1
|
Dieyi L, Guner G, Chattoraj S, Morrison C. Impact of Air Entrainment on Wet Bead Media Milling of Drug Nanosuspensions and Approaches for Monitoring Entrained Air. J Pharm Sci 2025:103798. [PMID: 40254252 DOI: 10.1016/j.xphs.2025.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
This study investigates the impact of entrained air on the efficiency of the wet bead milling process in pharmaceutical development using two aqueous nanosuspension formulations as case studies. Aqueous formulations of hydrophobic active pharmaceutical ingredients (APIs) are routinely utilized for wet bead milling to help develop nanosuspensions and modulate drug release. However, these formulations can present significant manufacturing challenges, many of which may be directly caused or exacerbated by air entrainment. In addition to investigating how entrained air impacts wet bead milling process robustness and efficiency, this study explores methods of monitoring air entrainment using real time measurements of attributes, such as the slurry density, dissolved oxygen, and slurry height. The drug products were milled under comparable process conditions at two distinct scales. Half of the batches underwent a deaeration process, while the remaining batches served as controls without deaeration. Particle size measurements from the samples taken at predefined timepoints during milling reveal that aeration impedes the milling process, causing a lag in particle attrition that becomes particularly significant as the batch volume to chamber volume (batch-to-chamber) ratio increases. Our work addresses a key gap in the mechanistic understanding of the impact of air entrainment on wet bead milling efficiency. The findings will contribute to the design of more robust and efficient wet bead milling processes and the selection of scalable process analytical tools for monitoring air entrainment during nanosuspension manufacturing at a large scale.
Collapse
Affiliation(s)
- Lenora Dieyi
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA.
| | - Gulenay Guner
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| | - Sayantan Chattoraj
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| | - Christopher Morrison
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| |
Collapse
|
2
|
Marques SM, Salwa, Lewis CR, Devi V, Kumar L. Formulation and evaluation of HPMC and pullulan-based rapidly dissolving films containing cilnidipine nanosuspension. Int J Biol Macromol 2025; 310:143329. [PMID: 40254208 DOI: 10.1016/j.ijbiomac.2025.143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cilnidipine is used to treat hypertension. However, it has poor solubility and undergoes extensive first-pass metabolism, which leads to poor bioavailability. This work aimed to prepare rapidly dissolving films (RDFs) containing nanosuspension of CLD with HPMC and pullulan as film-formers. These RDFs deliver the drugs through the buccal mucosa and bypass the first-pass metabolism, thereby increasing bioavailability. The nanosuspension was prepared using the nanoprecipitation technique and was optimized using the CCD. The optimized formulation had an average size and zeta potential of 362.23 nm and -39.1 mV, respectively. FT-IR studies indicated no interaction between CLD and stabilizers. DSC and XRD studies confirmed reduced crystallinity of CLD. SEM revealed the capsular morphology of nanoparticles. The optimized RDFs had a 2.83 ± 0.24 N/mm2 tensile strength, 11.61 ± 2.87 % elongation, 17.21 ± 1.06 s disintegration time, and in-vitro release of 91.77 ± 6.22 % in 60 min. A more than two-fold increase in drug permeation was recorded from the CLD NS-RDF as compared to the CLD CS-RDF. The CLD NS-RDF exhibited a significant increase in AUC0-24h, Cmax, and a decrease in Tmax and MRT as compared to the CLD CS-RDF. The CLD NS-RDF also had a superior effect to control the blood pressure in rats as compared to the CLD CS-RDF.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Cheryl Rhea Lewis
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, 844 102 Vaishali, Bihar, India.
| |
Collapse
|
3
|
Oktay AN, Celebi N, Ilbasmis-Tamer S. Investigation of flurbiprofen pharmacokinetics in rats following dermal administration of optimized cyclodextrin-based nanogel. Eur J Pharm Sci 2025; 206:107021. [PMID: 39827972 DOI: 10.1016/j.ejps.2025.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile. METHODS The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats. Results were compared to HPMC-based gel that was not nano-sized (i.e.FP-HPMC gel). RESULTS The PS, PDI and ZP values of optimal FP-loaded nanogel were 295.5 nm, 0.361 and -31.9 mV, respectively and it was stable for 12 months. In in vitro release studies, the flux from the optimal FP-loaded nanogel (96.3 µg/hcm2) was three times slower (i.e.more controlled) than that of the FP-HPMC gel (287 µg/hcm2); the permeability coefficient of the nanogel (0.015 cm/h) was slightly less than that of FP-HPMC gel (0.046 cm/h). Rat skin studies showed FP-loaded nanogel provided higher drug retention in the skin, compared to FP-HPMC gel. Mathematical modeling from rat skin permeation showed the Hixson-Crowell model was the best fitting model for FP-loaded nanogel, suggesting surface area of the nanogel is changing during the release process. In rat pharmacokinetic studies, the FB-loaded nanogel exhibited prolonged and flatter plasma profile than the FP-HPMC gel, consistent with the higher drug retention in the skin. CONCLUSION The optimized nanogel provided prolonged drug permeation and more sustained pharmacokinetic performance compared to FP-HPMC gel.
Collapse
Affiliation(s)
- Ayse Nur Oktay
- Gazi University/Faculty of Pharmacy/Department of Pharmaceutical Technology, Ankara, Turkey; University of Health Sciences/Gulhane Faculty of Pharmacy/Department of Pharmaceutical Technology, Ankara, Turkey.
| | - Nevin Celebi
- Gazi University/Faculty of Pharmacy/Department of Pharmaceutical Technology, Ankara, Turkey; Başkent University/Faculty of Pharmacy/Department of Pharmaceutical Technology, Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Gazi University/Faculty of Pharmacy/Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
4
|
Boujut M, Héritier M, Gouiller A, Süess C, Scapozza A, De Smedt T, Guibert M, Tardy S, Ismail HM, Pejoski D, Scapozza L. Discovery of the First Efficacious Adenosine 2A Receptor Negative Allosteric Modulators for High Adenosine Cancer Immunotherapies. J Med Chem 2025; 68:4059-4078. [PMID: 39855635 PMCID: PMC11873987 DOI: 10.1021/acs.jmedchem.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/27/2025]
Abstract
Inhibition of the adenosine 2A receptor (A2AR) is recognized as a promising immunotherapeutic strategy but is challenged by the ubiquity of A2AR function in the immune system. To develop a safe yet efficacious immunotherapy, the discovery of a novel negative allosteric modulator (NAM) was preferred. Leveraging an in-house, sensitive, high-throughput screening cellular assay, novel A2AR NAM scaffolds were identified, followed by an extensive structure-activity relationship (SAR) study, leading to the discovery of potent 2-amino-3,5-dicyanopyridine derivatives. The allosteric mode of action of active compounds was confirmed by progressive fold-shift assay, nonlinearity of the Schild plot analysis, biophysical measurements, and retained satisfactory potencies in high-adenosine concentrations. Further correlation of A2AR engagement and downstream signaling was done in a human blood translational assay, clearly showcasing the potential of A2AR allosteric modulation as a novel approach for efficient and safer cancer immunotherapies.
Collapse
Affiliation(s)
- Margot Boujut
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Margaux Héritier
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Aurélie Gouiller
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Camille Süess
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Alessandro Scapozza
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
| | - Thibaut De Smedt
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
| | - Maxime Guibert
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
| | - Sébastien Tardy
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Hesham M. Ismail
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Adoram
Therapeutics, 1212 Grand-Lancy, Switzerland
| | - David Pejoski
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Adoram
Therapeutics, 1212 Grand-Lancy, Switzerland
| | - Leonardo Scapozza
- School
of Pharmaceutical Sciences, University of
Geneva, 1206 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Adoram
Therapeutics, 1212 Grand-Lancy, Switzerland
| |
Collapse
|
5
|
Anush Sheikh KH, Haokip SW, Hazarika BN, Devi OB, Lian HN, Yumkhaibam T, Ningombam L, Singh YD. Phyto-chemistry and Therapeutic Potential of Natural Flavonoid Naringin: A Consolidated Review. Chin J Integr Med 2025:10.1007/s11655-025-3826-9. [PMID: 39994136 DOI: 10.1007/s11655-025-3826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 02/26/2025]
Affiliation(s)
- K H Anush Sheikh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Songthat William Haokip
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - B N Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Oinam Bidyalaxmi Devi
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Hau Ngaih Lian
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India.
| |
Collapse
|
6
|
Ergin AD, Bayindir ZS, Gumustas M, Ozcelikay AT, Yuksel N. A new strategy for enhancing S-Adenosyl-L-Methionine (SAMe) oral bioavailability: Preparation of SAMe loaded inulin nanoparticles for colon targeting with in vivo validation. Int J Biol Macromol 2025; 289:138818. [PMID: 39694359 DOI: 10.1016/j.ijbiomac.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
S-Adenosylmethionine (SAMe) is a crucial endogenous molecule in vital biochemical processes such as DNA, RNA, and protein methylation. It has been found beneficial in the treatment of liver disease, osteoarthritis, and particularly depression. However, SAMe's therapeutic potential is limited by low bioavailability due to poor permeability and extensive liver metabolism. This study sought to improve SAMe's bioavailability by encapsulating it in inulin nanoparticles, utilizing a colon-targeted delivery system. Inulin, a prebiotic that promotes gut health by encouraging beneficial gut bacteria, is an ideal carrier for colon-specific drug delivery. Inulin nanoparticles were prepared using the desolvation method, incorporating sodium lauryl sulfate (SLS) for ion pairing with SAMe. The nanoparticles were spray-coated onto microcrystalline cellulose inert microspheres in a fluidized bed with Eudragit L30D-55 for colon-targeted release (Nanoparticle-In-Microparticles, NIMs). Pharmacokinetic studies in rats showed that encapsulating SAMe in inulin nanoparticles resulted in a significant three-fold increase in bioavailability compared to its pure form. This enhancement highlights the potential of inulin nanoparticles as an effective delivery system for SAMe, particularly in colon-targeted therapies.
Collapse
Affiliation(s)
- Ahmet Dogan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey.
| | - Zerrin Sezgin Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Arif Tanju Ozcelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nilufer Yuksel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
7
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
8
|
A N B, O D H, N S K, A V Z, B B D. Immunodetection of Poorly Soluble Substances: Limitations and Their Overcoming. Crit Rev Anal Chem 2024:1-26. [PMID: 39360478 DOI: 10.1080/10408347.2024.2402835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments. Thus, obtaining immunoreactants and implementing immunoassays of these substances need special methodological solutions. Hydrophobicity of antigens as well as their limited ability to functionalization and conjugation are often overlooked when developing immunoassays for these compounds. The main key finding is the possibility to influence the behavior of hydrophobic compounds for immunoassays, which requires specific approaches summarized in the review. Using the examples of two groups of compounds-surfactants (alkyl- and bisphenols) and fullerenes, we systematized the existing knowledge and experience in the development of immunoassays. This review addresses the challenges of immunodetection of poorly soluble substances and proposes solutions such as the use of hydrotropes, other solubilization techniques, and alternative receptors (aptamers and molecularly imprinted polymers).
Collapse
Affiliation(s)
- Berlina A N
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Hendrickson O D
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Komova N S
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Zherdev A V
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Dzantiev B B
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
9
|
Arabpour Z, Salehi M, An S, Moghtader A, Anwar KN, Baharnoori SM, Shah RJ, Abedi F, Djalilian AR. Exploring Hydrogel Nanoparticle Systems for Enhanced Ocular Drug Delivery. Gels 2024; 10:589. [PMID: 39330191 PMCID: PMC11430953 DOI: 10.3390/gels10090589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Drug delivery to the ocular system is affected by anatomical factors like the corneal epithelium, blinking reflex, aqueous blood barrier, and retinal blood barrier, which lead to quick removal from the site and inefficient drug delivery. Developing a drug delivery mechanism that targets specific eye tissue is a major hurdle for researchers. Our study examines the challenges of drug absorption in these pathways. Hydrogels have been researched as a suitable delivery method to overcome some obstacles. These are developed alone or in conjunction with other technologies, such as nanoparticles. Many polymer hydrogel nanoparticle systems utilizing both natural and synthetic polymers have been created and investigated; each has pros and cons. The complex release mechanism of encapsulated agents from hydrogel nanoparticles depends on three key factors: hydrogel matrix swelling, drug-matrix chemical interactions, and drug diffusion. This mechanism exists regardless of the type of polymer. This study provides an overview of the classification of hydrogels, release mechanisms, and the role of controlled release systems in pharmaceutical applications. Additionally, it highlights the integration of nanotechnology in ocular disease therapy, focusing on different types of nanoparticles, including nanosuspensions, nanoemulsions, and pharmaceutical nanoparticles. Finally, the review discusses current commercial formulations for ocular drug delivery and recent advancements in non-invasive techniques. The objective is to present a comprehensive overview of the possibilities for enhancing ocular medication delivery through hydrogel nanoparticle systems.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran
| | - Seungwon An
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Rohan Jaimin Shah
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Barrientos BA, Real DA, Rossetti A, Ambrosioni FE, Allemandi DA, Palma SD, Real JP. 3D printed scaffolds as delivery devices for nanocrystals: A proof of concept loading Atorvastatin with enhanced properties for sublingual route of administration. Int J Pharm 2024; 661:124396. [PMID: 38944168 DOI: 10.1016/j.ijpharm.2024.124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Increasing the solubility of drugs is a recurrent objective of pharmaceutical research, and one of the most widespread strategies today is the formulation of nanocrystals (NCs). Beyond the many advantages of formulating NCs, their incorporation into solid dosage forms remains a challenge that limits their use. In this work, we set out to load Atorvastatin NCs (ATV-NCs) in a delivery device by combining 3D scaffolds with an "in situ" loading method such as freeze-drying. When comparing two infill patterns for the scaffolds at two different percentages, the one with the highest NCs load was chosen (Gyroid 20 % infill pattern, 13.8 ± 0.5 mg). Colloidal stability studies of NCs suggest instability in acidic media, and therefore, the system is postulated for use as a sublingual device, potentially bypassing stomach and hepatic first-pass effects. An ad hoc dissolution device was developed to mimic the release of actives. The nanometric size and properties acquired in the process were maintained, mainly in the dissolution rate and speed, achieving 100 % dissolution of the content in 180 s. Based on these results, the proof of concept represents an innovative approach to converting NCs suspensions into solid dosage forms.
Collapse
Affiliation(s)
- Bruno Andrés Barrientos
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Andrés Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Alan Rossetti
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Franco E Ambrosioni
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| |
Collapse
|
11
|
Edo GI, Yousif E, Al-Mashhadani MH. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr Res 2024; 542:109199. [PMID: 38944980 DOI: 10.1016/j.carres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
12
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Samanta S, Paul P, Chatterjee A, Roy UK, Majumdar T, Mallick A. Critical Assessment of Micellar Surface Charge-Dependent Disaggregation and Reaggregation of a Bis-Indole Self-Aggregate: What Should Be Our Case-Dependent Choice? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8961-8970. [PMID: 38619566 DOI: 10.1021/acs.langmuir.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
"Aggregation-caused quenching" is a deep-seated mechanism and has been widely used by the researchers as the possible basis for new sensor development. Contrast to aggregation, its turn around process, disaggregation, has gained much less consideration so far. Unfortunately, study of the further scope for reaggregation of the disaggregated probe assembly in the same solution, as and when required, is still under the rare category. The central theme of the current study is focused on this aspect. For this purpose, the effects of headgroup charge (cationic, anionic, and nonionic) and polarity of the micelles on the degree of disaggregation and subsequent emission amelioration of a synthesized bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), are studied using steady-state and time-resolved spectroscopic techniques. The relative emission yield of BIPM (φf = 0.01) is significantly enhanced in the presence of cetyltrimethylammonium bromide (φf = 0.21) and polyoxyethylene (20) sorbitan monolaurate (φf = 0.24), whereas comparatively less emission enhancement is recorded within the sodium dodecyl sulfate system (φf = 0.07). In contrast, addition of an external biophilic agent, uric acid, causes requenching of the enhanced emission because of the reaggregation of the disaggregated probes. Detailed microscopic and calorimetric studies are also adopted to investigate the disaggregation-reaggregation mechanism of BIPM associations. The study will provide prior insights about the use of suitable micellar systems for the required degree of disaggregation as well as for the modulation of emission efficiency by controlled tuning of the disaggregation-reaggregation equilibrium for similar probe associations in pure aqueous medium avoiding any chemical transformation.
Collapse
Affiliation(s)
- Saikat Samanta
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India
| | - Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India
| | - Arunavo Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal 741246, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713340, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713340, India
| |
Collapse
|
14
|
Li Z, Luo X, Li Q, Jin Z, Naeem A, Zhu W, Chen L, Feng Y, Ming L. The Fabrication, Drug Loading, and Release Behavior of Porous Mannitol. Molecules 2024; 29:715. [PMID: 38338458 PMCID: PMC10856056 DOI: 10.3390/molecules29030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Porous materials are widely used as an effective strategy for the solubilization of insoluble drugs. In order to improve the solubility and bioavailability of low water-solubility drugs, it is necessary to prepare porous materials. Mannitol is one of the most popular excipients in food and drug formulations. In this study, porous mannitol was investigated as a drug carrier for low water solubility drugs. Its fabrication, drug loading, and drug release mechanisms were investigated. Porous mannitol was fabricated using the co-spray-antisolvent process and utilizing polyvinylpyrrolidone K30 (PVP K30) as the template agent. Porous mannitol particles were prepared by changing the proportion of the template agent, spraying the particles with mannitol, and eluting with ethanol in order to regulate their pore structure. In subsequent studies, porous mannitol morphology and characteristics were determined systematically. Furthermore, curcumin and ibuprofen, two poorly water-soluble drugs, were loaded into porous mannitol, and their release profiles were analyzed. The results of the study indicated that porous mannitol can be prepared using PVP K30 as a template and that the amount of template agent can be adjusted in order to control the structure of the porous mannitol. When the template agent was added in amounts of 1%, 3%, and 5%, the mannitol pore size increased by 167.80%, 95.16%, and 163.98%, respectively, compared to raw mannitol. Molecular docking revealed that mannitol and drugs are adsorbents and adhere to each other by force interaction. The cumulative dissolution of curcumin and ibuprofen-loaded porous mannitol reached 69% and 70%, respectively. The release mechanism of curcumin and ibuprofen from drug-loaded mannitol was suitable for the Korsmeyer-Peppas kinetic model. In summary, the co-spray-antisolvent method proved effective in fabricating porous materials rapidly, and porous mannitol had a remarkable effect on drug solubilization. The results obtained are conducive to the development of porous materials.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Xiaosui Luo
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Qiong Li
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Zhengji Jin
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Z.L.); (X.L.); (Q.L.); (Z.J.); (A.N.); (W.Z.); (L.C.); (Y.F.)
| |
Collapse
|
15
|
Shahid N, Erum A, Hanif S, Malik NS, Tulain UR, Syed MA. Nanocomposite Hydrogels-A Promising Approach towards Enhanced Bioavailability and Controlled Drug Delivery. Curr Pharm Des 2024; 30:48-62. [PMID: 38155469 DOI: 10.2174/0113816128283466231219071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Nanotechnology has emerged as the eminent focus of today's research to overcome challenges related to conventional drug delivery systems. A wide spectrum of novel delivery systems has been investigated to improve the therapeutic outcomes of drugs. The polymer-based nanocomposite hydrogels (NCHs) that have evolved as efficient carriers for controlled drug delivery are of particular interest in this regard. Nanocomposites amalgamate the properties of both nanoparticles (NPs) as well as hydrogels, exhibiting superior functionalities over conventional hydrogels. This multiple functionality is based upon advanced mechanical, electrical, optical as well as magnetic properties. Here is a brief overview of the various types of nanocomposites, such as NCHs based on Carbon-bearing nanomaterials, polymeric nanoparticles, inorganic nanoparticles, and metal and metal-oxide NPs. Accordingly, this article will review numerous ways of preparing these NCHs with particular emphasis on the vast biomedical applications displayed by them in numerous fields such as tissue engineering, drug delivery, wound healing, bioprinting, biosensing, imaging and gene silencing, cancer therapy, antibacterial therapy, etc. Moreover, various features can be tuned, based on the final application, by controlling the chemical composition of hydrogel network, which may also influence the released conduct. Subsequently, the recent work and future prospects of this newly emerging class of drug delivery system have been enlisted.
Collapse
Affiliation(s)
- Nariman Shahid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Muhammad Ali Syed
- Department of Pharmaceutical Sciences, Faculty of Chemistry & Life Sciences, GC University Lahore, Lahore, Pakistan
| |
Collapse
|
16
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Modi D, Jonnalagadda S, Campbell GA, Dalwadi G. Enhancing Oil Solubility of BCS Class II Drug Phenytoin Through Hydrophobic Ion Pairing to Enable High Drug Load in Injectable Nanoemulsion to Prevent Precipitation at Physiological pH With a Potential to Prevent Phlebitis. J Pharm Sci 2023; 112:2427-2443. [PMID: 36958691 DOI: 10.1016/j.xphs.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
This work investigates the micellar titration of phenytoin (a weakly acidic drug) with cetyltrimethylammonium hydroxide (CTAH) to form a hydrophobic ion-pair to enhance oil solubility of phenytoin, followed by an effort to formulate nanoemulsion that could potentially prevent precipitation of phenytoin at physiological pH. The ion-pair formulated in nanoemulsion was evaluated for in vitro precipitation during serial dilution at physiological pH. The formation of ion-pair during titration was explained in context of pH-solubility data. The mathematical model successfully integrated ionization and micellization equilibria to reflect on dominant mechanisms for solubilization. The micellar phenomenon during titration was confirmed using Dynamic Light Scattering (DLS). The phase changes of the excess undissolved solids during titration were evident from X-Ray Powder Diffraction (XRPD) and Fourier Transform Infrared Spectroscopy (FTIR). This analysis confirmed the conversion of phenytoin into ionized state and its subsequent ionic interaction with CTAH forming hydrophobic ion-pair complex (HIP). The complete ion pair formation was evident at pHmax (8.8 to 9.2), and its 1:1 stoichiometry was confirmed using HPLC (Phenytoin and CTAH) and H1 NMR, hence could also be called as a lipophilic salt. The ion-pair (salt) was insoluble in water and showed remarkably high partition coefficient (log P) in octanol/water. As characterized by Hot Stage Microscopy (HSM), the melting point of the ion-pair complex was lowered to 150.8⁰C compared to the free acid (> 300οC), this was even further lowered to 81.1 °C when evaluated in castor oil. This led to approximately eight-fold higher solubility of hydrophobic ion pair (HIP) in castor oil compared to the free acid form. The high miscibility in castor oil was suitable to formulate a high drug load injectable dispersed system. This was successfully achieved with lecithin and polysorbate as emulsifiers without leaching drug into continuous phase at pH 7.4. This nanoemulsion (<300 nm, and > +30 mV zeta potential) remain stable when evaluated over a period of one month. A serial dilution study of the nanoemulsion was performed in PBS buffer, microscopic observations suggested no birefringence despite incubation at 25°C for several hours. This result indicated that Phenytoin remained strongly partitioned within dispersed oily phase with a higher drug loading when ion-paired phenytoin was used. The higher drug load could enable a small volume slow bolus injection to meet 50 mg/min or lower delivery rate criteria for Phenytoin in the clinical set up. This provided a pathway to further explore potential injectable nano-emulsion formulations that could alleviate typical phlebitis issue associated with the injectable phenytoin solution administration at physiological pH.
Collapse
Affiliation(s)
- Dimple Modi
- GlaxoSmithKline, Pharmaceutical Research and Development, Medicinal Science & Technology, 1250 S. Collegeville Road, Collegeville, PA 19426, United States; Saint Joseph's University, Philadelphia, PA 19104, United States
| | | | - Gossett A Campbell
- GlaxoSmithKline, Pharmaceutical Research and Development, Medicinal Science & Technology, 1250 S. Collegeville Road, Collegeville, PA 19426, United States
| | - Gautam Dalwadi
- GlaxoSmithKline, Pharmaceutical Research and Development, Medicinal Science & Technology, 1250 S. Collegeville Road, Collegeville, PA 19426, United States.
| |
Collapse
|
18
|
Guner G, Mehaj M, Seetharaman N, Elashri S, Yao HF, Clancy DJ, Bilgili E. Do Mixtures of Beads with Different Sizes Improve Wet Stirred Media Milling of Drug Suspensions? Pharmaceutics 2023; 15:2213. [PMID: 37765182 PMCID: PMC10535179 DOI: 10.3390/pharmaceutics15092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads with nominal sizes of 100, 200, and 400 µm and their half-and-half binary mixtures were used at 3000 and 4000 rpm with two bead loadings of 0.35 and 0.50. Particle size evolution was measured during the 3 h milling experiments using laser diffraction. An nth-order breakage model was fitted to the experimental median particle size evolution, and various microhydrodynamic parameters were calculated. In general, the beads and their mixtures with smaller median sizes achieved faster breakage. While the microhydrodynamic model explained the impacts of process parameters, it was limited in describing bead mixtures. For additional test runs performed, the kinetics model augmented with a decision tree model using process parameters outperformed that augmented with an elastic-net regression model using the microhydrodynamic parameters. The evaluation of the process merit scores suggests that the use of bead mixtures did not lead to notable process improvement; 100 µm beads generally outperformed bead mixtures and coarser beads in terms of fast breakage, low power consumption and heat generation, and low intermittent milling cycles.
Collapse
Affiliation(s)
- Gulenay Guner
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Mirsad Mehaj
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Natasha Seetharaman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Sherif Elashri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Helen F Yao
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Donald J Clancy
- Drug Product Development, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Rahman M, Radgman K, Tarabokija J, Ahmad S, Bilgili E. Preparation and Characterization of Spray-Dried Hybrid Nanocrystal-Amorphous Solid Dispersions (HyNASDs) for Supersaturation Enhancement of a Slowly Crystallizing Drug. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2419. [PMID: 37686927 PMCID: PMC10490532 DOI: 10.3390/nano13172419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
We prepared hybrid nanocrystal-amorphous solid dispersions (HyNASDs) to examine their supersaturation capability in the release of a poorly soluble drug, itraconazole (ITZ), a slow crystallizer during dissolution. The HyNASD formulations included a polymer (HPC: hydroxypropyl cellulose, Sol: Soluplus, or VA64: Kollidon-VA64) and a surfactant (SDS: sodium dodecyl sulfate). Additionally, the dissolution performance of the HyNASDs and ASDs was compared. To this end, wet-milled aqueous nanosuspensions containing a 1:5 ITZ:polymer mass ratio with/without SDS as well as solutions of the same ratio without SDS in dichloromethane were spray-dried. XRPD-DSC confirmed that ASDs were formed upon spray drying the solution-based feeds, whereas HyNASDs (~5-30% amorphous) were formed with the nanosuspension-based feeds. SDS aided to stabilize the ITZ nanosuspensions and increase the amorphous content in the spray-dried powders. During dissolution, up to 850% and 790% relative supersaturation values were attained by HyNASDs with and without SDS, respectively. Due to the stronger molecular interaction between ITZ-Sol than ITZ-HPC/VA64 and micellar solubilization by Sol, Sol-based HyNASDs outperformed HPC/VA64-based HyNASDs. While the ASD formulations generated greater supersaturation values (≤1670%) than HyNASDs (≤790%), this extent of supersaturation from a largely nanocrystalline formulation (HyNASD) has not been achieved before. Overall, HyNASDs could boost drug release from nanoparticle-based formulations and may render them competitive to ASDs.
Collapse
Affiliation(s)
| | | | | | | | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.R.); (K.R.); (J.T.); (S.A.)
| |
Collapse
|
20
|
Mehmood Y, Shahid H, Abbas M, Farooq U, Alshehri S, Alam P, Shakeel F, Ghoneim MM. Developing Nanosuspension Loaded with Azelastine for Potential Nasal Drug Delivery: Determination of Proinflammatory Interleukin IL-4 mRNA Expression and Industrial Scale-Up Strategy. ACS OMEGA 2023; 8:23812-23824. [PMID: 37426214 PMCID: PMC10324090 DOI: 10.1021/acsomega.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
In order to increase bioavailability and intranasal absorbance, the current work set out to create azelastine nasal spray based on nanosuspension. Chondroitin was utilized as a polymer to prepare azelastine nanosuspension through the precipitation procedure. A size of 500 nm and a polydispersity index of 0.276 with a negative potential (-20 mV) were achieved. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis including differential scanning calorimetry and thermogravimetric analysis, in vitro release, and diffusion studies were used to characterize the optimized nanosuspension. MTT assay was used to assess the viability of the cells, and hemolysis assay was used to assess the blood compatibility. Using RNA extraction and reverse transcription polymerase chain reaction, the levels of the anti-inflammatory cytokine IL-4, which is most closely related to cytokines in allergic rhinitis, were measured in mouse lungs. The drug dissolution and diffusion study indicated 2.0-fold increase compared to pure reference sample. Therefore, the azelastine nanosuspension could be suggested as a practical and simple nanosystem for intranasal delivery with improved permeability and bioavailability. The outcome obtained in this study indicated that azelastine nanosuspension has great potential to treat allergic rhinitis as intranasal treatment.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, P. O. Box 38000, Faisalabad 38040, Pakistan
- Riphah
Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Faisalabad, P. O. Box 38000, Punjab 44000, Pakistan
| | - Hira Shahid
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, P. O. Box 38000, Faisalabad 38040, Pakistan
| | - Muhammad Abbas
- Imran
Adress College of Pharmacy, P. O. Box 51310, Sialkot 51310, Pakistan
| | - Umar Farooq
- Faculty
of Pharmacy, Grand Asian University, P. O. Box 51310, Sialkot, 51040 Punjab, Pakistan
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| |
Collapse
|
21
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
22
|
Laffleur F, Mayer AH. Oral nanoparticulate drug delivery systems for the treatment of intestinal bowel disease and colorectal cancer. Expert Opin Drug Deliv 2023; 20:1595-1607. [PMID: 38044874 DOI: 10.1080/17425247.2023.2289586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION The most popular method for delivering drugs locally and systemically is oral. However, the gastrointestinal tract's severe physiological (mucosal and enzymatic barrier) and physicochemical (pH) environment places restrictions on the oral drug delivery system's bioavailability and targeted design. AREAS COVERED Various nanoparticulate drug delivery systems (NPDDSs) based on lipids or polymers, such as liposomes, solid lipid nanoparticles, polymeric micelles, nanospheres, and nanocapsules and their application in successful treatment of serious diseases such as intestinal bowel disease and colorectal cancer (CRC). These systems can ensure advantages over conventional systems liked improved bioavailability, prolonged residence time, and enhanced solubility of poorly soluble drugs. Moreover, the nature of these NPDDSs led to numerous breakthroughs in bioavailability, active and passive targeting, controlled release, and cost-efficient production on an industrial scale in recent years. EXPERT OPINION An expert opinion on orally administrable lipid and polymer based NPDDS, the physiological barriers and their use in the treatment of intestinal bowel disease and CRC is provided within this review.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Alexander Heinz Mayer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Zhang C, Vora LK, Tekko IA, Volpe-Zanutto F, Peng K, Paredes AJ, McCarthy HO, Donnelly RF. Development of dissolving microneedles for intradermal delivery of the long-acting antiretroviral drug bictegravir. Int J Pharm 2023; 642:123108. [PMID: 37301241 DOI: 10.1016/j.ijpharm.2023.123108] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Oral administration and intramuscular (IM) injection are commonly recommended options for human immunodeficiency virus (HIV) treatment. However, poor patient compliance due to daily oral dosing, pain at injection sites and the demand for trained healthcare staff for injections limit the success of these administration routes, especially in low-resource settings. To overcome these limitations, for the first time, we propose novel bilayer dissolving microneedles (MNs) for the intradermal delivery of long-acting nanosuspensions of the antiretroviral (ARV) drug bictegravir (BIC) for potential HIV treatment and prevention. The BIC nanosuspensions were prepared using a wet media milling technique on a laboratory scale with a particle size of 358.99 ± 18.53 nm. The drug loading of nanosuspension-loaded MNs and BIC powder-loaded MNs were 1.87 mg/0.5 cm2 and 2.16 mg/0.5 cm2, respectively. Both dissolving MNs exhibited favorable mechanical and insertion ability in the human skin simulant Parafilm® M and excised neonatal porcine skin. Importantly, the pharmacokinetic profiles of Sprague Dawley rats demonstrated that dissolving MNs were able to intradermally deliver 31% of drug loading from nanosuspension-loaded MNs in the form of drug depots. After a single application, both coarse BIC and BIC nanosuspensions achieved sustained release, maintaining plasma concentrations above human therapeutic levels (162 ng/mL) in rats for 4 weeks. These minimally invasive and potentially self-administered MNs could improve patient compliance, providing a promising platform for the delivery of nanoformulated ARVs and resulting in prolonged drug release, particularly for patients in low-resource settings.
Collapse
Affiliation(s)
- Chunyang Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn, Road, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
25
|
Terbinafine Nanohybrid: Proposing a Hydrogel Carrying Nanoparticles for Topical Release. Pharmaceutics 2023; 15:pharmaceutics15030841. [PMID: 36986702 PMCID: PMC10056099 DOI: 10.3390/pharmaceutics15030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A poloxamer 407 (P407)—Casein hydrogel was chosen to carry polycaprolactone nanoparticles carrying terbinafine (PCL-TBH-NP). In this study, terbinafine hydrochloride (TBH) was encapsulated into polycaprolactone (PCL) nanoparticles, which were further incorporated into a poloxamer-casein hydrogel in a different addition order to evaluate the effect of gel formation. Nanoparticles were prepared by the nanoprecipitation technique and characterized by evaluating their physicochemical characteristics and morphology. The nanoparticles had a mean diameter of 196.7 ± 0.7 nm, PDI of 0.07, negative ζ potential (−0.713 mV), high encapsulation efficiency (>98%), and did not show cytotoxic effects in primary human keratinocytes. PCL-NP modulated terbinafine was released in artificial sweat. Rheological properties were analyzed by temperature sweep tests at different addition orders of nanoparticles into hydrogel formation. The rheological behavior of nanohybrid hydrogels showed the influence of TBH-PCL nanoparticles addition in the mechanical properties of the hydrogel and a long-term release of the nanoparticles from it.
Collapse
|
26
|
Irfan MM, Shah SU, Shah KU, Anton N, Idoux-Gillet Y, Conzatti G, Shah KU, Perennes E, Vandamme T. Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. J Microencapsul 2023; 40:106-123. [PMID: 36749573 DOI: 10.1080/02652048.2023.2178537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.
Collapse
Affiliation(s)
- Malik Muhammad Irfan
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Shefaat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Nicolas Anton
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Guillaume Conzatti
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Kifayat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Elise Perennes
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Thierry Vandamme
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Pielenhofer J, Meiser SL, Gogoll K, Ciciliani AM, Denny M, Klak M, Lang BM, Staubach P, Grabbe S, Schild H, Radsak MP, Spahn-Langguth H, Langguth P. Quality by Design (QbD) Approach for a Nanoparticulate Imiquimod Formulation as an Investigational Medicinal Product. Pharmaceutics 2023; 15:pharmaceutics15020514. [PMID: 36839835 PMCID: PMC9965879 DOI: 10.3390/pharmaceutics15020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The present article exemplifies the application of the concept of quality by design (QbD) for the systematic development of a nanoparticulate imiquimod (IMQ) emulsion gel formulation as an investigational medicinal product (IMP) for evaluation in an academic phase-I/II clinical trial for the treatment of actinic keratosis (AK) against the comparator Aldara (EudraCT: 2015-002203-28). The design of the QbD elements of a quality target product profile (QTPP) enables the identification of the critical quality attributes (CQAs) of the drug product as the content of IMQ, the particle-size distribution, the pH, the rheological properties, the permeation rate and the chemical, physical and microbiological stability. Critical material attributes (CMAs) and critical process parameters (CPPs) are identified by using a risk-based approach in an Ishikawa diagram and in a risk-estimation matrix. In this study, the identified CPPs of the wet media ball-milling process's milling time and milling speed are evaluated in a central composite design of experiments (DoEs) approach, revealing criticality for both factors for the resulting mean particle size, while only the milling time is significantly affecting the polydispersity. To achieve a mean particle size in the range of 300-400 nm with a minimal PdI, the optimal process conditions are found to be 650 rpm for 135 min. Validating the model reveals a good correlation between the predicted and observed values. Adequate control strategies were implemented for intermediate products as in-process controls (IPCs) and quality control (QC) tests of the identified CQAs. The IPC and QC data from 13 "IMI-Gel" batches manufactured in adherence to good manufacturing practice (GMP) reveal consistent quality with minimal batch-to-batch variability.
Collapse
Affiliation(s)
- Jonas Pielenhofer
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Correspondence: or (J.P.); (P.L.)
| | - Sophie Luise Meiser
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Karsten Gogoll
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anna-Maria Ciciliani
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mark Denny
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Michael Klak
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Berenice M. Lang
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Petra Staubach
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus P. Radsak
- 3rd Department Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hilde Spahn-Langguth
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Peter Langguth
- Department for Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Correspondence: or (J.P.); (P.L.)
| |
Collapse
|
28
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
29
|
Göppert NE, Dirauf M, Liebing P, Weber C, Schubert US. Organocatalyzed Ring-Opening Polymerization of (S)-3-Benzylmorpholine-2,5-Dione. Macromol Rapid Commun 2023; 44:e2200651. [PMID: 36413677 DOI: 10.1002/marc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Indexed: 11/23/2022]
Abstract
A 3-benzylmorpholine-2,5-dione monomer is synthesized from the natural amino acid l-phenylalanine and characterized by means of nuclear magnetic resonance and infrared spectroscopy, electrospray ionization mass spectrometry, and elemental analysis. Subsequent to preliminary polymerization studies, a well-defined poly(ester amide) homopolymer is synthesized via ring-opening polymerization using a binary catalyst system comprising 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and a 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea (TU) cocatalyst with a feed ratio of M/I/DBU/TU = 100/1/1/10. Kinetic studies reveal high controllability of the dispersities and molar masses up to conversions of almost 80%. Analysis by mass spectrometry hints toward excellent end-group fidelity at these conditions. In consequence, utilization of hydroxyl-functionalized poly(ethylene glycol) and poly(2-ethyl-2-oxazoline) as macroinitiators results in amphiphilic block copolymers. Bulk miscibility of the building blocks is indicated by differential scanning calorimetry investigations. As more and more promising new drugs are based on hydrophobic molecules featuring aromatic moieties, the novel polyesteramides seem highly promising materials to be used as potential drug delivery vehicles.
Collapse
Affiliation(s)
- Natalie E Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Phil Liebing
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
30
|
Lin Z, Zheng K, Azad MA, Davé RN. Preparation of Free-Flowing Spray-Dried Amorphous Composites Using Neusilin ®. AAPS PharmSciTech 2023; 24:51. [PMID: 36703032 DOI: 10.1208/s12249-023-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A highly porous additive, Neusilin®, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin®, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin®. The resulting AC powders that included Neusilin® had greatly enhanced flowability (flow function coefficient (FFC) > 10) comparable to larger particles (100 μm) yet had finer particle size (< 50 μm), hence retaining the advantage of fast dissolution rate of finer sizes. Dissolution results demonstrated that achieved GF supersaturation for AC powders with Neusilin® was as high as 3 times that of crystalline GF concentration and was achieved within 30 min. In addition, 80% of drug was released within 4 min. The flowability improvement for AC powders with Neusilin® was more significant as compared to spray-dried ASDs without Neusilin®. Thus, the role of Neusilin® in flowability improvement was evident, considering that spray-dried AC with Neusilin® UFL2 has higher FFC than ASDs having a similar size. Lastly, the AC powders retained a fully amorphous state of GF after 3-month ambient storage. The overall results conveyed that the improved flowability and dissolution rate could outweigh the loss of drug loading resulted by addition of Neusilin®.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mohammad A Azad
- Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
31
|
Predicting the Temperature Evolution during Nanomilling of Drug Suspensions via a Semi-Theoretical Lumped-Parameter Model. Pharmaceutics 2022; 14:pharmaceutics14122840. [PMID: 36559333 PMCID: PMC9788500 DOI: 10.3390/pharmaceutics14122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM) for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The LPM was formulated and fitted to the experimental temperature profiles in the training runs, and its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted as a function of the process parameters via a power law (PL) model and machine learning (ML) model. The LPM augmented with the PL and ML models was used to predict the temperature evolution in the test runs. The LPM predictions were also compared with those of an enthalpy balance model (EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE) lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model had both good descriptive and predictive capability, whereas the one with the ML model had a comparable predictive capability. Despite being simple, with two parameters and obviating the need for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a validated, simple model for pharmaceutical engineers to simulate the temperature evolution during the nanomilling process, which will help to set proper process controls for thermally labile drugs.
Collapse
|
32
|
Khare P, Chogale MM, Kakade P, Patravale VB. Gellan gum-based in situ gelling ophthalmic nanosuspension of Posaconazole. Drug Deliv Transl Res 2022; 12:2920-2935. [PMID: 35538191 PMCID: PMC9089292 DOI: 10.1007/s13346-022-01155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
The formulation and delivery of highly hydrophobic drugs in an optimized dosage form is challenging to formulation scientists. Posaconazole has shown promising action in case studies against fungal keratitis. Biological macromolecules like gellan gum would aid in enhancing the availability of such drugs by increasing the contact time of the formulation. Herein, we propose a transmucosal ocular delivery system of Posaconazole by developing a gellan gum-based in situ gelling nanosuspension. The HPLC method for Posaconazole was developed and validated as per ICH guidelines. The nanosuspension was prepared by microfluidization and optimized by Quality by Design. The gellan gum concentration selected was 0.4% w/v based on the viscosity and mucoadhesion measurements. A greater zone of inhibition of ~ 15 mm was observed for the prepared nanosuspension as compared to ~ 11 mm for the marketed itraconazole nanosuspension. A potential irritancy score of 0.85, considered to be non-irritant, was observed for the developed nanosuspension. Higher drug release of ~ 35% was noted for the nanosuspension compared to about ~ 10% for the coarse suspension. Ex vivo corneal retention studies on excised goat cornea demonstrated ~ 70% drug retention in the tissue. Graphical abstract depicting the central hypothesis of the work.
Collapse
Affiliation(s)
- Purva Khare
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Manasi M. Chogale
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Pratik Kakade
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Vandana B. Patravale
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| |
Collapse
|
33
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
34
|
Tanaka H, Ochii Y, Moroto Y, Hirata D, Ibaraki T, Ogawara KI. Nanocrystal Preparation of Poorly Water-Soluble Drugs with Low Metal Contamination Using Optimized Bead-Milling Technology. Pharmaceutics 2022; 14:2633. [PMID: 36559126 PMCID: PMC9783641 DOI: 10.3390/pharmaceutics14122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Nanocrystal preparation using bead milling is an important technology to enhance the solubility of poorly water-soluble drugs. However, there are safety concerns regarding the metal contaminants generated during bead milling. We have previously reported optimized bead-milling parameters that could minimize metal contamination and demonstrated comparable performance to NanoCrystal®, a world-leading contamination-free technology. This study aimed to investigate the applicability of optimized milling parameters for preparing nanocrystals of several poorly water-soluble drugs exhibiting various physicochemical properties. Using our optimized bead-milling parameters, we found that all the tested drugs could be ground into nanosized particles within 360 min. Notably, fenofibrate, which has a low melting point, could be ground into nanosized particles owing to the low level of heat generated during bead milling. Additionally, the concentration of metal contaminants in all the drugs prepared using the optimized milling parameters were approximately ten to twentyfold lower than those prepared without the optimized parameters and were comparable to those prepared using polycarbonate beads, known to minimize metal contamination during bead milling. Our results provide insights into the development of drug nanocrystals with low metal contamination using bead milling.
Collapse
Affiliation(s)
- Hironori Tanaka
- Formulation R&D Laboratory, Research Division, Shionogi & Co., Ltd., Amagasaki 660-0813, Hyogo, Japan
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Hyogo, Japan
| | - Yuya Ochii
- Formulation R&D Laboratory, Research Division, Shionogi & Co., Ltd., Amagasaki 660-0813, Hyogo, Japan
| | - Yasushi Moroto
- Formulation R&D Laboratory, Research Division, Shionogi & Co., Ltd., Amagasaki 660-0813, Hyogo, Japan
| | - Daisuke Hirata
- Hiroshima Metal & Machinery Co., Ltd., Hiroshima 737-0144, Hiroshima, Japan
| | - Tetsuharu Ibaraki
- Hiroshima Metal & Machinery Co., Ltd., Hiroshima 737-0144, Hiroshima, Japan
| | - Ken-ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Hyogo, Japan
| |
Collapse
|
35
|
Artyukhov AA, Nechaeva AM, Shtilman MI, Chistyakov EM, Svistunova AY, Bagrov DV, Kuskov AN, Docea AO, Tsatsakis AM, Gurevich L, Mezhuev YO. Nanoaggregates of Biphilic Carboxyl-Containing Copolymers as Carriers for Ionically Bound Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207136. [PMID: 36295201 PMCID: PMC9609473 DOI: 10.3390/ma15207136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/01/2023]
Abstract
Application of nanocarriers for drug delivery brings numerous advantages, allowing both minimization of side effects common in systemic drug delivery and improvement in targeting, which has made it the focal point of nanoscience for a number of years. While most of the studies are focused on encapsulation of hydrophobic drugs, delivery of hydrophilic compounds is typically performed via covalent attachment, which often requires chemical modification of the drug and limits the release kinetics. In this paper, we report synthesis of biphilic copolymers of various compositions capable of self-assembly in water with the formation of nanoparticles and suitable for ionic binding of the common anticancer drug doxorubicin. The copolymers are synthesized by radical copolymerization of N-vinyl-2-pyrrolidone and acrylic acid using n-octadecyl-mercaptan as a chain transfer agent. With an increase of the carboxyl group's share in the chain, the role of the electrostatic stabilization factor of the nanoparticles increased as well as the ability of doxorubicin as an ion binder. A mathematical description of the kinetics of doxorubicin binding and release is given and thermodynamic functions for the equilibrium ionic binding of doxorubicin are calculated.
Collapse
Affiliation(s)
- Alexander A. Artyukhov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anna M. Nechaeva
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail I. Shtilman
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Evgeniy M. Chistyakov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alina Yu. Svistunova
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrey N. Kuskov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anca O. Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine & Pharmacy, 2 Petru Rares, 200349 Craiova, Romania
| | - Aristides M. Tsatsakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, 71003 Heraklion, Greece
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
| | - Yaroslav O. Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
36
|
Amin M, Lammers T, Ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv Drug Deliv Rev 2022; 189:114503. [PMID: 35998827 DOI: 10.1016/j.addr.2022.114503] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Heat-triggered drug release from temperature-sensitive nanocarriers upon the application of mild hyperthermia is a promising approach to achieve site-specific delivery of drugs. The combination of mild hyperthermia (41-42 °C) and temperature-sensitive liposomes (TSL) that undergo lipid phase-transition and drug release has been studied extensively and has shown promising therapeutic outcome in a variety of animal tumor models as well as initial indications of success in humans. Sensitization of liposomes to mild hyperthermia by means of exploiting the thermal behavior of temperature-sensitive polymers (TSP) provides novel opportunities. Recently, TSP-modified liposomes (TSPL) have shown potential for enhancing tumor-directed drug delivery, either by triggered drug release or by triggered cell interactions in response to heat. In this review, we describe different classes of TSPL, and analyze and discuss the mechanisms and kinetics of content release from TSPL in response to local heating. In addition, the impact of lipid composition, polymer and copolymer characteristics, serum components and PEGylation on the mechanism of content release and TSPL performance is addressed. This is done from the perspective of rationally designing TSPL, with the overall goal of conceiving efficient strategies to increase the efficacy of TSPL plus hyperthermia to improve the outcome of targeted anticancer therapy.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Center for Biohybrid Medical Systems, Aachen, Germany.
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
38
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations. Polymers (Basel) 2022; 14:polym14173464. [PMID: 36080539 PMCID: PMC9460905 DOI: 10.3390/polym14173464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nanocrystals are carrier-free, submicron-sized, colloidal drug delivery systems with particle sizes in the mean nanometer range. Nanocrystals have high bioavailability and fast absorption because of their high dissolution velocity and enhanced adhesiveness to cell membranes. Loxoprofen, a nonsteroidal anti-inflammatory drug belonging to the Biopharmaceutical Classification System (BCS) II drug class, was selected as the model drug. The aim of this study was to formulate nanocrystals of loxoprofen. A total of 12 formulations (F1 to F12) were prepared. An antisolvent technique was used to determine the effects of various stabilizers and processing conditions on the optimization of formulations. The various stabilizers used were hydroxypropyl methylcellulose (0.5%), polyvinylpyrrolidone (0.5%), and sodium lauryl sulfate (0.1%). The various characterizations conducted for this research included stability studies at 25 °C and 4 °C, scanning electron microscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), zeta potentials, polydispersity indexes, and dissolution studies. F10 was the optimized formulation that showed stability at room temperature, as well as at a refrigerated temperature, for 30 days. A high dissolution rate (100% within the first 10 min) was shown by comparative dissolution studies of nano-suspensions with the micro-suspension and raw loxoprofen. F10 formulation had a non-porous and crystalline morphology on evaluation by TEM and XRPD, respectively, and the average particle size was 300 ± 0.3 nm as confirmed by TEM. DSC recorded a reduction in the melting point (180 °C processed and 200 °C unprocessed melting points). The dissolution rate and solubility of the formulated loxoprofen nanocrystals were significantly enhanced. It can be concluded that selecting suitable stabilizers (i.e., polymers and surfactants) can produce stable nanocrystals, and this can potentially lead to a scaling up of the process for commercialization.
Collapse
|
40
|
Guner G, Elashri S, Mehaj M, Seetharaman N, Yao HF, Clancy DJ, Bilgili E. An Enthalpy-Balance Model for Timewise Evolution of Temperature during Wet Stirred Media Milling of Drug Suspensions. Pharm Res 2022; 39:2065-2082. [PMID: 35915319 DOI: 10.1007/s11095-022-03346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Nanosuspensions have been used for enhancing the bioavailability of poorly soluble drugs. This study explores the temperature evolution during their preparation in a wet stirred media mill using a coupled experimental-enthalpy balance approach. METHODS Milling was performed at three levels of stirrer speed, bead loading, and bead sizes. Temperatures were recorded over time, then simulated using an enthalpy balance model by fitting the fraction of power converted to heat ξ. Moreover, initial and final power, ξ, and temperature profiles at 5 different test runs were predicted by power-law (PL) and machine learning (ML) approaches. RESULTS Heat generation was higher at the higher stirrer speed and bead loading/size, which was explained by the higher power consumption. Despite its simplicity with a single fitting parameter ξ, the enthalpy balance model fitted the temperature evolution well with root mean squared error (RMSE) of 0.40-2.34°C. PL and ML approaches provided decent predictions of the temperature profiles in the test runs, with RMSE of 0.93-4.17 and 1.00-2.17°C, respectively. CONCLUSIONS We established the impact of milling parameters on heat generation-power and demonstrated the simulation-prediction capability of an enthalpy balance model when coupled to the PL-ML approaches.
Collapse
Affiliation(s)
- Gulenay Guner
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sherif Elashri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Mirsad Mehaj
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Natasha Seetharaman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Helen F Yao
- GlaxoSmithKline, Drug Product Development, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Donald J Clancy
- GlaxoSmithKline, Drug Product Development, GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
41
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Freeze-drying of drug nanosuspension– study of formulation and processing factors for the optimization and characterization of redispersible cilostazol nanocrystals. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Guner G, Seetharaman N, Elashri S, Mehaj M, Bilgili E. Analysis of heat generation during the production of drug nanosuspensions in a wet stirred media mill. Int J Pharm 2022; 624:122020. [PMID: 35842083 DOI: 10.1016/j.ijpharm.2022.122020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Although heat is generated during the wet stirred media milling of drug suspensions, leading to notable temperature rise, a comprehensive analysis of heat generation does not exist. Hence, we investigated the impact of stirrer speed, bead loading, and bead size at three levels on the evolution of suspension temperature at the mill outlet during the milling of fenofibrate. The particle sizes and viscosities of the milled suspensions and power were measured. Our results suggest that stirrer speed had the most significant impact on the temperature increase, followed by bead loading and bead size. Both the time when the temperature reached 22 °C and the temperature at 5 min of milling were strongly correlated with the power. Assessing the impacts of the process parameters on the temperature rise, cycle time, power, and median particle size holistically, an optimal milling process was identified: 3000 rpm with 50% loading of 200 or 400 µm beads. A power number correlation was established to calculate power at any milling condition which determines the heat generation rate. Overall, this study indicated the importance of developing a good understanding of heat generation during nanomilling for development of a robust milling process especially for thermally labile drugs.
Collapse
Affiliation(s)
- Gulenay Guner
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Natasha Seetharaman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Sherif Elashri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mirsad Mehaj
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
44
|
Mohanty D, Gilani SJ, Zafar A, Imam SS, Kumar LA, Ahmed MM, Jahangir MA, Bakshi V, Ahmad W, Eltayib EM. Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment. Molecules 2022; 27:molecules27144470. [PMID: 35889343 PMCID: PMC9318982 DOI: 10.3390/molecules27144470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
The nano-drug delivery system has gained greater acceptability for poorly soluble drugs. Alogliptin (ALG) is a FDA-approved oral anti-hyperglycemic drug that inhibits dipeptidyl peptidase-4. The present study is designed to prepare polymeric ALG nanoparticles (NPs) for the management of diabetes. ALG-NPs were prepared using the nanoprecipitation method and further optimized by Box−Behnken experimental design (BBD). The formulation was optimized by varying the independent variables Eudragit RSPO (A), Tween 20 (B), and sonication time (C), and the effects on the hydrodynamic diameter (Y1) and entrapment efficiency (Y2) were evaluated. The optimized ALG-NPs were further evaluated for in vitro release, intestinal permeation, and pharmacokinetic and anti-diabetic activity. The prepared ALG-NPs show a hydrodynamic diameter of between 272.34 nm and 482.87 nm, and an entrapment efficiency of between 64.43 and 95.21%. The in vitro release data of ALG-NPs reveals a prolonged release pattern (84.52 ± 4.1%) in 24 h. The permeation study results show a 2.35-fold higher permeation flux than pure ALG. ALG-NPs exhibit a significantly (p < 0.05) higher pharmacokinetic profile than pure ALG. They also significantly (p < 0.05) reduce the blood sugar levels as compared to pure ALG. The findings of the study support the application of ALG-entrapped Eudragit RSPO nanoparticles as an alternative carrier for the improvement of therapeutic activity.
Collapse
Affiliation(s)
- Dibyalochan Mohanty
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India;
- Correspondence: (D.M.); (A.Z.); (S.S.I.)
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (D.M.); (A.Z.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (D.M.); (A.Z.); (S.S.I.)
| | - Ladi Alik Kumar
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Khurda 752050, India;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | | | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| |
Collapse
|
45
|
Mizerska-Kowalska M, Sowa S, Donarska B, Płaziński W, Sławińska-Brych A, Tomasik A, Ziarkowska A, Łączkowski KZ, Zdzisińska B. New Borane-Protected Derivatives of α-Aminophosphonous Acid as Anti-Osteosarcoma Agents: ADME Analysis and Molecular Modeling, In Vitro Studies on Anti-Cancer Activities, and NEP Inhibition as a Possible Mechanism of Anti-Proliferative Activity. Int J Mol Sci 2022; 23:ijms23126716. [PMID: 35743158 PMCID: PMC9223658 DOI: 10.3390/ijms23126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Many organophosphorus compounds (OPs), especially various α-aminophosphonates, exhibit anti-cancer activities. They act, among others, as inhibitors of the proteases implicated in cancerogenesis. Thesetypes of inhibitors weredescribed, e.g., for neutral endopeptidase (NEP) expressed in different cancer cells, including osteosarcoma (OS). The aim of the present study isto evaluate new borane-protected derivatives of phosphonous acid (compounds 1–7) in terms of their drug-likeness properties, anti-osteosarcoma activities in vitro (against HOS and Saos-2 cells), and use as potential NEP inhibitors. The results revealed that all tested compounds exhibited the physicochemical and ADME properties typical for small-molecule drugs. However, compound 4 did not show capability of blood–brain barrier penetration (Lipiński and Veber rules;SwissAdme tool). Moreover, the α-aminophosphonite-boranes (compounds 4–7) exhibited stronger anti-proliferative activity against OS cells than the other phosphonous acid-borane derivatives (compounds 1–3),especially regarding HOS cells (MTT assay). The most promising compounds 4 and 6 induced apoptosis through the activation of caspase 3 and/or cell cycle arrest at the G2 phase (flow cytometry). Compound 4 inhibited the migration and invasiveness of highly aggressive HOS cells (wound/transwell and BME-coated transwell assays, respectively). Additionally, compound 4 and, to a lesser extent, compound 6 inhibited NEP activity (fluorometric assay). This activity of compound 4 was involved in its anti-proliferative potential (BrdU assay). The present study shows that compound 4 can be considered a potential anti-osteosarcoma agent and a scaffold for the development of new NEP inhibitors.
Collapse
Affiliation(s)
- Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
- Correspondence:
| | - Sylwia Sowa
- Faculty of Chemistry, Department of Organic Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland;
| | - Beata Donarska
- Faculty of Pharmacy, Collegium Medicum, Department of Chemical Technology and Pharmaceuticals, Nicolaus Copernicus University, Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (B.D.); (K.Z.Ł.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8 Street, 30-239 Cracow, Poland;
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Aleksandra Tomasik
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| | - Anna Ziarkowska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| | - Krzysztof Z. Łączkowski
- Faculty of Pharmacy, Collegium Medicum, Department of Chemical Technology and Pharmaceuticals, Nicolaus Copernicus University, Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (B.D.); (K.Z.Ł.)
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| |
Collapse
|
46
|
Liu Y, Li Y, Xu P, Shen Y, Tang B, Wang Q. Development of Abiraterone Acetate Nanocrystal Tablets to Enhance Oral Bioavailability: Formulation Optimization, Characterization, In Vitro Dissolution and Pharmacokinetic Evaluation. Pharmaceutics 2022; 14:pharmaceutics14061134. [PMID: 35745707 PMCID: PMC9228621 DOI: 10.3390/pharmaceutics14061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Abiraterone acetate is a prodrug of abiraterone used in combination with prednisone as a standard therapeutic strategy for hormone-resistant prostate cancer (mCRPC). Due to the poor solubility and permeability, the release and absorption of abiraterone acetate are low and reduce its bioavailability. In this project, abiraterone acetate tablets prepared using nanocrystal technology were developed to overcome the drawbacks of normal tablets by enhancing in vitro dissolution rate and oral bioavailability. The abiraterone acetate nanocrystal suspensions were prepared by top-down wet milling method using a planetary ball mill with the mixture of Poloxamer 407 and Poloxamer 188 as the optimized stabilizer at a ratio of 7:1. The optimized nanocrystals were freeze-dried and characterized using DLS, TEM, DSC, and XRD. The abiraterone acetate nanocrystal tablets significantly improve the in vitro dissolution rate of abiraterone acetate compared to raw materials. Although exhibiting a similar dissolution rate compared to the Zytiga® tablets, the nanocrystal tablets significantly improve the oral bioavailability with Cmax and AUC0–t being 3.51-fold and 2.80-fold higher, respectively, in the pharmacokinetic study. The present data indicate that nanocrystal is a promising strategy for improving the dissolution and bioavailability of abiraterone acetate.
Collapse
Affiliation(s)
- Yuanfen Liu
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing 211800, China;
| | - Yuqi Li
- Department of Pharmaceutics, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.L.); (Y.S.)
| | - Pengcheng Xu
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Yan Shen
- Department of Pharmaceutics, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.L.); (Y.S.)
| | - Baoqiang Tang
- Department of Pharmaceutics, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.L.); (Y.S.)
- Shenzhen Aoqi Biological Medicine Co., Ltd., Shenzhen 010110, China
- Correspondence: (B.T.); (Q.W.)
| | - Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (B.T.); (Q.W.)
| |
Collapse
|
47
|
Effects of bead packing limit concentration on microhydrodynamics-based prediction of breakage kinetics in wet stirred media milling. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Zingale E, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications. Pharmaceutics 2022; 14:691. [PMID: 35456525 PMCID: PMC9024479 DOI: 10.3390/pharmaceutics14040691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new drugs is often hindered by low solubility in water, a problem common to nearly 90% of natural and/or synthetic molecules in the discovery pipeline. Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. Due to high drug loading, NCs maintain a potent therapeutic concentration to produce desirable pharmacological action, particularly useful in the treatment of central nervous system (CNS) diseases. In addition to the therapeutic purpose, NC technology can be applied for diagnostic scope. This review aims to provide an overview of NC application by different administration routes, especially focusing on brain targeting, and with a particular attention to therapeutic and diagnostic fields. NC therapeutic applications are analyzed for the most common CNS pathologies (i.e., Parkinson's disease, psychosis, Alzheimer's disease, etc.). Recently, a growing interest has emerged from the use of colloidal fluorescent NCs for brain diagnostics. Therefore, the use of NCs in the imaging of brain vessels and tumor cells is also discussed. Finally, the clinical effectiveness of NCs is leading to an increasing number of FDA-approved products, among which the NCs approved for neurological disorders have increased.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (C.C.); (T.M.); (R.P.)
- NANO-i—Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
49
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
50
|
Huang F, Jiang X, Sallam MA, Zhang X, He W. A Nanocrystal Platform Based on Metal-Phenolic Network Wrapping for Drug Solubilization. AAPS PharmSciTech 2022; 23:76. [PMID: 35178657 DOI: 10.1208/s12249-022-02220-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
The preparation of drugs into nanocrystals represents a practical pharmaceutical technology to solubilize poorly water-soluble drugs and enhance bioavailability. However, commonly used stabilizers in nanocrystals like polymers and surfactants are frequently inefficient and cannot stabilize nanocrystals for an expected time. This study reports an exquisite platform for nanocrystal production based on a metal-phenolic network (MPN). MPN-wrapped nanocrystal particles (MPN-NPs) were fabricated through an anti-solvent precipitation method using tannic acid and FeIII or AlIII as coupling agents and characterized by dynamic light scattering, transmission electron microscope, ultraviolet and visible spectrophotometry, fourier-transform infrared spectroscopy, and X-ray powder diffraction. In vitro release, cytotoxicity, and stability were mainly studied with MPN-NPs loading paclitaxel. The suitability of MPN as a nanocrystal stabilizer was also investigated for other classical hydrophobic drugs, including simvastatin, andrographolide, atorvastatin calcium, ferulic acid, and famotidine. The results showed that MPN could effectively wrap and stabilize various drug nanocrystals apart from famotidine. The maximum solubilization of MPN towards atorvastatin calcium was up to 1587 folds, and it also exhibited an excellent solubilizing effect on other hydrophobic drugs. We disclosed that the drug was entrapped in MPN in the nanocrystal form, and there were distinct physiochemical interactions between MPN and the payload. Our findings suggested that MPN may be a promising platform for nanocrystal production to address the challenge of low solubility associated with hydrophobic drugs. Graphical abstract.
Collapse
|