1
|
Rasekh M, Arshad MS, Ahmad Z. Advances in Drug Delivery Integrated with Regenerative Medicine: Innovations, Challenges, and Future Frontiers. Pharmaceutics 2025; 17:456. [PMID: 40284451 PMCID: PMC12030587 DOI: 10.3390/pharmaceutics17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Advances in drug delivery systems adapted with regenerative medicine have transformed healthcare by introducing innovative strategies to treat (and repair in many instances) disease-impacted regions of the human body. This review provides a comprehensive analysis of the latest developments and challenges in integrating drug delivery technologies with regenerative medicine. Recent advances in drug delivery technologies, including the design of biomaterials, localized delivery techniques, and controlled release systems guided by mathematical models, are explored to illustrate their role in enhancing therapeutic precision and efficacy. Additionally, regenerative medicine approaches are analyzed, with a focus on extracellular matrix components, stem cell-based therapies, and emerging strategies for organ regeneration in both soft and hard tissue and in vitro model engineering. In particular, the review also discusses the applications of cellular components, including stem cells, immune cells, endothelial cells, and specialized cells such as chondrocytes and osteoblasts, and highlights advancements in cell delivery methods and cell-cell interaction modulation. In addition, future directions and pivotal trends emphasizing the importance of interdisciplinary collaboration and cutting-edge innovations are provided to address successful therapeutic outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University of London, Uxbridge UB8 3PH, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Azouz AA, El komy MH, Elmowafy M, Mahmoud MO, Ali FE, Aboud HM. Crafting cationic lecithmer nanocomposites as promising wagons for brain targeting of cinnamaldehyde: Accentuated neuroprotection via downregulation of Aβ1-42/p-tau crosstalk. J Drug Deliv Sci Technol 2025; 106:106664. [DOI: 10.1016/j.jddst.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
3
|
Hou Y, Hu M, Sun D, Sun Y. Numerical Simulation in Microvessels for the Design of Drug Carriers with the Immersed Boundary-Lattice Boltzmann Method. MICROMACHINES 2025; 16:389. [PMID: 40283266 PMCID: PMC12029638 DOI: 10.3390/mi16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
This study employs numerical techniques to investigate the motion characteristics of red blood cells (RBCs) and drug carriers (DCs) within microvessels. A coupled model of the lattice Boltzmann method (LBM) and immersed boundary method (IBM) is proposed to investigate the migration of particles in blood flow. The lattice Bhatnagar-Gross-Krook (LBGK) model is utilized to simulate the flow dynamics of blood. While the IBM is employed to simulate the motion of particles, using a membrane model based on the finite element method. The present model was validated and demonstrated good agreements with previous theoretical and numerical results. Our study mainly examines the impact of the Reynolds number, DC size, and stiffness. Results suggest that these factors would influence particles' equilibrium regions, motion stability and interactions between RBCs and DCs. Within a certain range, under a higher Reynolds number, the motion of DCs remains stable and DCs can swiftly attain their equilibrium states. DCs with smaller sizes and softer stiffness demonstrate a relatively stable motion state and their interactions with RBCs are weakened. The findings would offer novel perspectives on drug transport mechanisms and the impact of drug release, providing valuable guidance for the design of DCs.
Collapse
Affiliation(s)
- Yulin Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mengdan Hu
- Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Dongke Sun
- Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Anuța V, Nica MA, Prisada RM, Popa L, Velescu BȘ, Marinas IC, Gaboreanu DM, Ghica MV, Cocoș FI, Nicolae CA, Dinu-Pîrvu CE. Novel Buccal Xanthan Gum-Hyaluronic Acid Eutectogels with Dual Anti-Inflammatory and Antimicrobial Properties. Gels 2025; 11:208. [PMID: 40136913 PMCID: PMC11942315 DOI: 10.3390/gels11030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Buccal drug delivery systems often struggle with poor drug solubility, limited adhesion, and rapid clearance, leading to suboptimal therapeutic outcomes. To address these limitations, we developed a novel hybrid eutectogel composed of xanthan gum (XTG), hyaluronic acid (HA), and a Natural Deep Eutectic Solvent (NADES) system (choline chloride, sorbitol, and glycerol in 2:1:1 mole ratio), incorporating 2.5% ibuprofen (IBU) as a model drug. The formulation was optimized using a face-centered central composite design to enhance the rheological, textural, and drug release properties. The optimized eutectogels exhibited shear-thinning behavior (flow behavior index, n = 0.26 ± 0.01), high mucoadhesion (adhesiveness: 2.297 ± 0.142 N·s), and sustained drug release over 24 h, governed by Higuchi kinetics (release rate: 237.34 ± 13.61 μg/cm2/min1/2). The ex vivo residence time increased substantially with NADES incorporation, reaching up to 176.7 ± 23.1 min. An in vivo anti-inflammatory evaluation showed that the eutectogel reduced λ-carrageenan-induced paw edema within 1 h and that its efficacy was sustained in the kaolin model up to 24 h (p < 0.05), achieving comparable efficacy to a commercial 5% IBU gel, despite a lower drug concentration. Additionally, the eutectogel presented a minimum inhibitory concentration for Gram-positive bacteria of 25 mg/mL, and through direct contact, it reduced microbial viability by up to 100%. Its efficacy against Bacillus cereus, Enterococcus faecium, and Klebsiella pneumoniae, combined with its significant anti-inflammatory properties, positions the NADES-based eutectogel as a promising multifunctional platform for buccal drug delivery, particularly for inflammatory conditions complicated by bacterial infections.
Collapse
Affiliation(s)
- Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Bruno Ștefan Velescu
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
| | - Diana-Madalina Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
- Departament of Botany and Microbiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Florentina Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Cristian Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| |
Collapse
|
5
|
Darweesh RS, Al-Qawasmi FS, Khanfar MS. Ezetimibe oral solid lipid nanoparticle by effervescent dispersion method: in vitro characterization and in vivo pharmacokinetic study in rats. Pharm Dev Technol 2025; 30:268-279. [PMID: 39989184 DOI: 10.1080/10837450.2025.2471461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Ezetimibe (EZT) is a class II drug of the Biopharmaceutics classification system (BCS), with limited aqueous solubility and high permeability. This study aims to enhance the solubility and oral bioavailability of EZT by developing EZT solid lipid nanoparticles (SLNs). EZT-SLNs were developed through the effervescent dispersion technique. Different amounts of Tween-80, Compritol ATO 888, and mannitol as cryoprotectant were used. F11 was the optimum formula with 154 nm in size and 90.26% entrapment efficiency. It demonstrates significant enhancements in solubility across various pH values. In addition, F11 shows a significantly higher drug release than pure EZT at all time points, and that's related to the reduction in the particle size and increasing its surface area along with the transformation from a crystalline state to an amorphous state. The powder X-ray diffraction and Differential Scanning Calorimetry tests confirmed this conversion from crystalline form to amorphous. The in vivo animal study demonstrated that the Cmax and AUC 0 ∞ of the EZT-SLNs group were significantly higher than the pure EZT group, after oral administration. In conclusion, EZT-SLNs with enhanced in vitro and in vivo properties were successfully developed using the effervescent dispersion technique.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah S Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Lotlikar VB, Sharma S, Londhe VY. Unlocking relief: formulation, characterization, and in vivo assessment of salicylic acid-loaded microemulgel for psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3037-3047. [PMID: 39325151 DOI: 10.1007/s00210-024-03447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Psoriasis, a chronic skin condition, affects around 2-5% of the population. Topical corticosteroids treat the vast majority of cases (> 80%). Because of the physicochemical characteristics of the damaged stratum corneum, all treatments are ineffective. Nevertheless, systemic immunosuppression, the oral strategy, has substantial adverse effects that may be avoided using the topical procedure. The research sought to determine if a salicylic acid-loaded microemulsion-based gel (emulgel) could successfully infiltrate and maintain salicylic acid in skin tissue for psoriasis treatment. The pseudo-ternary phase was generated in different Smix ratios (1:1, 2:1, and 3:1; Labrasol:Transcutol® P). At a 3:1 ratio, the Smix had a substantial microemulsion area. Microemulsion was characterized for particle size, pH, etc. For topical application, the selected microemulsion was combined with Carbopol 940 gel, and ex vivo permeation and drug retention study were conducted. The effectiveness of the developed gel was checked using the IMQ-induced psoriatic plaque model. Salicylic acid microemulsion has an average globule size of 79.72 nm, pH 5.93, and 100% transmittance. In an ex vivo diffusion study, emulgel revealed greater penetration and more drug retention than ordinary salicylic acid gel. The emulgel was non-irritating on the skin of rats. In vivo studies revealed significant antipsoriatic activity of microemulsion-loaded gel compared to the marketed product. Developed emulgel was considered a potential product for an effective and safe way to administer salicylic acid for the treatment of skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Viswanath Baboy Lotlikar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
7
|
Freeman MT, Parvaresh-Rizi A, Meenach SA. Enhanced Macrophage Uptake of Spray-Dried Phosphatidylserine-Loaded Microparticles for Pulmonary Drug Delivery Applications. J Drug Deliv Sci Technol 2025; 104:106535. [PMID: 39830679 PMCID: PMC11737435 DOI: 10.1016/j.jddst.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses. This study aims to overcome this limitation via the development of an inhalable dry powder microparticle (MP) formulation capable of targeted drug delivery to alveolar macrophages in addition to controlled release of a therapeutic. A simple one-step spray drying method was used to synthesize acetalated dextran (Ac-Dex) MP loaded with the model therapeutic, curcumin, and 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), which is a phospholipid that induces ligand-receptor mediated macrophage phagocytosis. The resulting MP exhibited significantly more uptake by RAW 264.7 macrophages in comparison to MP without DPPS, and it was shown that DPPS-mediated uptake was macrophage specific. The particles exhibited pH-responsive release and in vitro aerosol dispersion analysis confirmed the MP can be effectively aerosolized for pulmonary delivery. Overall, the described MP has the potential to improve treatment efficacy for macrophage-associated diseases.
Collapse
Affiliation(s)
- Matthew T. Freeman
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Arianne Parvaresh-Rizi
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Samantha A. Meenach
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA
| |
Collapse
|
8
|
Pula W, Pepe A, Ferrara F, Bondi A, Mariani P, Ortore MG, Pecorelli A, Ivarsson J, Valacchi G, Esposito E. In situ forming gels as subcutaneous delivery systems of curcumin and piperine. Sci Rep 2025; 15:3046. [PMID: 39856354 PMCID: PMC11759670 DOI: 10.1038/s41598-025-87750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
In this study an in situ forming gel for curcumin and piperine delivery is investigated as a long-lasting strategy in the local treatment of inflammatory and degenerative joint disease, such as osteoarthritis and rheumatoid arthritis. Particularly glyceryl monooleate, in association with phosphatidylcholine and ethanol, were employed. Different ratios between excipients were tested, with the aim to obtain a liquid form suitable for subcutaneous injection, gaining a semisolid consistency in contact with biological fluids. A formulative study was conducted to assess the composition impact on the structural properties of the formulations, particularly focusing on injectability and phase transition. Curcumin and piperine were loaded, singularly or jointly, in selected in situ forming gels. Structural characterization, performed by X-ray scattering, revealed disordered reverse micellar phases, undergoing transition to hexagonal and cubic Pn3m phase upon hydration. In vitro dialysis release study demonstrated a sustained release of both drugs over 96 h, with a faster release in the case of jointly loaded drugs. Mechanistic analysis and water uptake studies indicated a drug release governed by both diffusion and swelling/erosion of the lipid supramolecular structure. Furthermore, an ex vivo release analysis performed using human skin explants suggested the formulation suitability for subcutaneous injection, indicating that the presence of piperine in the in situ formed gel allowed to double the curcumin release with respect to the simple curcumin loaded gel.
Collapse
Affiliation(s)
- Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121, Ferrara, Italy
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131, Ancona, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121, Ferrara, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121, Ferrara, Italy
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131, Ancona, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121, Ferrara, Italy
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, NC State University, NC Research Campus, 28081, Kannapolis, NC, USA
| | - John Ivarsson
- Plants for Human Health Institute, Animal Science Department, NC State University, NC Research Campus, Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121, Ferrara, Italy.
- Plants for Human Health Institute, Animal Science Department, NC State University, NC Research Campus, Kannapolis, NC, 28081, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121, Ferrara, Italy.
| |
Collapse
|
9
|
Munyayi TA, Crous A. Advancing Cancer Drug Delivery with Nanoparticles: Challenges and Prospects in Mathematical Modeling for In Vivo and In Vitro Systems. Cancers (Basel) 2025; 17:198. [PMID: 39857980 PMCID: PMC11763932 DOI: 10.3390/cancers17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mathematical models are crucial for predicting the behavior of drug conjugate nanoparticles and optimizing drug delivery systems in cancer therapy. These models simulate interactions among nanoparticle properties, tumor characteristics, and physiological conditions, including drug resistance and targeting specificity. However, they often rely on assumptions that may not accurately reflect in vivo conditions. In vitro studies, while useful, may not fully capture the complexities of the in vivo environment, leading to an overestimation of nanoparticle-based therapy effectiveness. Advancements in mathematical modeling, supported by preclinical data and artificial intelligence, are vital for refining nanoparticle-based therapies and improving their translation into effective clinical treatments.
Collapse
Affiliation(s)
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
10
|
Matalqah S, Lafi Z, Mhaidat Q, Asha N, Yousef Asha S. 'Applications of machine learning in liposomal formulation and development'. Pharm Dev Technol 2025; 30:126-136. [PMID: 39780760 DOI: 10.1080/10837450.2024.2448777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles. Additionally, the integration of ML enhances therapeutic outcomes by enabling precision-targeted delivery and minimizing side effects. This review presents current breakthroughs, challenges, and future opportunities in applying ML to liposomal systems, aiming to improve therapeutic efficacy and patient outcomes in various disease treatments.
Collapse
Affiliation(s)
- Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | | | | |
Collapse
|
11
|
Ajayi TO, Poka MS, Witika BA. Formulation and optimisation of bedaquiline nanoemulsions for the potential treatment of multi drug resistant tuberculosis in paediatrics using quality by design. Sci Rep 2024; 14:31891. [PMID: 39738619 PMCID: PMC11686176 DOI: 10.1038/s41598-024-83408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Bedaquiline is a drug used for the treatment of multidrug-resistant TB in adults and children that is currently only commercially available in tablet form. The present study was aimed at preparing nanoemulsion (NE) of BDQ using natural vegetable oils to deliver BDQ. The optimisation of surfactant mixtures was undertaken using Design of Experiments (DoE), specifically an optimal mixture design. The NEs were optimised while monitoring droplet size (DS), zeta potential (ZP), polydispersity index (PDI) and drug content (DC). The optimised NEs were further characterised using transmission electron microscopy, electrical conductivity, viscosity, pH and in vitro release studies. The optimised NE showed values of 191.6 nm ± 2.38 nm, 0.1176 ± 1.69, -25.9 mV ± 3.00 mV and 3.14 ± 0.82 mg/ml for DS, PDI, ZP and DC respectively. Furthermore, the TEM studies demonstrated the spherical shape of the optimised globules. The nanoemulsion was characterised by measuring its electrical conductivity, viscosity and pH which were determined as 53.1 µS/cm, 327 ± 3.05 cP and 5.63 ± 1.78, respectively. In conclusion, these NEs have great potential for improving solubility, drug delivery, and administration of BDQ. However, further studies are required to maximise the drug content and to demonstrate to what extent these NE have effect against MDR-TB.
Collapse
Affiliation(s)
- Taiwo Oreoluwa Ajayi
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Madan Sai Poka
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa.
| |
Collapse
|
12
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024; 21:6034-6061. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
13
|
Bańkosz M, Tyliszczak B. Investigation of Silver- and Plant Extract-Infused Polymer Systems: Antioxidant Properties and Kinetic Release. Int J Mol Sci 2024; 25:12816. [PMID: 39684526 DOI: 10.3390/ijms252312816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated the impact of silver particles, suspended in Arnica montana flower extract, on the physicochemical characteristics and release dynamics of antioxidant compounds in PVP (polyvinylpyrrolidone)-based hydrogel systems. The hydrogels were synthesized via photopolymerization with fixed amounts of crosslinker (PEGDA) and photoinitiator, while the concentration of the silver-infused extract was systematically varied. Key properties, including the density, porosity, surface roughness, swelling capacity, and water vapor transmission rate (WVTR), were quantitatively analyzed. The results demonstrated that increasing the silver content reduced the hydrogel density from 0.6669 g/cm3 to 0.2963 g/cm3 and increased the porosity from 4% to 11.04%. The surface roughness parameters (Ra) rose from 8.42 µm to 16.33 µm, while the WVTR increased significantly from 65.169 g/m2·h to 93.772 g/m2·h. These structural changes directly influenced the release kinetics of antioxidant compounds, with kinetic modeling revealing silver-dependent variations in the evaluated release mechanisms. This innovative approach of integrating silver particles and plant-derived antioxidants into hydrogels highlights a novel pathway for tailoring material properties. The observed enhanced porosity and moisture regulation underscore the hydrogels' potential for biomedical applications, particularly in wound care, where controlled moisture and antioxidant delivery are critical. These findings provide new insights into how silver particles modulate hydrogel structures and functionalities.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Material Engineering, Faculty of Materials Engineering and Physics, CUT Doctoral School, Cracow University of Technology, 31-864 Kraków, Poland
| | - Bożena Tyliszczak
- Department of Material Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 31-864 Kraków, Poland
| |
Collapse
|
14
|
Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol 2024; 42:1396-1409. [PMID: 38955569 DOI: 10.1016/j.tibtech.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.
Collapse
Affiliation(s)
- Vishal S Chaudhari
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Priya Kushram
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
15
|
Son NN, Thanh VM, Huong NT. Synthesis of F127-GA@ZnO nanogel as a cisplatin drug delivery pH-sensitive system. RSC Adv 2024; 14:35005-35020. [PMID: 39497764 PMCID: PMC11533520 DOI: 10.1039/d4ra06514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a novel drug delivery system based on zinc oxide nanoparticles (ZnO NPs) was developed for the enhanced delivery of cisplatin (CPT) to improve cancer treatment. The ZnO NPs were synthesized from guava leaf extract and then surface-functionalized with gallic acid (GA) to improve their biocompatibility and drug loading capacity. Pluronic F127, a biocompatible polymer, was then conjugated to the GA-modified ZnO NPs to further enhance their stability and cellular uptake. The resulting NPs were characterized by various techniques, including FT-IR, UV-Vis, SEM, TEM, 1H NMR, and DLS. The drug loading and release profiles of CPT from the NPs were investigated, showing high CPT loading capacity and pH-dependent release behavior. The in vitro cytotoxicity of the NPs was evaluated against various cancer cell lines, demonstrating enhanced cytotoxicity compared to free CPT. Overall, this study highlights the potential of GA and Pluronic-modified ZnO NPs as a promising drug delivery system for enhanced CPT delivery and improved cancer therapy.
Collapse
Affiliation(s)
- Nguyen Ngoc Son
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Vu Minh Thanh
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Huong
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| |
Collapse
|
16
|
Buliga DI, Mocanu A, Rusen E, Diacon A, Toader G, Brincoveanu O, Călinescu I, Boscornea AC. Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Mar Drugs 2024; 22:434. [PMID: 39452842 PMCID: PMC11509733 DOI: 10.3390/md22100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.
Collapse
Affiliation(s)
- Diana-Ioana Buliga
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
- Research Institute, University of Bucharest, ICUB Bucharest, 90 Panduri Rd., 5th District, 050663 Bucharest, Romania
| | - Ioan Călinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurelian Cristian Boscornea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| |
Collapse
|
17
|
Alfei S, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation. Int J Mol Sci 2024; 25:10071. [PMID: 39337557 PMCID: PMC11432396 DOI: 10.3390/ijms251810071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
18
|
Hadinugroho W, Tjahjono Y, Foe K, Esar SY, Caroline C, Jessica MA, Wijaya H. Characterization of 2-((4-(chloromethyl)benzoyl)oxy)benzoate acid for analgesic tablet dosage form formulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100200. [PMID: 39314230 PMCID: PMC11417518 DOI: 10.1016/j.crphar.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The 2-((4-(chloromethyl)benzoyl)oxy)benzoic acid (4CH2Cl) is a potential analgesic compound derived from salicylic acid and 4-chloromethyl benzoyl chloride. Characterization required 4CH2Cl for the formulation of tablet dosage forms. This study aims investigate the effect of SSG, PVP-K30, and the combination of SSG*PVP K-30 on the formulation of 4CH2Cl tablets. Additionally, this study aimed to obtain the optimum 4CH2Cl tablet composition. The experiment followed the two-factor simplex lattice design and direct compression method. The analgesic activity of 4CH2Cl in the optimal tablet was investigated using the hot-plate methods. The ANOVA of linear models is acceptable and the polynomial coefficients of quadratic models are similar to those of linear models. The coefficient of the linear model shows that SSG and PVP K-30 increase the Carr index (16.26; 20.61), Hausner ratio (1.19; 1.29), hardness (4.19; 9.39), friability (0.48; 0.67), disintegration time (0.34; 7.50), and drug release (85.29; 97.69). The coefficient of the quadratic model shows that SSG*PVP K-30 increased the Carr index (1.90), Hausner ratio (0.04), hardness (1.88), friability (0.06), and drug release (4.56), and decreased disintegration time (-0.30). SSG and PVP K-30 increased Carr index, Hausner ratio, hardness, friability, disintegration time, and drug release. The combination of SSG*PVP K-30 has the same effect, except that the disintegration time decreased. The optimum tablet formula is 4CH2Cl (300 mg), Ne (75 mg), SSG (33.60 mg), PVP K-30 (22.40 mg), MCC (40 mg), and SDL (up to 800 mg). 4CH2Cl tablets can be a candidate and choice for new analgesic drugs in the future.
Collapse
Affiliation(s)
- Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | - Caroline Caroline
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| | | | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, 60112, Indonesia
| |
Collapse
|
19
|
Ishaq W, Afzal A, Farooq M, Sarfraz M, Adnan S, Ahmed H, Waqas M, Safdar Z. Design and Evaluation of Inorganic/Organic Hybrid Bio-composite for Site-Specific Oral Delivery of Darifenacin. AAPS PharmSciTech 2024; 25:204. [PMID: 39237789 DOI: 10.1208/s12249-024-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.
Collapse
Affiliation(s)
- Wafa Ishaq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| | - Attia Afzal
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- School of Pharmacy, Multan University of Science and Technology, Multan, 59201, Pakistan.
| | - Muhammad Sarfraz
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland.
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51311, Pakistan
| | - Hammad Ahmed
- Department of Pharmacy, Sialkot Institute of Science and Technology, Sialkot, 51311, Pakistan
| | - Muhammad Waqas
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Zainab Safdar
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| |
Collapse
|
20
|
Elsewedy HS, Alshehri S, Alsammak NS, Abou Chahin NF, Alotaibi MS, Alshammari RA, Shehata TM, Aldhubiab B, Soliman WE. Investigating topical delivery of erythromycin laden into lipid nanocarrier for enhancing the anti-bacterial activity. Saudi Pharm J 2024; 32:102152. [PMID: 39165579 PMCID: PMC11334861 DOI: 10.1016/j.jsps.2024.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Skin infections considered as one of the predominant disorders that could greatly influence humans. Topical drug delivery is believed to be an effective substitute to systemically delivered medication for skin disorders management. Erythromycin has been proven to retain anti-bacterial activity. Based on that, the aim of existent study is to develop a proper nanocarrier, namely; nanoemulsion using tea tree oil including Erythromycin. Applying quality by design approach, the optimized nanoemulsion was selected based on number of independent variables namely; particle size and in vitro release study. Yet, in order to get appropriate topical application, the optimized nanoemulsion was combined with previously prepared hydrogel base to provide Erythromycin based nanoemulgel. The developed nanoemulgel was assessed for its organoleptic and physical characters to ensure its suitability for topical application. Stability study was implemented over three months after being kept in two distinct environments. Eventually, the antibacterial behavior of the preparation was investigated on MRSA to verify the expected antibacterial improvement and validate the effectiveness of the developed nanocarrier. The formulation showed consistent appearance, with pH (6.11 ± 0.19), viscosity (10400 ± 1275 cP), spreadability (54.03 ± 2.3 mm), extrudability (80.36 ± 3.15 g/cm2) and drug content (99.3 ± 0.46 %) that seemed to be satisfied for topical application. It could provide 48.1 ± 4.2 % releases over 6 h in addition to be stable at room temperature and at refrigerator. Ultimately, the formula showed a significant antibacterial activity against MRSA proving the combination and the nanocarrier effectiveness.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naheda S. Alsammak
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Nada F. Abou Chahin
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Manal S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Rehab A. Alshammari
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Mansoura, Egypt
| |
Collapse
|
21
|
da Silva TF, Leite TA, de Souza FFP, da Silva Barroso W, de Souza Guedes L, da Silva ALC, de Souza BWS, Vieira RS, Andrade FK. Loading of bacterial cellulose dressing with frutalin, a lectin from Artocarpus incisa L. Int J Biol Macromol 2024; 276:133774. [PMID: 39004244 DOI: 10.1016/j.ijbiomac.2024.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ± 1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 μg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ± 1.43) using 24 h, 5 °C, 100 μg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ± 1.05) and BC-FTL 1 (21.71 % ± 1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 μg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.
Collapse
Affiliation(s)
- Thamyres Freire da Silva
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Talita Abrante Leite
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil
| | - Francisco Fábio Pereira de Souza
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Wallady da Silva Barroso
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil
| | - Luciana de Souza Guedes
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - André Luís Coelho da Silva
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil.
| | | | - Rodrigo Silveira Vieira
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Fábia Karine Andrade
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| |
Collapse
|
22
|
Oliveira RN, Meleiro LADC, Quilty B, McGuinness GB. Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: a power law swelling/delivery. Front Bioeng Biotechnol 2024; 12:1406336. [PMID: 39165402 PMCID: PMC11333833 DOI: 10.3389/fbioe.2024.1406336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction PVA hydrogels present many characteristics of the ideal dressing, although without antimicrobial properties. The present work aims to study the physical, mechanical and release characteristics of hydrogel wound dressings loaded with either of two natural herbal products, sage extract and dragon's blood. Methods Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and tensile mechanical testing were used to investigate the structure and properties of the gels. Swelling and degradation tests were conducted according to ISO 10993-9. Release characteristics were studied using UV Spectrophotometry. Results PVA matrices incorporating sage extract or dragon's blood (DB) present hydrogen bonding between these components. PVA-CMC hydrogels containing sage present similar spectra to PVA-CMC alone, probably indicating low miscibility or interaction between the matrix and sage. The opposite is found for DB, which exhibits more pronounced interference with crystallinity than sage. DB and NaCMC negatively affect Young's modulus and failure strength. All samples appear to reach equilibrium swelling degree (ESD) in 24 h. The addition of DB and sage to PVA increases the gels' swelling capacity, indicating that the substances likely separate PVA chains. The inclusion of CMC contributes to high media uptake. The kinetics profile of media uptake for 4 days is described by a power-law model, which is correlated to the drug delivery mechanism. Discussion A PVA-CMC gel incorporating 15% DB, the highest amount tested, shows the most favorable characteristics for flavonoid delivery, as well as flexibility and swelling capacity.
Collapse
Affiliation(s)
- Renata Nunes Oliveira
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Augusto da Cruz Meleiro
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brid Quilty
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
23
|
Mottola S, Viscusi G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques. Int J Pharm 2024; 660:124308. [PMID: 38848800 DOI: 10.1016/j.ijpharm.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
In this paper, electrospinning and supercritical impregnation were coupled to produce polyurethane fibrous membranes loaded with mesoglycan and lactoferrin. The proposed methodology allowed the production of three skin wound healing bilayer systems: a first system containing mesoglycan loaded through electrospinning and lactoferrin loaded by supercritical impregnation, a second system where the use of the two techniques was reversed, and a third sample where the drugs were both encapsulated through a one-step process. SEM analysis demonstrated the formation of microfibers with a homogeneous drug distribution. The highest loadings were 0.062 g/g for mesoglycan and 0.013 g/g for lactoferrin. Then, hydrophilicity and liquid retention analyses were carried out to evaluate the possibility of using the manufacturers as active patches. The kinetic profiles, obtained through in vitro tests conducted using a Franz diffusion cell, proved that the diffusion of the active drugs followed a double-step release before attaining the equilibrium after about 30 h. When the electrospun membranes were placed in contact with HUVEC, HaCaT, and BJ cell lines, as human endothelial cells, keratinocytes, and fibroblasts, respectively, no cytotoxic events were assessed. Finally, the capacity of the most promising system to promote the healing process was performed by carrying out scratch tests on HaCat cells.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
24
|
Cocoș FI, Anuța V, Popa L, Ghica MV, Nica MA, Mihăilă M, Fierăscu RC, Trică B, Nicolae CA, Dinu-Pîrvu CE. Development and Evaluation of Docetaxel-Loaded Nanostructured Lipid Carriers for Skin Cancer Therapy. Pharmaceutics 2024; 16:960. [PMID: 39065657 PMCID: PMC11279931 DOI: 10.3390/pharmaceutics16070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were optimized to ensure the stability and drug-loading efficacy of the NLCs. Combined XRD and cryo-TEM analysis were employed for NLC nanostructure evaluation, confirming the formation of well-defined nanostructures. In vitro kinetics studies demonstrated controlled and sustained docetaxel release over 48 h, emphasizing the potential for prolonged therapeutic effects. Cytotoxicity assays on human umbilical vein endothelial cells (HUVEC) and SK-MEL-24 melanoma cell line revealed enhanced efficacy against cancer cells, with significant selective cytotoxicity and minimal impact on normal cells. This multidimensional approach, encompassing formulation optimization and comprehensive characterization, positions the docetaxel-loaded NLCs as promising candidates for advanced skin cancer therapy. The findings underscore the potential translational impact of these nanocarriers, paving the way for future preclinical investigations and clinical applications in skin cancer treatment.
Collapse
Affiliation(s)
- Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mirela Mihăilă
- Center of Immunology, Ștefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, 16 Gheorghe Sincai Blvd, 040314 Bucharest, Romania
| | - Radu Claudiu Fierăscu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
25
|
Duggal S, Sharma S, Rai N, Chauhan D, Upadhyay V, Srivastava S, Porwal K, Kulkarni C, Trivedi AK, Gayen JR, Mishra PR, Chattopadhyay N, Pal S. Anti-Microbial Drug Metronidazole Promotes Fracture Healing: Enhancement in the Bone Regenerative Efficacy of the Drug by a Biodegradable Sustained-Release In Situ Gel Formulation. Biomedicines 2024; 12:1603. [PMID: 39062176 PMCID: PMC11274654 DOI: 10.3390/biomedicines12071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Nitroimidazoles comprise a class of broad-spectrum anti-microbial drugs with efficacy against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. Among these drugs, metronidazole (MTZ) is commonly used with other antibiotics to prevent infection in open fractures. However, the effect of MTZ on bone remains understudied. In this paper, we evaluated six nitroimidazole drugs for their impact on osteoblast differentiation and identified MTZ as having the highest osteogenic effect. MTZ enhanced bone regeneration at the femur osteotomy site in osteopenic ovariectomized (OVX) rats at the human equivalent dose. Moreover, in OVX rats, MTZ significantly improved bone mass and strength and improved microarchitecture compared to the vehicle-treated rats, which was likely achieved by an osteogenic mechanism attributed to the stimulation of the Wnt pathway in osteoblasts. To mitigate the reported neurological and genotoxic effects of MTZ, we designed an injectable sustained-release in situ gel formulation of the drug that improved fracture healing efficacy by 3.5-fold compared to oral administration. This enhanced potency was achieved through a significant increase in the circulating half-life and bioavailability of MTZ. We conclude that MTZ exhibits osteogenic effects, further accentuated by our sustained-release delivery system, which holds promise for enhancing bone regeneration in open fractures.
Collapse
Affiliation(s)
- Shivali Duggal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nikhil Rai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Divya Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Vishal Upadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun K. Trivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Jiaur R. Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Prabhat R. Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Division of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRM IST), Kattankulathur 603203, India
| |
Collapse
|
26
|
Al-Ameri AAF, Al-Gawhari FJ. Formulation Development of Meloxicam Binary Ethosomal Hydrogel for Topical Delivery: In Vitro and In Vivo Assessment. Pharmaceutics 2024; 16:898. [PMID: 39065595 PMCID: PMC11280089 DOI: 10.3390/pharmaceutics16070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The article aimed to formulate an MLX binary ethosome hydrogel for topical delivery to escalate MLX solubility, facilitate dermal permeation, avoid systemic adverse events, and compare the permeation flux and efficacy with the classical type. MLX ethosomes were prepared using the hot method according to the Box-Behnken experimental design. The formulation was implemented according to 16 design formulas with four center points. Independent variables were (soya lecithin, ethanol, and propylene glycol concentrations) and dependent variables (vesicle size, dispersity index, encapsulation efficiency, and zeta potential). The design suggested the optimized formula (MLX-Ethos-OF) with the highest desirability to perform the best responses formulated and validated. It demonstrates a 169 nm vesicle size, 0.2 dispersity index, 83.1 EE%, and -42.76 mV good zeta potential. MLX-Ethos-OF shows an amorphous form in PXRD and a high in vitro drug release of >90% over 7 h by diffusion and erosion mechanism. MLX-Ethos-OF hyaluronic acid hydrogel was fabricated and assessed. It shows an elegant physical appearance, shear thinning system rheological behavior, good spreadability, and skin-applicable pH value. The ex vivo permeation profile shows a flux rate of 70.45 μg/cm2/h over 12 h. The in vivo anti-inflammatory effect was 53.2% ± 1.3 over 5 h. compared with a 10.42 flux rate and 43% inflammatory inhibition of the classical ethosomal type. The conclusion is that binary ethosome is highly efficient for MLX local delivery rather than classical type.
Collapse
Affiliation(s)
| | - Fatima Jalal Al-Gawhari
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad 10071, Iraq
| |
Collapse
|
27
|
Kruk K, Winnicka K. Hard Gelatin Capsules with Alginate-Hypromellose Microparticles as a Multicompartment Drug Delivery System for Sustained Posaconazole Release. Int J Mol Sci 2024; 25:7116. [PMID: 39000223 PMCID: PMC11241651 DOI: 10.3390/ijms25137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
28
|
Abd-Elghany AE, El-Garhy O, Fatease AA, Alamri AH, Abdelkader H. Enhancing Oral Bioavailability of Simvastatin Using Uncoated and Polymer-Coated Solid Lipid Nanoparticles. Pharmaceutics 2024; 16:763. [PMID: 38931885 PMCID: PMC11206705 DOI: 10.3390/pharmaceutics16060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Simvastatin (SVA) is a well-prescribed drug for treating cardiovascular and hypercholesterolemia. Due to the extensive hepatic first-pass metabolism and poor solubility, its oral bioavailability is 5%. Solid lipid nanoparticles (SLNs) and hydrogel-coated SLNs were investigated to overcome the limited bioavailability of SVA. Four different lipids used alone or in combination with two stabilizers were employed to generate 13 SLNs. Two concentrations of chitosan (CS) and alginate (AL) were coating materials. SLNs were studied for particle size, zeta potential, in vitro release, rheology, and bioavailability. The viscosities of both the bare and coated SLNs exhibited shear-thinning behavior. The viscosity of F11 (Chitosan 1%) at 20 and 40 rpm were 424 and 168 cp, respectively. F11 had a particle size of 260.1 ± 3.72 nm with a higher release; the particle size of F11-CS at 1% was 524.3 ± 80.31 nm. In vivo studies illustrated that F11 had the highest plasma concentration when compared with the SVA suspension and coated chitosan (F11 (Chitosan 1%)). Greater bioavailability is measured as (AUC0→24), as compared to uncoated ones. The AUC for F11, F11-CS 1%, and the SVA suspension were 1880.4, 3562.18, and 272 ng·h/mL, respectively. Both bare and coated SLNs exhibited a significantly higher relative bioavailability when compared to that from the control SVA.
Collapse
Affiliation(s)
- Amira E. Abd-Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.E.A.-E.); (O.E.-G.)
| | - Omar El-Garhy
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.E.A.-E.); (O.E.-G.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (A.A.F.); (A.H.A.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (A.A.F.); (A.H.A.)
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (A.A.F.); (A.H.A.)
| |
Collapse
|
29
|
K M AS, Angolkar M, Rahamathulla M, Thajudeen KY, Ahmed MM, Farhana SA, Shivanandappa TB, Paramshetti S, Osmani RAM, Natarajan J. Box-Behnken Design-Based Optimization and Evaluation of Lipid-Based Nano Drug Delivery System for Brain Targeting of Bromocriptine. Pharmaceuticals (Basel) 2024; 17:720. [PMID: 38931387 PMCID: PMC11206536 DOI: 10.3390/ph17060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson's disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD.
Collapse
Affiliation(s)
- Asha Spandana K M
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Kamal Y. Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia;
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | | | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy-Ootacamund, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
30
|
Mishra M, Barkat MA, Misra C, Alanezi AA, Ali A, Chaurawal N, Ali A, Preet S, Barkat H, Raza K. Lipid-based microemulsion gel for the topical delivery of methotrexate: an optimized, rheologically acceptable formulation with conducive dermatokinetics. Arch Dermatol Res 2024; 316:316. [PMID: 38822884 DOI: 10.1007/s00403-024-03140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
In the present study, we have formulated a methotrexate (MTX)-loaded microemulsion topical gel employing quality-by-design optimization. The optimized lipid-based microemulsion was incorporated into a 2% carbopol gel. The prepared formulation was characterized for micromeritics, surface charge, surface morphology, conductivity studies, rheology studies, texture analysis/spreadability, drug entrapment, and drug loading studies. The formulation was further evaluated for drug release and release kinetics, cytotoxicity assays, drug permeation and drug retention studies, and dermatokinetics. The developed nanosystem was not only rheologically acceptable but also offered substantial drug entrapment and loading. From drug release studies, it was observed that the nanogel showed higher drug release at pH 5.0 compared to plain MTX, plain gel, and plain microemulsion. The developed system with improved dermatokinetics, nanometric size, higher drug loading, and enhanced efficacy towards A314 squamous epithelial cells offers a huge promise in the topical delivery of methotrexate.
Collapse
Affiliation(s)
- Mohini Mishra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt., Ajmer, 305 817, Rajasthan, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al-Batin, Saudi Arabia.
| | - Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt., Ajmer, 305 817, Rajasthan, India
| | - Abdulkareem Ali Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al-Batin, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt., Ajmer, 305 817, Rajasthan, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Simran Preet
- Department of Biophysics, Panjab University, Basic Medical Sciences Block-2, Sector-25, Chandigarh, 160 014, India
| | - Harshita Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al-Batin, Saudi Arabia
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt., Ajmer, 305 817, Rajasthan, India
| |
Collapse
|
31
|
Sathe P, Kailasam V, Nagarjuna V, Sharma H, Velpandian T, Garg P, Nirmal J. Nanomicelles empower natamycin in treating fungal keratitis: An in vitro, ex vivo and in vivo study. Int J Pharm 2024; 656:124118. [PMID: 38615806 DOI: 10.1016/j.ijpharm.2024.124118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.
Collapse
Affiliation(s)
- Priyadarshini Sathe
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad 500078, Telangana, India
| | - Velmurugan Kailasam
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad 500078, Telangana, India
| | - Vasagiri Nagarjuna
- Tej Kohli Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Hanuman Sharma
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prashant Garg
- Tej Kohli Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad 500078, Telangana, India.
| |
Collapse
|
32
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Alfei S, Giordani P, Zuccari G. Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine. Int J Mol Sci 2024; 25:5009. [PMID: 38732231 PMCID: PMC11084852 DOI: 10.3390/ijms25095009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Paolo Giordani
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| |
Collapse
|
34
|
García-Curiel L, Pérez-Flores JG, Contreras-López E, Pérez-Escalante E, Paz-Samaniego R. Evaluating the application of an arabinoxylan-rich fraction from brewers' spent grain as a release modifier of drugs. Nat Prod Res 2024; 38:1759-1765. [PMID: 37203313 DOI: 10.1080/14786419.2023.2214841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
This study evaluated the possible use of a fraction of brewers' spent grain rich in arabinoxylans (BSG-AX) as an excipient that modifies the release of class III drugs (Biopharmaceutics Classification System), by determining the release profile of metformin hydrochloride (MH), in a water medium. The cumulative percentage of MH release showed the best linear fit when modeled with the cumulative distribution function (CDF) of the Weibull distribution (R2 = 0.993 ± 0.001). According to the Korsmeyer-Peppas model, the first stage of MH release is regulated by a super case-II transport mechanism controlled by the expansion and relaxation of BSG-AX. Finally, with the Hixson-Crowell model, a release rate (k HC ) of 0.350 ± 0.026 h - 1 3 was obtained (R2 = 0.996 ± 0.007). BSG-AX constitutes a suitable material for producing prolonged drug release vehicles; however, additional research is required to provide a better encapsulation of the active ingredients to ensure their optimal applicability and performance.
Collapse
Affiliation(s)
- Laura García-Curiel
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca, Mexico
| | - Jesús Guadalupe Pérez-Flores
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca, Mexico
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Rita Paz-Samaniego
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, México
| |
Collapse
|
35
|
Khan A, Zaman M, Waqar MA, Mahmood A, Shaheer T, Sarfraz RM, Shahzadi K, Khan AA, Alanazi AM, Kundu MK, Islam MR, Alexiou A, Papadakis M. Sustained release delivery of favipiravir through statistically optimized, chemically cross-linked, pH-sensitive, swellable hydrogel. BMC Pharmacol Toxicol 2024; 25:31. [PMID: 38685129 PMCID: PMC11057099 DOI: 10.1186/s40360-024-00752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.
Collapse
Affiliation(s)
- Arooj Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan.
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Talal Shaheer
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Kanwal Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Md Rabiul Islam
- Department of Chemistry, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, Athens, Greece
- Department of Research and Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
36
|
Elsewedy HS, Shehata TM, Genedy SM, Siddiq KM, Asiri BY, Alshammari RA, Bukhari SI, Kola-Mustapha AT, Ramadan HA, Soliman WE. Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier. Gels 2024; 10:268. [PMID: 38667687 PMCID: PMC11049292 DOI: 10.3390/gels10040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Shaymaa M. Genedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Khuzama M. Siddiq
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Bushra Y. Asiri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Rehab A. Alshammari
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adeola T. Kola-Mustapha
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| | - Wafaa E. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
| |
Collapse
|
37
|
Hernandez-Montelongo J, Salazar-Araya J, Mas-Hernández E, Oliveira DS, Garcia-Sandoval JP. Unraveling Drug Delivery from Cyclodextrin Polymer-Coated Breast Implants: Integrating a Unidirectional Diffusion Mathematical Model with COMSOL Simulations. Pharmaceutics 2024; 16:486. [PMID: 38675147 PMCID: PMC11055099 DOI: 10.3390/pharmaceutics16040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer ranks among the most commonly diagnosed cancers worldwide and bears the highest mortality rate. As an integral component of cancer treatment, mastectomy entails the complete removal of the affected breast. Typically, breast reconstruction, involving the use of silicone implants (augmentation mammaplasty), is employed to address the aftermath of mastectomy. To mitigate postoperative risks associated with mammaplasty, such as capsular contracture or bacterial infections, the functionalization of breast implants with coatings of cyclodextrin polymers as drug delivery systems represents an excellent alternative. In this context, our work focuses on the application of a mathematical model for simulating drug release from breast implants coated with cyclodextrin polymers. The proposed model considers a unidirectional diffusion process following Fick's second law, which was solved using the orthogonal collocation method, a numerical technique employed to approximate solutions for ordinary and partial differential equations. We conducted simulations to obtain release profiles for three therapeutic molecules: pirfenidone, used for preventing capsular contracture; rose Bengal, an anticancer agent; and the antimicrobial peptide KR-12. Furthermore, we calculated the diffusion profiles of these drugs through the cyclodextrin polymers, determining parameters related to diffusivity, solute solid-liquid partition coefficients, and the Sherwood number. Finally, integrating these parameters in COMSOL multiphysics simulations, the unidirectional diffusion mathematical model was validated.
Collapse
Affiliation(s)
- Jacobo Hernandez-Montelongo
- Department of Physical and Mathematical Sciences, Catholic University of Temuco, Temuco 4813302, Chile
- Department of Translational Bioengineering, University of Guadalajara, Guadalajara 44430, Mexico
| | - Javiera Salazar-Araya
- Department of Mathematics and Statistics, University of La Frontera, Temuco 4811230, Chile;
| | - Elizabeth Mas-Hernández
- Faculty of Chemistry, Autonomous University of Queretaro, Campus Pedro Escobedo, Queretaro 76700, Mexico;
- Department of Mathematical Engineering, University of La Frontera, Temuco 4811230, Chile
| | - Douglas Soares Oliveira
- Jandaia do Sul Advanced Campus, Federal University of Parana, Jandaia do Sul 86900-000, PR, Brazil;
| | | |
Collapse
|
38
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
39
|
Monavari M, Sohrabi R, Motasadizadeh H, Monavari M, Fatahi Y, Ejarestaghi NM, Fuentes-Chandia M, Leal-Egaña A, Akrami M, Homaeigohar S. Levofloxacin loaded poly (ethylene oxide)-chitosan/quercetin loaded poly (D,L-lactide-co-glycolide) core-shell electrospun nanofibers for burn wound healing. Front Bioeng Biotechnol 2024; 12:1352717. [PMID: 38605986 PMCID: PMC11007221 DOI: 10.3389/fbioe.2024.1352717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
This study developed a new burn wound dressing based on core-shell nanofibers that co-deliver antibiotic and antioxidant drugs. For this purpose, poly(ethylene oxide) (PEO)-chitosan (CS)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell nanofibers were fabricated through co-axial electrospinning technique. Antibiotic levofloxacin (LEV) and antioxidant quercetin (QS) were incorporated into the core and shell parts of PEO-CS/PLGA nanofibers, respectively. The drugs could bond to the polymer chains through hydrogen bonding, leading to their steady release for 168 h. An in vitro drug release study showed a burst effect followed by sustained release of LEV and QS from the nanofibers due to the Fickian diffusion. The NIH 3T3 fibroblast cell viability of the drug loaded core-shell nanofibers was comparable to that in the control (tissue culture polystyrene) implying biocompatibility of the nanofibers and their cell supportive role. However, there was no significant difference in cell viability between the drug loaded and drug free core-shell nanofibers. According to in vivo experiments, PEO-CS-LEV/PLGA-QS core-shell nanofibers could accelerate the healing process of a burn wound compared to a sterile gauze. Thanks to the synergistic therapeutic effect of LEV and QS, a significantly higher wound closure rate was recorded for the drug loaded core-shell nanofibrous dressing than the drug free nanofibers and control. Conclusively, PEO-CS-LEV/PLGA-QS core-shell nanofibers were shown to be a promising wound healing material that could drive the healing cascade through local co-delivery of LEV and QS to burn wounds.
Collapse
Affiliation(s)
- Mahshid Monavari
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Sohrabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Monavari
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Miguel Fuentes-Chandia
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States
| | - Aldo Leal-Egaña
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
40
|
Parmar K, Sondarva S. Aerosolizable Pyrazinamide-Loaded Biodegradable Nanoparticles for the Management of Pulmonary Tuberculosis. J Aerosol Med Pulm Drug Deliv 2024; 37:30-40. [PMID: 38197850 DOI: 10.1089/jamp.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background: Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. Methods: In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. Results: Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and in vitro drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, in vitro drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 μm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in in vivo deposition with respect to pure drug deposition, respectively. In vitro drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. Conclusion: PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.
Collapse
Affiliation(s)
- Komal Parmar
- Department of Pharmaceutics, ROFEL Shri G.M. Bilakhia College of Pharmacy, Vapi, Gujarat, India
| | - Swati Sondarva
- Department of Pharmaceutics, ROFEL Shri G.M. Bilakhia College of Pharmacy, Vapi, Gujarat, India
| |
Collapse
|
41
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Matos P, Batista MT, Veiga F, Figueirinha A, Figueiras A. Acanthus mollis Formulations for Transdermal Delivery: From Hydrogels to Emulsions. Gels 2023; 10:36. [PMID: 38247759 PMCID: PMC10815486 DOI: 10.3390/gels10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Topical formulations of Acanthus mollis L. leaf and the optimization of the release of their active compounds and their topical bioavailability were investigated for the first time. In vitro, the release of active compounds from three formulations-an oil-in-water cream and two hydrogels (Carbopol 940 and Pluronic F-127)-was determined using Franz diffusion cells. Detection and quantification of the compounds was performed via high-performance liquid chromatography with a photodiode array (HPLC-PDA). DIBOA, a bioactive compound of this medicinal plant, exhibited release kinetics of the Weibull model for the Carbopol and Pluronic F-127 formulation, identifying it as a potential active agent to optimize the topical distribution of the formulations. The implications extend to applications in inflammation treatment and tyrosinase inhibition, suggesting that it can make a significant contribution to addressing skin conditions, including melanoma and various inflammatory diseases.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria Teresa Batista
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Francisco Veiga
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| |
Collapse
|
43
|
Manjit M, Kumar M, Kumar K, Dhondale MR, Jha A, Bharti K, Rain Z, Prakash P, Mishra B. Fabrication of dual drug-loaded polycaprolactone-gelatin composite nanofibers for full thickness diabetic wound healing. Ther Deliv 2023. [PMID: 38124684 DOI: 10.4155/tde-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Zinnu Rain
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pradyot Prakash
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
44
|
Mottola S, De Marco I. Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes. Polymers (Basel) 2023; 16:29. [PMID: 38201694 PMCID: PMC10780522 DOI: 10.3390/polym16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, corticosteroid-β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of β-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 °C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 ± 0.180 μm and 0.131 ± 0.070 μm in the case of DEX and PRED, respectively. Job's method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
45
|
Chapman CA, Fernandez-Patel S, Jahan N, Cuttaz EA, Novikov A, Goding JA, Green RA. Controlled electroactive release from solid-state conductive elastomer electrodes. Mater Today Bio 2023; 23:100883. [PMID: 38144517 PMCID: PMC10746364 DOI: 10.1016/j.mtbio.2023.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This work highlights the development of a conductive elastomer (CE) based electrophoretic platform that enables the transfer of charged molecules from a solid-state CE electrode directly to targeted tissues. Using an elastomer-based electrode containing poly (3,4-ethylenedioxythiophene) nanowires, controlled electrophoretic delivery of methylene blue (MB) and fluorescein (FLSC) was achieved with applied voltage. Electroactive release of positively charged MB and negatively charged FLSC achieved 33.19 ± 6.47 μg release of MB and 22.36 ± 3.05 μg release of FLSC, a 24 and 20-fold increase in comparison to inhibitory voltages over 1 h. Additionally, selective, and sequential release of the two oppositely charged molecules from a single CE device was demonstrated, showing the potential of this device to be used in multi-drug treatments.
Collapse
Affiliation(s)
- Christopher A.R. Chapman
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Shanila Fernandez-Patel
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nusrat Jahan
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Estelle A. Cuttaz
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Alexey Novikov
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Josef A. Goding
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A. Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
46
|
Balian GMFC, Luiz MT, Filippo LDD, Chorilli M. Mucoadhesive liquid crystal precursor system for photodynamic therapy of oral cancer mediated by methylene blue. Photodiagnosis Photodyn Ther 2023; 44:103739. [PMID: 37582452 DOI: 10.1016/j.pdpdt.2023.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Oral cancer is one of the most prevalent types of cancer head and neck cancers worldwide. Photodynamic therapy (PDT) has demonstrated great potential against cancers, reducing long-term morbidity. In this study, we investigated the incorporation of methylene blue (MB) in a mucoadhesive liquid crystal precursor system (LCPS) for oral cancer treatment. The photostability and the in vitro release, permeation, and retention profile of MB-loaded LCPS (MB-LCPS) were investigated, as well as its in vitro PDT activity against normal (HaCaT) and tumoral (HSC-3) cell lines. LCPS increased the photostability of MB and exhibited a prolonged release profile of MB. In addition, LCPS increased the retention of MB in the porcine esophageal mucosa by around 3 times higher than the MB solution. The retention of MB in LCPS was around 2 times greater than its permeability, which is suitable for guaranteeing the maintenance of the therapy in the oral cavity. In vitro cytotoxicity assay indicated that MB-LCPS increased the antitumoral activity of MB after 20 min of irradiation at 660 nm and 12.5 J/cm2. The results obtained suggest that the developed formulation is an interesting strategy for the potential application in the treatment of oral cancer by PDT.
Collapse
Affiliation(s)
- Giovana Maria Fioramonti Calixto Balian
- Department of Biosciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Sao Paulo 14800-903, Brazil
| | - Marcela Tavares Luiz
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Sao Paulo 14800-903, Brazil.
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Sao Paulo 14800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Sao Paulo 14800-903, Brazil.
| |
Collapse
|
47
|
Goreninskii S, Volokhova A, Frolova A, Buldakov M, Cherdyntseva N, Choynzonov E, Sudarev E, Filimonov V, Tverdokhlebov S, Bolbasov E. Prolonged and Controllable Release of Doxorubicin Hydrochloride from the Composite Electrospun Poly(ε-Caprolactone)/Polyvinylpyrrolidone Scaffolds. J Pharm Sci 2023; 112:2752-2755. [PMID: 37673173 DOI: 10.1016/j.xphs.2023.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Burst release, typical for the drug-loaded electrospun poly(ε-caprolactone) (PCL) scaffolds is unfavorable in case of cytostatics due to the toxic levels reached during the initial implantation period. In the present short communication, we report an unexpected ability of the composite scaffolds made of PCL and water-soluble polyvinylpyrrolidone (PVP) to provide long-term release of widely used anti-cancer drug doxorubicin hydrochloride (DOX-HCl). That effect was observed for electrospun DOX-HCl-loaded composite scaffolds based on PCL and PVP with various mass ratios (100/0, 95/5, 90/10, 75/25 and 50/50). After the morphology and water contact angle studies, it was concluded that PVP content has no effect on the average fiber diameter, while PVP content higher 10 wt. % changes the hydrophobic character of the scaffolds surface (water contact angle of 123.9 ± 3.5°) to superhydrophilic (water contact angle of 0°). Despite the dramatic change in water wettability, by high performance liquid chromatography (HPLC), it was revealed that the PVP content in the scaffolds reduces the DOX-HCl release rate under short (first hours) and long-term (during 1 month) exposure to phosphate buffer saline (PBS). These results are in good agreement with in vitro studies, in which the viability of HeLa cervical cancer cells was higher after 24 h of culture with scaffolds with high PVP content.
Collapse
Affiliation(s)
- Semen Goreninskii
- Onconanotheranostics laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow, Russian Federation; B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Apollinariya Volokhova
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation; Department of Translational Cellular and Molecular Biomedicine, Chemical Faculty, National Research Tomsk State University, Russian Federation
| | - Anastasia Frolova
- Biological Institute, Tomsk State University, Tomsk, Russian Federation; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Mikhail Buldakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nadezhda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny Sudarev
- N.M. Kizhner Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Victor Filimonov
- N.M. Kizhner Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Sergei Tverdokhlebov
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation.
| | - Evgeny Bolbasov
- B.P. Veinberg Research and Educational Center, Tomsk Polytechnic University, Tomsk, Russian Federation; V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russian Federation.
| |
Collapse
|
48
|
Miastkowska M, Kulawik-Pióro A, Lasoń E, Śliwa K, Malinowska MA, Sikora E, Kantyka T, Bielecka E, Maksylewicz A, Klimaszewska E, Ogorzałek M, Tabaszewska M, Skoczylas Ł, Nowak K. Topical Formulations Based on Ursolic Acid-Loaded Nanoemulgel with Potential Application in Psoriasis Treatment. Pharmaceutics 2023; 15:2559. [PMID: 38004538 PMCID: PMC10675167 DOI: 10.3390/pharmaceutics15112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2-5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited efficacy with systemic adverse reactions. Therefore, novel therapeutic agents and physicochemical formulations are in constant need and should be obtained and tested in terms of effectiveness and minimization of side effects. For that reason, the aim of our study was to design and obtain various hybrid systems, nanoemulgel-macroemulsion and nanoemulgel-oleogel (bigel), as vehicles for ursolic acid (UA) and to verify their potential as topical formulations used in psoriasis treatment. Obtained topical formulations were characterized by conducting morphological, rheological, texture, and stability analysis. To determine the safety and effectiveness of the prepared ursolic acid carriers, in vitro studies on human keratinocyte cell-like HaCaT cells were performed with cytotoxicity analysis for individual components and each formulation. Moreover, a kinetic study of ursolic acid release from the obtained systems was conducted. All of the studied UA-loaded systems were well tolerated by keratinocyte cells and had suitable pH values and stability over time. The obtained formulations exhibit an apparent viscosity, ensuring the appropriate time of contact with the skin, ease of spreading, soft consistency, and adherence to the skin, which was confirmed by texture tests. The release of ursolic acid from each of the formulations is followed by a slow, controlled release according to the Korsmeyer-Peppas and Higuchi models. The elaborated systems could be considered suitable vehicles to deliver triterpene to psoriatic skin.
Collapse
Affiliation(s)
- Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elwira Lasoń
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Karolina Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Magdalena Anna Malinowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elżbieta Sikora
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Anna Maksylewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Emilia Klimaszewska
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Marta Ogorzałek
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Małgorzata Tabaszewska
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Łukasz Skoczylas
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Krzysztof Nowak
- Wellnanopharm, Jerzego Samuela Bandtkego 19, 30-129 Cracow, Poland;
| |
Collapse
|
49
|
Zeng HL, Qiu Q, Fu TX, Deng AP, Xie XY. Development and optimization of sustained release triptolide microspheres. PLoS One 2023; 18:e0292861. [PMID: 37856525 PMCID: PMC10586653 DOI: 10.1371/journal.pone.0292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f., is considered to have promising potential for clinical use in treating rheumatoid arthritis. However, its clinical application has been limited by the narrow therapeutic window, side effects associated with plasma drug fluctuations, low oral bioavailability, and poor patient compliance with the long and frequent dosing regimen. An extended drug release preparation may address these limitations. The aim of this work was therefore to develop, formulate and optimize sustained release triptolide microspheres with poly (lactide-co-glycolide) (PLGA). Triptolide-loaded microspheres were prepared using PLGA as the matrix polymer, dichloromethane as the oil phase, and polyvinyl alcohol (PVA) as the matrix forming emulsifier. An oil-in-water (O/W) emulsion solvent evaporation technique was utilized to prepare the microspheres. Surface response methodology (RSM) coupled with central composite design (CCD) was used to optimize the formulation and a total of twenty formulations were prepared. PVA concentration (X1), PLGA concentration (X2), and theoretical drug content (X3) were selected as independent variables; and drug content (Y1), encapsulation efficiency (Y2), mean diameter (Y3) and the initial release during the first day (Y4) were taken as the response variables. The optimized formulation showed mean diameter of 42.36 μm, drug content of 7.96%, encapsulation efficiency of 80.16% and an initial release of 14.48%. The prepared microspheres exhibited a sustained release profile of triptolide in vitro over 4 weeks, which was wellfitted with a Korsmeyer-Peppas equation. However, the initial drug release (~14%) of triptolide-loaded microspheres was very high and should be specifically investigated in future studies. The results indicate that long-term sustained release microspheres of triptolide can be considered a strategy to overcome the low bioavailability and poor patient compliance with conventional triptolide tablets. The issue of initial burst release and in vivo evaluations should be specifically investigated in the future.
Collapse
Affiliation(s)
- Hui-lin Zeng
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Qiu
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting-xiong Fu
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ai-ping Deng
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-yang Xie
- Department of Pharmacy, General Hospital of Central Theater of the PLA, Wuhan, Hubei, China
| |
Collapse
|
50
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|