
35
|
Spoonmore TJ, Ford CA, Curry JM, Guelcher SA, Cassat JE. Concurrent Local Delivery of Diflunisal Limits Bone Destruction but Fails To Improve Systemic Vancomycin Efficacy during Staphylococcus aureus Osteomyelitis. Antimicrob Agents Chemother 2020; 64:e00182-20. [PMID: 32340992 PMCID: PMC7318050 DOI: 10.1128/aac.00182-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus osteomyelitis is a debilitating infection of bone. Treatment of osteomyelitis is impaired by the propensity of invading bacteria to induce pathological bone remodeling that may limit antibiotic penetration to the infectious focus. The nonsteroidal anti-inflammatory drug diflunisal was previously identified as an osteoprotective adjunctive therapy for osteomyelitis, based on the ability of this compound to inhibit S. aureus quorum sensing and subsequent quorum-dependent toxin production. When delivered locally during experimental osteomyelitis, diflunisal significantly limits bone destruction without affecting bacterial burdens. However, because diflunisal's "quorum-quenching" activity could theoretically increase antibiotic recalcitrance, it is critically important to evaluate this adjunctive therapy in the context of standard-of-care antibiotics. The objective of this study is to evaluate the efficacy of vancomycin to treat osteomyelitis during local diflunisal treatment. We first determined that systemic vancomycin effectively reduces bacterial burdens in a murine model of osteomyelitis and identified a dosing regimen that decreases bacterial burdens without eradicating infection. Using this dosing scheme, we found that vancomycin activity is unaffected by the presence of diflunisal in vitro and in vivo Similarly, locally delivered diflunisal still potently inhibits osteoblast cytotoxicity in vitro and bone destruction in vivo in the presence of subtherapeutic vancomycin. However, we also found that the resorbable polyester urethane (PUR) foams used to deliver diflunisal serve as a nidus for infection. Taken together, these data demonstrate that diflunisal does not significantly impact standard-of-care antibiotic therapy for S. aureus osteomyelitis, but they also highlight potential pitfalls encountered with local drug delivery.
Collapse
Affiliation(s)
- Thomas J Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caleb A Ford
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M Curry
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Cassat
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Influence of Polymer Composition on the Controlled Release of Docetaxel: A Comparison of Non-Degradable Polymer Films for Oesophageal Drug-Eluting Stents. Pharmaceutics 2020; 12:pharmaceutics12050444. [PMID: 32403329 PMCID: PMC7284596 DOI: 10.3390/pharmaceutics12050444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Following the huge clinical success of drug-eluting vascular stents, there is a significant interest in the development of drug-eluting stents for other applications, such as the treatment of gastrointestinal (GI) cancers. Central to this process is understanding how particular drugs are released from stent coatings, which to a large extent is controlled by drug-polymer interactions. Therefore, in this study we investigated the release of docetaxel (DTX) from a selection of non-degradable polymer films. DTX-polymer films were prepared at various loadings (1, 5 and 10% w/w) using three commercially available polymers including poly(dimethylsiloxane) (PSi), poly (ethylene-co-vinyl acetate) (PEVA) and Chronosil polyurethane (PU). The formulations were characterised using different techniques such as photoacoustic Fourier-transform infrared (PA-FTIR) spectrophotometry, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The effect of DTX on the mechanical properties of the films, in-vitro release, and degradation tests were also assessed. For all polymers and DTX loadings, the drug was found to disperse homogenously without crystallisation within the polymer matrix. While no specific interactions were observed between DTX and PSi or PEVA, hydrogen-bonding appeared to be present between DTX and PU, which resulted in a concentration-dependent decrease in the Young’s moduli of the films due to disruption of inter-polymeric molecular interactions. In addition, the DTX-PU interactions were found to modulate drug release, providing near-linear release over 30 days, which was accompanied by a significant reduction in degradation products. The results indicate that DTX-loaded PU films are excellent candidates for drug-eluting stents for the treatment of oesophageal cancer.
Collapse
|
37
|
Lowinger MB, Maier EY, Williams RO, Zhang F. Hydrophilic Poly(urethanes) Are an Effective Tool for Gastric Retention Independent of Drug Release Rate. J Pharm Sci 2020; 109:1967-1977. [PMID: 32087181 DOI: 10.1016/j.xphs.2020.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Acyclovir is a poorly permeable, short half-life drug with poor colonic absorption, and current conventional controlled release formulations are unable to decrease the frequency of administration. We designed acyclovir dosage forms to be administered less frequently by being retained in the stomach and releasing drug over an extended duration. We developed a conventional modified-release matrix tablet to sustain the release of acyclovir and surrounded it with a hydrophilic poly(urethane) layer. When hydrated, the porous poly(urethane) swells to a size near or beyond that of the relaxed pylorus diameter and does not affect drug release rate. We demonstrated that the formulation is retained in the stomach for extended durations as it slowly releases drug, allowing for similar area under the curve but delayed tmax relative to a nongastroretentive control tablet. Unlike many other gastroretentive formulations, this dosage form design decouples drug release rate from gastric retention time, allowing them to be modulated independently. It also effectively retains in the stomach regardless of the prandial state, differentiating from other approaches. Our direct observation of excised rat stomachs allowed for a rigorous assessment of the impact of polymer swelling extent and the prandial state on both the dosage form integrity and retention time.
Collapse
Affiliation(s)
- Michael B Lowinger
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712; MRL, Merck & Co, Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065
| | - Esther Y Maier
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712
| | - Feng Zhang
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712.
| |
Collapse
|
38
|
Abbasnezhad N, Shirinbayan M, Tcharkhtchi A, Bakir F. In vitro study of drug release from various loaded polyurethane samples and subjected to different non-pulsed flow rates. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Lowinger MB, Ormes JD, Su Y, Small JH, Williams RO, Zhang F. How broadly can poly(urethane)-based implants be applied to drugs of varied properties? Int J Pharm 2019; 568:118550. [DOI: 10.1016/j.ijpharm.2019.118550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023]
|
40
|
Mandru M, Bercea M, Gradinaru LM, Ciobanu C, Drobota M, Vlad S, Albulescu R. Polyurethane/poly(vinyl alcohol) hydrogels: Preparation, characterization and drug delivery. Eur Polym J 2019; 118:137-145. [DOI: 10.1016/j.eurpolymj.2019.05.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Maniruzzaman M. Pharmaceutical Applications of Hot-Melt Extrusion: Continuous Manufacturing, Twin-Screw Granulations, and 3D Printing. Pharmaceutics 2019; 11:pharmaceutics11050218. [PMID: 31067649 PMCID: PMC6572065 DOI: 10.3390/pharmaceutics11050218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mohammed Maniruzzaman
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, University Station A1920, Austin, TX 78712, USA.
| |
Collapse
|
42
|
Mathew MS, Davis J, Joseph K. Green synthesis of a plant-derived protein protected copper quantum cluster for intrauterine device application. Analyst 2019; 143:3841-3849. [PMID: 29999047 DOI: 10.1039/c8an00438b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorescent copper quantum clusters (CuQCs) have received great interest in recent times due to their attractive features, such as water solubility, low cost, wide availability of Cu and good biocompatibility. Recently, considerable efforts have been devoted to the preparation and applications of CuQCs. Herein, we report a simple one-pot green method for the preparation of fluorescent CuQCs using a plant-derived protein, gluten, as a stabilizing agent. Gluten, a naturally abundant, low-cost and sustainable plant-protein derived from wheat, was employed both as a reducing and stabilizing agent to produce blue emitting CuQCs. The CuQCs were characterized by UV-Vis absorption, fluorescence, FT-IR, TEM, and XPS. We further incorporated CuQCs into a polymer to study the release rate of Cu2+ ions from a CuQC-polymer composite, since copper ions are well known for their fungicidal properties and contraceptive action in copper-T (CuT). The CuQCs were incorporated into a model polymer, polyurethane (PU), by melt compounding, and the mixtures were extruded in the form of a wire. It was observed that the CuQCs were uniformly dispersed within the polymer matrix. An in vitro experiment was carried out to quantify the potential release of Cu(ii) ions for contraceptive applications. The developed nanocomposite releases Cu(ii) ions for 90 days, which suggests the potential application of the CuQCs in the medical field like the development of short-term intrauterine devices (IUDs). Compared to conventional IUDs, here the CuQC-PU nanocomposite reduces the burst release of the Cu2+, and the release rates can be tuned by changing the composition of the materials. These results suggest that the CuQC-PU nanocomposites have great potential to replace current commercial intrauterine devices.
Collapse
Affiliation(s)
- Meegle S Mathew
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695547, India.
| | | | | |
Collapse
|
43
|
Can drug release rate from implants be tailored using poly(urethane) mixtures? Int J Pharm 2019; 557:390-401. [DOI: 10.1016/j.ijpharm.2018.11.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
|
44
|
Demetrescu I, Dumitriu C, Totea G, Nica CI, Dinischiotu A, Ionita D. Zwitterionic Cysteine Drug Coating Influence in Functionalization of Implantable Ti50Zr Alloy for Antibacterial, Biocompatibility and Stability Properties. Pharmaceutics 2018; 10:E220. [PMID: 30413075 PMCID: PMC6321039 DOI: 10.3390/pharmaceutics10040220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
The present paper aims atincreasing the bioperformance of implantable Ti50Zr alloy using zwitterionic cysteine drug coating. Aspects such as stability, biocompatibility, and antibacterial effects were investigated with the help of various methods such as infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), electrochemical methods, contact angle determinations and cell response. The experimental data of zwitterionic cysteine coating indicate the existence of a hydration layer due to hydrophilic groups evidenced in FT-IR which is responsible for the decrease of contact angle and antibacterial capabilities. The electrochemical stability was evaluatedbased on Tafel plots and electrochemical impedance spectroscopy (EIS). The cell response to cysteine was determined with gingival fibroblasts measuring lactate dehydrogenase (LDH) activity, concentrations of nitric oxide (NO) and intracellular level of reactive oxygen species (ROS). All experimental results supported the increase of stability and better cells response of implantable Ti50Zr alloy coated with zwitterionic cysteine drug. The antibacterial index was measured against Staphylococcus aureus and Escherichia coli. It was demonstrated that the coating enhanced the production of intracellular ROS in time, which subsequently caused a significant increase in antibacterial index.
Collapse
Affiliation(s)
- Ioana Demetrescu
- Faculty of Applied Chemistry and Materials Science POLITEHNICAof Bucharest, Romania Str. Polizu1-7, 011061 Bucharest, Romania.
- Faculty of Biomedical Engineering POLITEHNICA of Bucharest, Romania Str. Polizu1-7, 011061 Bucharest, Romania.
- Academy of Romanian Scientists, Spaiul Independentei 54, 050094 Bucharest, Romania.
| | - Cristina Dumitriu
- Faculty of Applied Chemistry and Materials Science POLITEHNICAof Bucharest, Romania Str. Polizu1-7, 011061 Bucharest, Romania.
| | - Georgeta Totea
- Buftea, M. Burghele Hospital, Studiolului 5, 070000 Buftea, Romania.
| | - Cristina I Nica
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| | - Daniela Ionita
- Faculty of Applied Chemistry and Materials Science POLITEHNICAof Bucharest, Romania Str. Polizu1-7, 011061 Bucharest, Romania.
- Faculty of Biomedical Engineering POLITEHNICA of Bucharest, Romania Str. Polizu1-7, 011061 Bucharest, Romania.
| |
Collapse
|
45
|
Pinho LAG, Souza SG, Marreto RN, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Dissolution Enhancement in Cocoa Extract, Combining Hydrophilic Polymers through Hot-Melt Extrusion. Pharmaceutics 2018; 10:pharmaceutics10030135. [PMID: 30134594 PMCID: PMC6160995 DOI: 10.3390/pharmaceutics10030135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to improve the physicochemical properties of cocoa extract (CE) using hot-melt extrusion (HME) for pharmaceutical proposes. A mixture design was applied using three distinct hydrophilic polymeric matrices (Soluplus, Plasdone S630, and Eudragit E). Systems obtained by HME were evaluated using morphologic, chromatographic, thermic, spectroscopic, and diffractometric assays. The flow, wettability, and dissolution rate of HME powders were also assessed. Both CE and its marker theobromine proved to be stable under heating according to thermal analysis and Arrhenius plot under isothermal conditions. Physicochemical analysis confirmed the stability of CE HME preparations and provided evidence of drug⁻polymer interactions. Improvements in the functional characteristics of CE were observed after the extrusion process, particularly in dissolution and flow properties. In addition, the use of a mixture design allowed the identification of synergic effects by excipient combination. The optimized combination of polymers obtained considering four different aspects showed that a mixture of the Soluplus, Plasdone S630, and Eudragit E in equal proportions produced the best results (flowability index 88%; contact angle 47°; dispersibility 7.5%; and dissolution efficiency 87%), therefore making the pharmaceutical use of CE more feasible.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| | - Saulo G Souza
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| | - Ricardo N Marreto
- School of Pharmacy, Federal University of Goiás, 74 605-170 Goiânia, GO, Brazil.
| | - Livia L Sa-Barreto
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| | - Tais Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), 70910-900 Brasília, DF, Brazil.
| |
Collapse
|