1
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Saroglu O, Karakas CY, Yildirim RM, Erdem O, Karasu S, Sagdic O, Karadag A. Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics. Int J Biol Macromol 2025; 300:140323. [PMID: 39864705 DOI: 10.1016/j.ijbiomac.2025.140323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels. PE encapsulated in phosphatidylcholine liposome formulations incorporated with two different food additives: polyethylene sorbitan monooleate (T80) and ammonium phosphatide (AMP) was embedded in xanthan gum-salep hydrogels. The embedded liposomes protected their structure and did not change the flow behaviour of the hydrogels. AMP-liposomal gels exhibited a stronger solid character. The mucoadhesiveness of liposomal gels was mostly governed by the higher xanthan gum ratio, while PE loading also yielded higher mucoadhesiveness. The bioaccessibility (BI%) of the phenolic compounds ranged from 10.13 to 582.75 % in the liposomal gel. The proposed hybrid encapsulation method not only provided enhanced solubility to hydrophobic PE but also protected its phenolic compounds against simulated digestion conditions. Moreover, converting aqueous liposomes into gel structures would also expand their application range in various functional food formulations.
Collapse
Affiliation(s)
- Oznur Saroglu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Canan Yagmur Karakas
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Rusen Metin Yildirim
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ozge Erdem
- Altiparmak Gıda San, ve Tic. A.S. Balparmak R&D Center, Istanbul, Turkiye
| | - Salih Karasu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Osman Sagdic
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ayse Karadag
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye.
| |
Collapse
|
3
|
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Challenges and considerations in liposomal hydrogels for the treatment of infection. Expert Opin Drug Deliv 2025; 22:255-276. [PMID: 39797393 DOI: 10.1080/17425247.2025.2451620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial. AREAS COVERED We provide an overview of liposomal hydrogels that were developed for superior delivery of antimicrobials at different infections sites, with focus on skin and vaginal infections. The review summarizes the challenges of infection site and most common infection-causing pathogens and offers commentary on most relevant features the formulation needs to optimize to increase the therapy outcome. We discuss the impact of liposomal composition, size, and choice of polymer-forming hydrogel on antimicrobial outcome based on the literature overview and own experience in the field. EXPERT OPINION Liposomal hydrogels offer improved therapy outcome in localized antimicrobial therapy. By fine-tuning of liposomal as well as hydrogel properties, formulations with superior performance can be optimized targeting specific infection site.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
5
|
Alwan OM, Jaafar IS. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci Rep 2024; 14:23168. [PMID: 39369062 PMCID: PMC11455884 DOI: 10.1038/s41598-024-74021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Limited solubility is the main cause of the low local availability of anti-candidiasis drug, miconazole nitrate (MN). The study's objective was to develop and characterize microemulsion (ME) based temperature-triggered in situ gel of MN for intravaginal administration to enhance local availability and antifungal activity. The solubility of MN was initially studied in different oils, surfactants, and co-surfactants. Then, pseudo-ternary phase diagrams were constructed to select the best ratio of various components. The ME formulations were characterized by thermodynamic study, droplet size, polydispersity index (PDI), viscosity, and in-vitro antifungal mean inhibition zone (MIZ). Selected MEs were incorporated into different in situ gel bases using a combination of two thermosensitive polymers (poloxamer (PLX) 407 and 188), with 0.6% of hydroxypropyl methylcellulose (HPMC K4M) and gellan gum (GG) as mucoadhesive polymer. ME-based gels (MG) were investigated for gelation temperature, gelation time, viscosity, spreadability, mucoadhesive strength, in vitro release profile, and MIZ test. Furthermore, the optimum MG was assessed for in vivo animal irritation test and FESEM investigation. Tea tree oil, lavender oil, tween 80, and propylene glycol (PG) were chosen for ME preparation for the optimal formulation; formulation ME7 and ME10 were chosen. After incorporation of the selected formulation into a mixture of P407 and P188 (18:2% w/w) with 0.6% mucoadhesive polymer, the resultant MG formulation (MG1) revealed optimum gelation temperature (33 ± 0.01℃) and appropriate viscosity with enhanced sustained release (98%) and retention through sheep vaginal mucosa, MG1 exhibited a better MIZ compared to the 2% MN gel formulation and the marketed MN product, and no rabbit vagina irritation. In conclusion, the miconazole nitrate-loaded MG-based formula sustained the duration of action and better antifungal activity than the marketed miconazole nitrate formulation.
Collapse
Affiliation(s)
- Omar M Alwan
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Iman S Jaafar
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
7
|
Tan C. Hydrogel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:301-345. [PMID: 39218505 DOI: 10.1016/bs.afnr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydrogel delivery systems based on polysaccharides and proteins have the ability to protect functional substances from chemical degradation, control/target release, and increase bioavailability. This chapter summarizes the recent progress in the utilization of hydrogel delivery systems for nutritional interventions. Various hydrogel delivery systems as well as their preparation, structure, and properties are given. The applications for the encapsulation, protection, and controlled delivery of functional substances are described. We also discuss their potential and challenges in managing chronic diseases such as inflammatory bowel disease, obesity, liver disease, and cancer, aiming at providing theoretical references for exploring novel hydrogel delivery systems and their practical prospects in precise nutritional interventions.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. School of Food and Health, Beijing Technology & Business University, Beijing, P.R. China.
| |
Collapse
|
8
|
Liu J, Zhou L, Cong H, Hu J, Tang J. Resveratrol-loaded microemulsion based thermosensitive hydrogel for potential topical treatment of the vaginal inflammation. J Drug Target 2024; 32:404-412. [PMID: 38288679 DOI: 10.1080/1061186x.2024.2310879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Vaginal inflammation is a prevalent gynecological condition. If left untreated, it can potentially spread to the urinary and reproductive systems. METHODS In this study, we propose a resveratrol-loaded microemulsion-based thermosensitive hydrogel (Res-Me-Tsgel) and compare it with a chitosan hydrogel-based Res-Me-Cogel. We characterized the different characters of Res-Me-Tsgel. The safety of Res-Me-Tsgel was also evaluated in vitro and in vivo. Finally, we measured the retention of Res in the vagina after drug administration. RESULTS The Res-Me-Tsgel we prepared is a transparent liquid solution at room temperature that rapidly forms a gel at 37oC. Compared to Res solution and Res-Me, both Res-Me-Cogel and Res-Me-Tsgel demonstrate superior sustained release properties. Both in vitro and in vivo studies confirm the excellent biosafety profile of Res-Me-Cogel and Res-Me-Tsgel. Vaginal administration of these formulations in rats results in prolonged retention of resveratrol within the vagina. Notably, due to its improved flow into vaginal folds after administration, the retention of Resveratrol was approximately three times higher for the Res-Me-Tsgel group compared to the Res-Me-Cogel group at 24 h post-administration. Overall, these findings highlight the potential application of Res-Me-Tsgel as an effective means for vaginal inflammation. CONCLUSIONS We developed a novel micromulsion based thermosensitive hydrogel for the delivery of Res. The sustained release of Res and favorable vaginal retention from Res-Me-Tsgel make them promise as a potential candidate for local intravaginal therapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Liuqi Zhou
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Huijing Cong
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Hu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingling Tang
- School of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Miretti M, Prucca CG, Baumgartner MT, Martinelli M. Combining ZnPc-liposomes and chitosan on a hybrid matrix for enhanced photodynamic therapy. Int J Biol Macromol 2023; 253:127544. [PMID: 37866570 DOI: 10.1016/j.ijbiomac.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Photodynamic therapy is an alternative treatment for several pathologies, including cancer. This therapy uses a photosensitizer capable of producing reactive oxygen species through irradiation, promoting cellular death. A limitation of photosensitizers is their low solubility in aqueous media. Hence, developing a suitable carrier for photosensitizers for specific applications is a challenge. Cervical cancer is one of the most common cancers in women, and photodynamic therapy could be an attractive alternative therapeutic approach. In this work, we synthesized films composed of chitosan, polyvinylpyrrolidone, and liposomes containing Zn-phthalocyanine. Photophysical characterization of ZnPc incorporated into films was determined by UV-vis and fluorescence. Film properties such as swelling, mechanical properties, and water vapor permeability were performed. Finally, in vitro, photodynamic evaluation of these films was performed on HeLa cells. The results indicate that incorporating Zn-Pc-liposomes into films decreases cell viability by >95 %.
Collapse
Affiliation(s)
- Mariana Miretti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina
| | - César G Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - María T Baumgartner
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Córdoba, Argentina
| | - Marisa Martinelli
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina.
| |
Collapse
|
10
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Rukavina Z, Jøraholmen MW, Božić D, Frankol I, Gašparović PG, Škalko-Basnet N, Klarić MŠ, Vanić Ž. Azithromycin-loaded liposomal hydrogel: a step forward for enhanced treatment of MRSA-related skin infections. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:559-579. [PMID: 38147473 DOI: 10.2478/acph-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Azithromycin (AZT) encapsulated into various types of liposomes (AZT-liposomes) displayed pronounced in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) (1). The present study represents a follow-up to this previous work, attempting to further explore the anti-MRSA potential of AZT-liposomes when incorporated into chitosan hydrogel (CHG). Incorporation of AZT-liposomes into CHG (liposomal CHGs) was intended to ensure proper viscosity and texture properties of the formulation, modification of antibiotic release, and enhanced antibacterial activity, aiming to upgrade the therapeutical potential of AZT-liposomes in localized treatment of MRSA-related skin infections. Four different liposomal CHGs were evaluated and compared on the grounds of antibacterial activity against MRSA, AZT release profiles, cytotoxicity, as well as texture, and rheological properties. To our knowledge, this study is the first to investigate the potential of liposomal CHGs for the topical localized treatment of MRSA-related skin infections. CHG ensured proper viscoelastic and texture properties to achieve prolonged retention and prolonged release of AZT at the application site, which resulted in a boosted anti-MRSA effect of the entrapped AZT-liposomes. With respect to anti-MRSA activity and biocompatibility, formulation CATL-CHG (cationic liposomes in CHG) is considered to be the most promising formulation for the treatment of MRSA-related skin infections.
Collapse
Affiliation(s)
- Zora Rukavina
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - May Wenche Jøraholmen
- 2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø Norway
| | - Dunja Božić
- 3R&D, PLIVA Croatia Ltd. 10000 Zagreb, Croatia
| | - Ivana Frankol
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | - Nataša Škalko-Basnet
- 2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø Norway
| | - Maja Šegvić Klarić
- 4Department of Microbiology, University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Željka Vanić
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
13
|
Pandey M, Ting JSS, Gorain B, Jain N, Mayuren J. Miniaturized Polymeric Systems for the Intravaginal Gene Therapies: Recent Update on Unconventional Delivery. Curr Pharm Des 2023; 29:3254-3262. [PMID: 37438899 DOI: 10.2174/1381612829666230712162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 07/14/2023]
Abstract
The prevalence of vaginal infection is increasing among women, especially at reproductive age. For proper eradication of infection, the effective concentration of a drug is required at the infection site. Therefore, local delivery is recommended to exert a direct therapeutic effect at the site action that causes a reduction in dose and side effects. The main focus of vaginal drug delivery is to enhance retention time and patient compliance. The high recurrence rate of vaginal infection due to the lack of effective treatment strategies opens the door for new therapeutic approaches. To combat these setbacks, intravaginal gene therapies have been investigated. High attention has been gained by vaginal gene therapy, especially for sexually transmitted infection treatment. Despite much research, no product is available in the market, although in vitro and preclinical data support the vaginal route as an effective route for gene administration. The main focus of this review is to discuss the recent advancement in miniaturized polymeric systems for intravaginal gene therapies to treat local infections. An overview of different barriers to vaginal delivery and challenges of vaginal infection treatment are also summarised.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Haryana 123031, India
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
14
|
Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginal TM Tissue Model. Pharmaceutics 2022; 14:pharmaceutics14061295. [PMID: 35745867 PMCID: PMC9231258 DOI: 10.3390/pharmaceutics14061295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The natural polyphenol resveratrol (RES) has shown great potential as an antimicrobial, including against microbes associated with vaginal infections. To fully exploit the activities of RES, an all-natural ingredients formulation for RES delivery at vaginal site has been developed, namely liposomes loaded with RES, incorporated into a chitosan hydrogel as secondary vehicle. Although considered non-toxic and safe on their own, the compatibility of the final formulation must be evaluated for its biocompatibility and non-irritancy to the vaginal mucosa. As a preclinical safety assessment, the impact of RES formulation on the tissue viability, the effect on barrier function and cell monolayer integrity, and cytotoxicity were evaluated using the cell-based vaginal tissue model, the EpiVaginal™ tissue. RES liposomes-in-hydrogel formulations neither affected the mitochondrial activity, nor the integrity of the cell monolayer in RES concentration up to 60 µg/mL. Moreover, the barrier function was maintained to a greater extent by RES in formulation, emphasizing the benefits of the delivery system. Additionally, none of the tested formulations expressed an increase in lactate dehydrogenase activity compared to the non-treated tissues. The evaluation of the RES delivery system suggests that it is non-irritant and biocompatible with vaginal tissue in vitro in the RES concentrations considered as therapeutic.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Correspondence: ; Tel.: +47-776-23376
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 38, 9019 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| |
Collapse
|
15
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
16
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. Angew Chem Int Ed Engl 2022; 61:e202112218. [PMID: 34806284 PMCID: PMC9303468 DOI: 10.1002/anie.202112218] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/02/2022]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
17
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112218. [PMID: 38505642 PMCID: PMC10946914 DOI: 10.1002/ange.202112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 03/21/2024]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
18
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
19
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
20
|
Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies-Engineering Considerations. Pharmaceutics 2021; 13:pharmaceutics13091393. [PMID: 34575468 PMCID: PMC8469626 DOI: 10.3390/pharmaceutics13091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
The review is focused on the hydrogel systems dedicated to the intravaginal delivery of antibacterial, antifungal and anti-Trichomonas vaginalis activity drugs for the treatment of gynaecological infections. The strategies for the enhancement of the hydrophobic drug solubility in the hydrogel matrix based on the formation of bigel systems and the introduction of nano- and microparticles as a drug reservoir are presented. Hydrogel carriers of natural and synthetic pharmacological substances, drug-free systems displaying antimicrobial activity thanks to the hydrogel building elements and systems combining the antimicrobial activity of both drug and polymer building components are distinguished. The design of hydrogels facilitating their administration and proper distribution in the vaginal mucosa and the vagina based on thermoresponsive systems capable of gelling at vaginal conditions and already-cross-linked injectable systems after reaching the yield stress are discussed. In addition, the mechanisms of hydrogel bioadhesion that regulate the retention time in the vagina are indicated. Finally, the prospects for the further development of hydrogel-based drug carriers in gynaecological therapies are highlighted.
Collapse
|
21
|
Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hemmingsen LM, Julin K, Ahsan L, Basnet P, Johannessen M, Škalko-Basnet N. Chitosomes-In-Chitosan Hydrogel for Acute Skin Injuries: Prevention and Infection Control. Mar Drugs 2021; 19:269. [PMID: 34065943 PMCID: PMC8150996 DOI: 10.3390/md19050269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Burns and other skin injuries are growing concerns as well as challenges in an era of antimicrobial resistance. Novel treatment options to improve the prevention and eradication of infectious skin biofilm-producing pathogens, while enhancing wound healing, are urgently needed for the timely treatment of infection-prone injuries. Treatment of acute skin injuries requires tailoring of formulation to assure both proper skin retention and the appropriate release of incorporated antimicrobials. The challenge remains to formulate antimicrobials with low water solubility, which often requires carriers as the primary vehicle, followed by a secondary skin-friendly vehicle. We focused on widely used chlorhexidine formulated in the chitosan-infused nanocarriers, chitosomes, incorporated into chitosan hydrogel for improved treatment of skin injuries. To prove our hypothesis, lipid nanocarriers and chitosan-comprising nanocarriers (≈250 nm) with membrane-active antimicrobial chlorhexidine were optimized and incorporated into chitosan hydrogel. The biological and antibacterial effects of both vesicles and a vesicles-in-hydrogel system were evaluated. The chitosomes-in-chitosan hydrogel formulation demonstrated promising physical properties and were proven safe. Additionally, the chitosan-based systems, both chitosomes and chitosan hydrogel, showed an improved antimicrobial effect against S. aureus and S. epidermidis compared to the formulations without chitosan. The novel formulation could serve as a foundation for infection prevention and bacterial eradication in acute wounds.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| | - Kjersti Julin
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Sykehusvegen 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Luqman Ahsan
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| | - Purusotam Basnet
- IVF Clinic, Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusvegen 38, 9019 Tromsø, Norway;
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Sykehusvegen 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| |
Collapse
|
23
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
24
|
Hemmingsen LM, Giordani B, Pettersen AK, Vitali B, Basnet P, Škalko-Basnet N. Liposomes-in-chitosan hydrogel boosts potential of chlorhexidine in biofilm eradication in vitro. Carbohydr Polym 2021; 262:117939. [PMID: 33838816 DOI: 10.1016/j.carbpol.2021.117939] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Successful treatment of skin infections requires eradication of biofilms found in up to 90 % of all chronic wounds, causing delayed healing and increased morbidity. We hypothesized that chitosan hydrogel boosts the activity of liposomally-associated membrane active antimicrobials (MAA) and could potentially improve bacterial and biofilm eradication. Therefore, liposomes (∼300 nm) bearing chlorhexidine (CHX; ∼50 μg/mg lipid) as a model MAA were incorporated into chitosan hydrogel. The novel CHX-liposomes-in-hydrogel formulation was optimized for skin therapy. It significantly inhibited the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced macrophage and almost completely reduced biofilm formation. Moreover, it reduced Staphylococcus aureus and Pseudomonas aeruginosa adherent bacterial cells in biofilm by 64.2-98.1 %. Chitosan hydrogel boosted the anti-inflammatory and antimicrobial properties of CHX.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, Universitetsvegen 57, 9037, Tromsø, Norway
| | - Barbara Giordani
- Molecular and Applied Microbiology, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Ann Kristin Pettersen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, Universitetsvegen 57, 9037, Tromsø, Norway
| | - Beatrice Vitali
- Molecular and Applied Microbiology, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Purusotam Basnet
- IVF Clinic, Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusvegen 38, 9019, Tromsø, Norway; Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø, The Arctic University of Norway, Universitetsveien 57, 9037, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, Universitetsvegen 57, 9037, Tromsø, Norway.
| |
Collapse
|
25
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
26
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
27
|
Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur J Pharm Biopharm 2021; 161:66-79. [PMID: 33588032 DOI: 10.1016/j.ejpb.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
The emergence of multi-drug resistant (MDR) pathogens has become a global threat and a cause of significant morbidity and mortality around the world. Natural products have been used as a promising approach to counter the infectious diseases associated with these pathogens. The application of natural products and their derivatives especially polyphenolic compounds as antibacterial agents is an active area of research, and prior studies have successfully treated a variety of bacterial infections using these polyphenolic compounds. However, delivery of polyphenolic compounds has been challenging due to their physicochemical properties and often poor aqueous solubility. In this regard, nanotechnology-based novel drug delivery systems offer many advantages, including improving bioavailability and the controlled release of polyphenolic compounds. This review summarizes the pharmacological mechanism and use of nano-formulations in developing controlled release delivery systems of naturally occurring polyphenols in infectious diseases.
Collapse
Affiliation(s)
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma University, Oklahoma City, OK 73117, United States
| | - Harsh Chauhan
- School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, United States.
| |
Collapse
|
28
|
|
29
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
30
|
Abstract
While contraceptive drugs have enabled many people to decide when they want to have a baby, more than 100 million unintended pregnancies each year in the world may indicate the contraceptive requirement of many people has not been well addressed yet. The vagina is a well-established and practical route for the delivery of various pharmacological molecules, including contraceptives. This review aims to present an overview of different contraceptive methods focusing on the vaginal route of delivery for contraceptives, including current developments, discussing the potentials and limitations of the modern methods, designs, and how well each method performs for delivering the contraceptives and preventing pregnancy.
Collapse
|
31
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
32
|
Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020; 12:pharmaceutics12121203. [PMID: 33322392 PMCID: PMC7764002 DOI: 10.3390/pharmaceutics12121203] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infections and causes serious reproductive tract complications among women. The limitations of existing oral antibiotics and treatment of antimicrobial resistance require alternative treatment options. We are proposing, for the first time, the natural polyphenol resveratrol (RES) in an advanced delivery system comprising liposomes incorporated in chitosan hydrogel, for the localized treatment of C. trachomatis infection. Both free RES and RES liposomes-in-hydrogel inhibited the propagation of C. trachomatis in a concentration-dependent manner, assessed by the commonly used in vitro model comprising McCoy cells. However, for lower concentrations, the anti-chlamydial effect of RES was enhanced when incorporated into a liposomes-in-hydrogel delivery system, with inhibition of 78% and 94% for 1.5 and 3 µg/mL RES, respectively for RES liposomes-in-hydrogel, compared to 43% and 72%, respectively, for free RES. Furthermore, RES liposomes-in-hydrogel exhibited strong anti-inflammatory activity in vitro, in a concentration-dependent inhibition of nitric oxide production in the LPS-induced macrophages (RAW 264.7). The combination of a natural substance exhibiting multi-targeted pharmacological properties, and a delivery system that provides enhanced activity as well as applicability for vaginal administration, could be a promising option for the localized treatment of C. trachomatis infection.
Collapse
|
33
|
Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 2020; 590:119867. [PMID: 32919001 DOI: 10.1016/j.ijpharm.2020.119867] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Vaginal infections represent a clear women health problem due to the several issues as high recurrence rate, drug resistence and emergence of persistent strains. However, achieving improvements in therapeutic efficacy by using conventional formulations intended to vaginal drug delivery remains as a challenge due to anatomy and physiology of the vagina, since the secretion and renewal of vaginal fluids contribute to the removal of the dosage form. Hydrogels have been widely exploited aiming to achieve drug delivery directly into vaginal mucosa for local therapy due to their attractive features as increased residence time of the drug at the action site and control of drug release rates. Some polymers can aggregate specific properties to hydrogels as mucoadhesive, stimuli-responsive and antimicrobial, improving their interaction with the biological interface and therapeutic response. In this review, we highlight the advances, advantages and challenges of the hydrogels as drug and/or nanocarrier vehicles intended to the treatment of vaginal infections, emphasizing also the polymers and their properties more explored on the design these systems to improve the therapeutic effect on the vaginal tissue. In addition, this review can contribute for better exploitation these systems in search of new local treatments for bacterial vaginosis, candidiasis and trichomoniasis.
Collapse
|
34
|
Falavigna M, Pattacini M, Wibel R, Sonvico F, Škalko-Basnet N, Flaten GE. The Vaginal-PVPA: A Vaginal Mucosa-Mimicking In Vitro Permeation Tool for Evaluation of Mucoadhesive Formulations. Pharmaceutics 2020; 12:pharmaceutics12060568. [PMID: 32575388 PMCID: PMC7355897 DOI: 10.3390/pharmaceutics12060568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Drug administration to the vaginal site has gained increasing attention in past decades, highlighting the need for reliable in vitro methods to assess the performance of novel formulations. To optimize formulations destined for the vaginal site, it is important to evaluate the drug retention within the vagina as well as its permeation across the mucosa, particularly in the presence of vaginal fluids. Herewith, the vaginal-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model was validated as a tool to evaluate the permeation of the anti-inflammatory drug ibuprofen from liposomal formulations (i.e., plain and chitosan-coated liposomes). Drug permeation was assessed in the presence and absence of mucus and simulated vaginal fluid (SVF) at pH conditions mimicking both the healthy vaginal premenopausal conditions and vaginal infection/pre-puberty/post-menopause state. The permeation of ibuprofen proved to depend on the type of formulation (i.e., chitosan-coated liposomes exhibited lower drug permeation), the mucoadhesive formulation properties and pH condition. This study highlights both the importance of mucus and SVF in the vaginal model to better understand and predict the in vivo performance of formulations destined for vaginal administration, and the suitability of the vaginal-PVPA model for such investigations.
Collapse
Affiliation(s)
- Margherita Falavigna
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| | - Martina Pattacini
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Richard Wibel
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Natasa Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| |
Collapse
|
35
|
Abdellatif MM, Khalil IA, Elakkad YE, Eliwa HA, Samir TM, Al-Mokaddem AK. Formulation and Characterization of Sertaconazole Nitrate Mucoadhesive Liposomes for Vaginal Candidiasis. Int J Nanomedicine 2020; 15:4079-4090. [PMID: 32606665 PMCID: PMC7295534 DOI: 10.2147/ijn.s250960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of this study is to develop efficient localized therapy of sertaconazole nitrate for the treatment of vaginal candidiasis. Methods Sertaconazole nitrate-loaded cationic liposomes were prepared by thin-film hydration method and coated with different concentrations of pectin (0.05%, 0.1% and 0.2%) to develop mucoadhesive liposomes. The formulated mucoadhesive vesicles were characterized in terms of morphology, entrapment efficiency, particle size, zeta value, mucoadhesive properties and drug release. The selected formula was incorporated into a gel base and further characterized by an ex vivo permeation study in comparison with conventional sertaconazole gel. Also, the in vivo study was performed to assess the efficacy of sertaconazole mucoadhesive liposomal gel in treating rats with vaginal candidiasis. Results The mucoadhesive liposomes were spherical. Coating liposomes with pectin results in increased entrapment efficiency and particle size compared with uncoated vesicles. On the contrary, zeta values were reduced upon coating liposomes with pectin indicating efficient coating of liposomes with pectin. Mucoadhesive liposomes showed a more prolonged and sustained drug release compared with uncoated liposomes. Ex vivo study results showed that mucoadhesive liposomal gel increased sertaconazole tissue retention and reduced drug tissue penetration. In the invivo study, the mucoadhesive liposomal gel showed a significant reduction in the microbial count with a subsequent reduction in inflammatory responses with the lowest histopathological change compared with conventional gel. Conclusion The study confirmed the potentiality of employing mucoadhesive liposomes as a successful carrier for the vaginal delivery of antifungal drugs.
Collapse
Affiliation(s)
- Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Yara E Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
36
|
Abu-Azzam O, Nasr M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm Dev Technol 2020; 25:930-935. [PMID: 32363977 DOI: 10.1080/10837450.2020.1764032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phloretin is a promising polyphenolic compound known for its anti-inflammatory properties, but its poor solubility and low bioavailability hinder its clinical applicability. Till current date, its potential in the treatment of vaginitis has not been explored, and only very few papers reported its formulation as nanoparticles to overcome its pharmaceutical challenges. Therefore, in the current study, phloretin was formulated in microemulsion of 11 nm size, and its in vitro anti-inflammatory properties were explored using histamine and IL-6 release inhibition assays, protease inhibition assay, and membrane stabilization potential. The anti-inflammatory properties of phloretin microemulsion were compared to the drug phloretin, and the reference standard non-steroidal anti-inflammatory drugs (NSAIDs). Results proved that both phloretin and phloretin microemulsion significantly inhibited the release of the inflammatory mediators histamine and IL-6, inhibited protease action, and exhibited membrane stabilization potential. Phloretin microemulsion exhibited comparable anti-inflammatory properties to the NSAIDs diclofenac and indomethacin, and, hence, it can be delineated as a promising therapeutic tool in topical treatment of vaginal inflammation.
Collapse
Affiliation(s)
- Omar Abu-Azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mu'tah University, Mu'tah, Jordan
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Jøraholmen MW, Bhargava A, Julin K, Johannessen M, Škalko-Basnet N. The Antimicrobial Properties of Chitosan Can be Tailored by Formulation. Mar Drugs 2020; 18:md18020096. [PMID: 32023890 PMCID: PMC7074233 DOI: 10.3390/md18020096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Topical administration of drugs into the vagina can provide local therapy of vaginal infections, preventing the possible systemic side effects of the drugs. The natural polysaccharide chitosan is known for its excellent mucoadhesive properties, safety profile, and antibacterial effects, and thus it can be utilized in improving localized vaginal therapy by prolonging the residence time of a drug at the vaginal site while acting as an antimicrobial in synergy. Therefore, we aimed to explore the potential of chitosan, namely chitosan-coated liposomes and chitosan hydrogel, as an excipient with intrinsic antimicrobial properties. Liposomes were prepared by the thin-film hydration method followed by vesicle size reduction by sonication to the desired size, approximately 200 nm, and coated with chitosan (0.01, 0.03, 0.1, and 0.3%, w/v, respectively). The mucoadhesive properties of chitosan-coated liposomes were determined through their binding efficiency to mucin compared to non-coated liposomes. Non-coated liposomal suspensions were incorporated in chitosan hydrogels forming the liposomes-in-hydrogel formulations, which were further assessed for their texture properties in the presence of biological fluid simulants. The antibacterial effect of chitosan-coated liposomes (0.03%, 0.1% and 0.3%, w/v) and chitosan hydrogels (0.1% and 0.3%, w/w) on Staphylococcus epidermidis and Staphylococcus aureus was successfully confirmed.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
| | - Abhilasha Bhargava
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
| | - Kjersti Julin
- Research group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Sykehusveien 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Mona Johannessen
- Research group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Sykehusveien 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; (M.W.J.); (A.B.)
- Correspondence: ; Tel.: +47-7764-6640
| |
Collapse
|
38
|
Utilizing Liposomal Quercetin and Gallic Acid in Localized Treatment of Vaginal Candida Infections. Pharmaceutics 2019; 12:pharmaceutics12010009. [PMID: 31861805 PMCID: PMC7023398 DOI: 10.3390/pharmaceutics12010009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a widely spread fungal infection that causes itching, pain and inflammation at the vaginal site. Although common, currently available treatment suffers from limited efficacy and high recurrence. In addition, the growing problem of resistance to azole drugs used in current treatments emphasizes the need for superior treatment options. Antimicrobial polyphenols are an attractive approach offering multitargeting therapy. We aimed to develop novel liposomes for simultaneous delivery of two polyphenols (quercetin, Q, and gallic acid, GA) that, when released within the vaginal cavity, act in synergy to eradicate infection while alleviating the symptoms of VVC. Q was selected for its anti-itching and anti-inflammatory properties, while GA for its reported activity against Candida. Novel liposomes containing only Q (LP-Q), only GA (LP-GA) or both polyphenols (LP-Q+GA) were in the size range around 200 nm. Q was efficiently entrapped in both LP-Q and in LP-Q+GA (85%) while the entrapment of GA was higher in LP-Q+GA (30%) than in LP-GA (25%). Liposomes, especially LP-Q+GA, promoted sustained release of both polyphenols. Q and GA acted in synergy, increasing the antioxidant activities of a single polyphenol. Polyphenol-liposomes were not cytotoxic and displayed stronger anti-inflammatory effects than free polyphenols. Finally, LP-GA and LP-Q+GA considerably reduced C. albicans growth.
Collapse
|
39
|
Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11080423. [PMID: 31434345 PMCID: PMC6722595 DOI: 10.3390/pharmaceutics11080423] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are membrane-enclosed organelles present in most eukaryotic cells, described as “power houses of the cell”. The mitochondria can be a target for inducing cancer cell death and for developing strategies to bypass multi drug resistance (MDR) mechanisms. 4-Carboxybutyl triphenylphosphonium bromide-polyethylene glycol-distearoylphosphatidylethanolamine (TPP-DSPE-PEG) and dequalinium-polyethylene glycol-distearoylphosphatidylethanolamine (DQA-DSPE-PEG) were synthesized as mitochondriotropic molecules. Mitochondria-targeting liposomes carrying resveratrol were constructed by modifying the liposome’s surface with TPP-PEG or DQA-PEG, resulting in TLS (Res) and DLS (Res), respectively, with the aim to obtain longer blood circulation and enhanced permeability and retention (EPR). Both TLS (Res) and DLS (Res) showed dimensions of approximately 120 nm and a slightly positive zeta potential. The enhanced cellular uptake and selective accumulation of TLS (Res) and DLS (Res) into the mitochondria were demonstrated by behavioral observation of rhodamine-labeled TLS or DLS, using confocal microscopy, and by resveratrol quantification in the intracellular organelle, using LC–MS/MS. Furthermore, TLS (Res) and DLS (Res) induced cytotoxicity of cancer cells by generating reactive oxygen species (ROS) and by dissipating the mitochondrial membrane potential. Our results demonstrated that TLS (Res) and DLS (Res) could provide a potential strategy to treat cancers by mitochondrial targeting delivery of therapeutics and stimulation of the mitochondrial signaling pathway.
Collapse
|
40
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
41
|
Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants (Basel) 2019; 8:E244. [PMID: 31349656 PMCID: PMC6719186 DOI: 10.3390/antiox8080244] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, a great deal of attention has been paid to natural compounds due to their many biological effects. Polyphenols are a class of plant derivatives that have been widely investigated for preventing and treating many oxidative stress-related pathological conditions, such as neurodegenerative and cardiovascular diseases, cancer, diabetes mellitus and inflammation. Among these polyphenols, resveratrol (RSV) has attracted considerable interest owing to its high antioxidant and free radical scavenging activities. However, the poor water solubility and rapid metabolism of RSV lead to low bioavailability, thus limiting its clinical efficacy. After discussing the main biochemical mechanisms involved in RSV biological activities, this review will focus on the strategies attempted to improve RSV effectiveness, both for systemic and for topical administration. In particular, technological approaches involving RSV incorporation into different delivery systems such as liposomes, polymeric and lipid nanoparticles, microemulsions and cyclodextrins will be illustrated, highlighting their potential clinical applications. In addition, chemical modifications of this antioxidant aimed at improving its physicochemical properties will be described along with the results of in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | | | - Lucia Montenegro
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
42
|
Alexandrino-Junior F, Silva KGDHE, Freire MCLC, Lione VDOF, Cardoso EA, Marcelino HR, Genre J, Oliveira AGD, Egito ESTD. A Functional Wound Dressing as a Potential Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2019; 11:E200. [PMID: 31052360 PMCID: PMC6571773 DOI: 10.3390/pharmaceutics11050200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a parasitic disease characterized by progressive skin sores. Currently, treatments for CL are limited to parenteral administration of the drug, which presents severe adverse effects and low cure rates. Therefore, this study aimed to develop poly(vinyl-alcohol) (PVA) hydrogels containing Amphotericin B (AmB) intended for topical treatment of CL. Hydrogels were evaluated in vitro for their potential to eliminate promastigote forms of Leishmania spp., to prevent secondary infections, to maintain appropriate healing conditions, and to offer suitable biocompatibility. AmB was incorporated into the system in its non-crystalline state, allowing it to swell more and faster than the system without the drug. Furthermore, the AmB release profile showed a continuous and controlled behavior following Higuchi´s kinetic model. AmB-loaded-PVA-hydrogels (PVA-AmB) also showed efficient antifungal and leishmanicidal activity, no cytotoxic potential for VERO cells, microbial impermeability and water vapor permeability compatible with the healthy skin's physiological needs. Indeed, these results revealed the potential of PVA-AmB to prevent secondary infections and to maintain a favorable environment for the healing process. Hence, these results suggest that PVA-AmB could be a suitable and efficient new therapeutic approach for the topical treatment of CL.
Collapse
Affiliation(s)
- Francisco Alexandrino-Junior
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica (PPgNANOFARMA), Universidade Federal do Rio Grande do Norte (UFRN), Nata/RN 59012-570, Brazil.
| | | | | | | | - Elisama Azevedo Cardoso
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ 21941-902, Brazil.
| | | | - Julieta Genre
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Nata/RN 59012-570, Brazil.
| | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara/SP 14800-903, Brazil.
| | - Eryvaldo Sócrates Tabosa do Egito
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica (PPgNANOFARMA), Universidade Federal do Rio Grande do Norte (UFRN), Nata/RN 59012-570, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Nata/RN 59012-570, Brazil.
- Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Rua General Gustavo Cordeiro de Farias s/n, Petrópolis, Nata/RN 59012-570, Brazil.
| |
Collapse
|