1
|
L J, Kamaraj S, Kandasamy R, Alagarsamy S. Electrospinning: A New Frontier in Peptide Therapeutics. AAPS PharmSciTech 2025; 26:69. [PMID: 40011310 DOI: 10.1208/s12249-025-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The nanofiber technology has recently undergone an unprecedented transformation, finding widespread utilities across diverse scientific disciplines. It is noteworthy that electrospinning approaches have emerged as an adaptable and successful approach to generate fibers ranging in rapidly as a class of therapeutic agents with a high level of target specificity. Peptides encounter several challenges as drugs, including swift breakdown by the body, rapid elimination from the bloodstream, inadequate stability, and restricted ability to cross cell membranes. This renders it challenging to employ them as drugs. However, electrospun nanofibers might address these problems. This review explores the promising potential of electrospinning nanofibers for peptide delivery. We delve into recent advancements in this technique, highlighting its effectiveness in overcoming challenges associated with peptide drug delivery. It provides an analysis of the trends identified in the use of the electrospinning technique and its role in peptide drug delivery systems, based on a review of data collected over a period of five to seven years.
Collapse
Affiliation(s)
- Jeyanthi L
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sivadharshini Kamaraj
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Silva PM, Neto MD, Cerqueira MA, Rodriguez I, Bourbon AI, Azevedo AG, Pastrana LM, Coimbra MA, Vicente AA, Gonçalves C. Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. Int J Biol Macromol 2024; 259:129288. [PMID: 38211926 DOI: 10.1016/j.ijbiomac.2024.129288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; Associate Laboratory (LABBELS), Braga, Guimarães, Portugal; International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Mafalda D Neto
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Isabel Rodriguez
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Ana Isabel Bourbon
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Ana Gabriela Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; Associate Laboratory (LABBELS), Braga, Guimarães, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
3
|
Silva PM, Prieto C, Andrade CCP, Lagarón JM, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. Int J Biol Macromol 2022; 202:453-467. [PMID: 35031317 DOI: 10.1016/j.ijbiomac.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Electrohydrodynamic processing (EHDP) allows the use of a wide range of biopolymers and solvents, including food-grade biopolymers and green solvents, for the development of micro- and nanostructures. These structures present a high surface-area-to-volume ratio and different shapes and morphologies. The aim of this work was to design and produce hydroxypropyl methylcellulose (HPMC)-based micro- and nanostructures through EHD processing using green solvents, while exploring the influence of process and solution parameters, and incorporating a bioactive extracted from a food by-product. Low (LMW) and high (HMW) molecular weight HPMC have been used as polymers. The design-of-experiments methodology was used to determine the effects of process parameters (polymer concentration, flow rate, tip-to-collector distance, and voltage) of EHDP on the particle and fibre diameter, aspect ratio, diameter distribution, aspect ratio distribution, and percentage of fibre breakage. Additionally, melanoidins extracted from spent coffee grounds were encapsulated into the HPCM-based structures at a concentration of 2.5 mg melanoidins/mL of the polymer solution. Polymer solutions were characterised regarding their viscosity, surface tension and conductivity, and showed that the incorporation of melanoidins increased the viscosity and conductivity values of the polymer solutions. The developed structures were characterised regarding their thermal properties, crystallinity and morphology before and after melanoidin incorporation and it was observed that melanoidin incorporation did not significantly influence the characteristics of the produced micro- and nanostructures. Based on the results, it is possible to envision the use of the produced micro- and nanostructures in a wide range of applications, both in food and biomedical fields.
Collapse
Affiliation(s)
- P M Silva
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - C Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, 46980 Paterna, Spain
| | - C C P Andrade
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - J M Lagarón
- Novel Materials and Nanotechnology Group, IATA-CSIC, 46980 Paterna, Spain
| | - L M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - M A Coimbra
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A A Vicente
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - M A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
4
|
Silva P, Prieto C, Lagarón J, Pastrana L, Coimbra M, Vicente A, Cerqueira M. Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I – Role of solution parameters on fibre and particle production. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Karimi A, Askari G, Yarmand MS, Salami M, EmamDjomeh Z. Development, modification and characterization of ursolic acid-loaded gelatin nanoparticles through electrospraying technique. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110805. [DOI: 10.1016/j.msec.2020.110805] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
|
7
|
Electrospun nanofiber-based cancer sensors: A review. Int J Pharm 2020; 583:119364. [DOI: 10.1016/j.ijpharm.2020.119364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
|
8
|
Pharmaceutical Particulates and Membranes for the Delivery of Drugs and Bioactive Molecules. Pharmaceutics 2020; 12:pharmaceutics12050412. [PMID: 32369897 PMCID: PMC7285108 DOI: 10.3390/pharmaceutics12050412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The delivery of drugs and bioactive molecules using pharmaceutical particulates and membranes are of great significance for various applications such as the treatment of secondary infections, cancer treatment, skin regeneration, orthopedic applications and others [...].
Collapse
|
9
|
Madan JR, Khobaragade S, Dua K, Awasthi R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatol Ther 2020; 33:e13370. [PMID: 32250507 DOI: 10.1111/dth.13370] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
This work was aimed to formulate topical Apremilast (APM)-loaded nanostructured lipid carriers (NLCs) for the management of psoriasis. NLCs were prepared by a cold homogenization technique using Compritol 888ATO, oleic acid, Tween 80 and Span 20, and Transcutol P as a solid lipid, liquid lipid, surfactant mixture, and penetration enhancer, respectively. Carbopol 940 was used to convert NLC dispersion into NLC-based hydrogel to improve its viscosity for topical administration. The optimized formulation was characterized for size, polydispersity index (PDI), zeta potential (ZP), percentage of entrapment efficiency (%EE), and surface morphology. Furthermore, viscosity, spreadability, stability, in vitro drug diffusion, ex vivo skin permeation, and skin deposition studies were carried out. APM-loaded NLCs showed a narrow PDI (0.339) with a particle size of 758 nm, a %EE of 85.5%, and a ZP of -33.3 mV. Scanning electron microscopy confirmed spherical shape of NLCs. in vitro drug diffusion and ex vivo skin permeation results showed low drug diffusion, sustained drug release, and 60.1% skin deposition. The present study confirms the potential of the nanostructured lipid form of poorly water-soluble drugs for topical application and increased drug deposition in the skin.
Collapse
Affiliation(s)
- Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shweta Khobaragade
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Nam HC, Park WH. Aliphatic Polyester-Based Biodegradable Microbeads for Sustainable Cosmetics. ACS Biomater Sci Eng 2020; 6:2440-2449. [PMID: 33455355 DOI: 10.1021/acsbiomaterials.0c00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Marine pollution stemming from plastic microbeads (MBs) in personal care products has been substantially increased because of their nonbiodegradability and high adsorption capacity against persistent organic pollutants (POPs) in seawater. Moreover, the manufacturing process of MBs has been based on wet processes, such as emulsification, microfluidics, and precipitation. Therefore, a green process for obtaining biodegradable MBs is urgently necessary. Aliphatic polyesters, such as poly(lactic acid) (PLA, radiation-degradable) and poly(ε-caprolactone) (PCL, radiation-cross-linkable), have biodegradability and melt processability. The eco-friendly melt electrospraying process is a simple and cost-effective method for the preparation of MBs without the need for organic reagents. In this study, the PLA and PCL MBs were obtained by adjusting the main processing parameters during the melt electrospraying process. The weight losses of PLA and PCL MBs in aqueous environments occurred faster than those of positive controls, and the thermal transition parameters were decreased with the hydrolytic degradation of MBs. In the POP adsorption test, the biodegradable MBs showed poor adsorption because of their low specific surface area. The results of the cleansing efficiency test indicated that biodegradable MBs have great potential as more sustainable cosmetics to replace nondegradable MBs.
Collapse
Affiliation(s)
- Hyeong Chan Nam
- Department of Organic Materials Engineering, College of Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, College of Engineering, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
11
|
Dong WH, Liu JX, Mou XJ, Liu GS, Huang XW, Yan X, Ning X, Russell SJ, Long YZ. Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids Surf B Biointerfaces 2020; 188:110766. [DOI: 10.1016/j.colsurfb.2019.110766] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
|
12
|
Sun X, Pan C, Ying Z, Yu D, Duan X, Huang F, Ling J, Ouyang XK. Stabilization of zein nanoparticles with k-carrageenan and tween 80 for encapsulation of curcumin. Int J Biol Macromol 2020; 146:549-559. [DOI: 10.1016/j.ijbiomac.2020.01.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
13
|
Pushpa Sweety J, Sowparani S, Mahalakshmi P, Selvasudha N, Yamini D, Geetha K, Ruckmani K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148:1084-1097. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
In recent years, electrospun fibers have found wide use, especially in pharmaceutical area and biomedical applications, related to the various advantages such as high surface-volume ratio, high solubility and having wide usage areas they have provided. Biocompatible and biodegradable fibers can be obtained by using peptide-protein structures of plant and animal derived along with synthetic polymers. Plant-derived proteins used in nanofiber production can be listed as, zein, soy protein, and gluten and animal derived proteins can be listed as casein, silk fibroin, hemoglobine, bovine serum albumin, elastin, collagen, gelatin, and keratin. Plant and animal proteins and synthetic peptides used in electrospun fiber production were reviewed in detail. In addition, the important physical properties of these materials for the electrospinning process and their use in pharmaceutical and biomedical areas were discussed.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Adnan Altuğ Kara
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
15
|
Wang M, Wang K, Yang Y, Liu Y, Yu DG. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: A Review. Polymers (Basel) 2020; 12:E103. [PMID: 31947986 PMCID: PMC7022330 DOI: 10.3390/polym12010103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning, as a promising platform in multidisciplinary engineering over the past two decades, has overcome major challenges and has achieved remarkable breakthroughs in a wide variety of fields such as energy, environmental, and pharmaceutics. However, as a facile and cost-effective approach, its capability of creating nanofibers is still strongly limited by the numbers of treatable fluids. Most recently, more and more efforts have been spent on the treatments of liquids without electrospinnability using multifluid working processes. These unspinnable liquids, although have no electrospinnability themselves, can be converted into nanofibers when they are electrospun with an electrospinnable fluid. Among all sorts of multifluid electrospinning methods, coaxial electrospinning is the most fundamental one. In this review, the principle of modified coaxial electrospinning, in which unspinnable liquids are explored as the sheath working fluids, is introduced. Meanwhile, several typical examples are summarized, in which electrospun nanofibers aimed for the environment remediation were prepared using the modified coaxial electrospinning. Based on the exploration of unspinnable liquids, the present review opens a way for generating complex functional nanostructures from other kinds of multifluid electrospinning methods.
Collapse
Affiliation(s)
| | - Ke Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.W.); (Y.Y.); (Y.L.)
| |
Collapse
|
16
|
Compression-Responsive Photonic Crystals Based on Fluorine-Containing Polymers. Polymers (Basel) 2019; 11:polym11122114. [PMID: 31888273 PMCID: PMC6960798 DOI: 10.3390/polym11122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
Fluoropolymers represent a unique class of functional polymers due to their various interesting and important properties such as thermal stability, resistance toward chemicals, repellent behaviors, and their low refractive indices in comparison to other polymeric materials. Based on the latter optical property, fluoropolymers are particularly of interest for the preparation of photonic crystals for optical sensing application. Within the present study, photonic crystals were prepared based on core-interlayer-shell particles focusing on fluoropolymers. For particle assembly, the melt-shear organization technique was applied. The high order and refractive index contrast of the individual components of the colloidal crystal structure lead to remarkable reflection colors according to Bragg’s law of diffraction. Due to the special architecture of the particles, consisting of a soft core, a comparably hard interlayer, and again a soft shell, the resulting opal films were capable of changing their shape and domain sizes upon applied pressure, which was accompanied with a (reversible) change of the observed reflection colors as well. By the incorporation of adjustable amounts of UV cross-linking agents into the opal film and subsequent treatment with different UV irradiation times, stable and pressure-sensitive opal films were obtained. It is shown that the present strategy led to (i) pressure-sensitive opal films featuring reversibly switchable reflection colors and (ii) that opal films can be prepared, for which the written pattern—resulting from the compressed particles—could be fixed upon subsequent irradiation with UV light. The herein described novel fluoropolymer-containing photonic crystals, with their pressure-tunable reflection color, are promising candidates in the field of sensing devices and as potential candidates for anti-counterfeiting materials.
Collapse
|
17
|
Li P, Jia H, Zhang S, Yang Y, Sun H, Wang H, Pan W, Yin F, Yang X. Thermal Extrusion 3D Printing for the Fabrication of Puerarin Immediate-Release Tablets. AAPS PharmSciTech 2019; 21:20. [PMID: 31820224 DOI: 10.1208/s12249-019-1538-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Thermal extrusion (TE) 3D printing is a thermoplastic semisolid-based rapid prototyping process, which is capable of building complex structures. The aim of this study was to manufacture rapid-release puerarin tablets without solvent through TE 3D printing. Novel rapid-release tablets were fabricated with polyethylene glycol (PEG 4000) as the carrier at appropriate puerarin/PEG 4000 ratios, assessed through differential scanning calorimetry (DSC), solubility, and dissolution tests. The novel structures of 3D-printed tablets with five different values were formed by printing paths, which established a flexible way of adjusting in vitro drug release. An obvious acceleration (85% of cumulative release about 7.5 min at the soonest) was observed for the tablets with internal structural design. It was inferred that puerarin formed simple eutectic mixtures with PEG 4000 and that puerarin dispersed into the carrier based on DSC and X-Ray powder diffraction (XRD). This highlights the combined advantage of PEG as a soluble polymer with TE 3D printing and provides a suitable system for rapid puerarin release.
Collapse
|
18
|
Yu D, Wang M, Li X, Liu X, Zhu L, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1601. [DOI: 10.1002/wnan.1601] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Deng‐Guang Yu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Menglong Wang
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xiaoyan Li
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xinkuan Liu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Li‐Min Zhu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Sim Wan Annie Bligh
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| |
Collapse
|
19
|
Yang Y, Zhu T, Liu Z, Luo M, Yu DG, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019; 569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
|
20
|
Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F, Juárez J, Ruiz-Cruz S, López-Ahumada GA, Carvajal-Millan E, Castro-Enríquez DD, Barreras-Urbina CG, Tapia-Hernández JA. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability. J Food Sci 2019; 84:2883-2897. [PMID: 31553062 DOI: 10.1111/1750-3841.14803] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.
Collapse
Affiliation(s)
- Francisco Rodríguez-Félix
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Francisco Javier Cinco-Moroyoqui
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Josué Juárez
- Dept. of Physics, Univ. of Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Saúl Ruiz-Cruz
- Dept. of Biotechnology and Food Science, Inst. Technology of Sonora, 5 de febrero #818 sur, Colonia Centro, 85000, Ciudad Obregón, Sonora, Mexico
| | - Guadalupe Amanda López-Ahumada
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development A.C., Carretera a La Victoria KM 0.6, 83304, Hermosillo, Sonora, México
| | - Daniela Denisse Castro-Enríquez
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Carlos Gregorio Barreras-Urbina
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - José Agustín Tapia-Hernández
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
21
|
Liu Z, Ju K, Wang Z, Li W, Ke H, He J. Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. NANOSCALE RESEARCH LETTERS 2019; 14:310. [PMID: 31511987 PMCID: PMC6738367 DOI: 10.1186/s11671-019-3148-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 05/12/2023]
Abstract
Electrical voltage has a crucial effect on the nanofiber morphology as well as the jet number in the electrospinning process, while few literatures were found to explain the deep mechanism. Herein, the electrical field distribution around the spinning electrode was studied by the numerical simulation firstly. The results show that the electrical field concentrates on the tip of a protruding droplet under relatively low voltage, while subsequently turns to the edge of needle tip when the protruding droplet disappears under high voltage. The experimental results are well consistent with the numerically simulated results, that is, only one jet forms at low voltage (below 20 kV for PVDF-HFP and PVA nanofiber), but more than one jet forms under high voltage (two jets for PVDF-HFP nanofiber, four jets for PVA nanofiber). These more jets lead to (1) higher fiber diameter resulting from actually weaker electrical field for each jet and (2) wide distribution of fiber diameters due to unstable spinning process (changeable jet number/site/height) under high voltage. The results will benefit the nanofiber preparation and application in traditional single-needle electrospinning and other electrospinning methods.
Collapse
Affiliation(s)
- Zhi Liu
- Key Laboratory of Textile Fabrics, School of Textile and Garment, Anhui Polytechnic University, No. 8, Beijing Mid-Road, Wuhu, 241000, China.
| | - Kaiyi Ju
- Key Laboratory of Textile Fabrics, School of Textile and Garment, Anhui Polytechnic University, No. 8, Beijing Mid-Road, Wuhu, 241000, China
| | - Zongqian Wang
- Key Laboratory of Textile Fabrics, School of Textile and Garment, Anhui Polytechnic University, No. 8, Beijing Mid-Road, Wuhu, 241000, China
| | - Wei Li
- Key Laboratory of Textile Fabrics, School of Textile and Garment, Anhui Polytechnic University, No. 8, Beijing Mid-Road, Wuhu, 241000, China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, No. 1, Wenxian-Road, Fuzhou, 350108, China.
| | - Jihuan He
- National Engineering Laboratory for Modern Silk, School of Textile and Clothing Engineering, Soochow University, No. 199, Ren-Ai Road, Suzhou, 215123, China
| |
Collapse
|
22
|
Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019; 11:E1287. [PMID: 31374977 PMCID: PMC6723308 DOI: 10.3390/polym11081287] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
The accurate prediction and manipulation of nanoscale product sizes is a major challenge in material processing. In this investigation, two process characteristics were explored during the modified coaxial electrospinning of zein, with the aim of understanding how this impacts the products formed. The characteristics studied were the spreading angle at the unstable region (θ) and the length of the straight fluid jet (L). An electrospinnable zein core solution was prepared and processed with a sheath comprising ethanolic solutions of LiCl. The width of the zein nanoribbons formed (W) was found to be more closely correlated with the spreading angle and straight fluid jet length than with the experimental parameters (the electrolyte concentrations and conductivity of the shell fluids). Linear equations W = 546.44L - 666.04 and W = 2255.3θ - 22.7 could be developed with correlation coefficients of Rwl2 = 0.9845 and Rwθ2 = 0.9924, respectively. These highly linear relationships reveal that the process characteristics can be very useful tools for both predicting the quality of the electrospun products, and manipulating their sizes for functional applications. This arises because any changes in the experimental parameters would have an influence on both the process characteristics and the solid products' properties.
Collapse
Affiliation(s)
- Menglong Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Tao Hai
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Zhangbin Feng
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Sw Annie Bligh
- Caritas Institute of Higher Education, 2 Chui Ling Lane, Tseung Kwan O, New Territories, Hong Kong 999077, China.
| |
Collapse
|
23
|
Pant B, Park M, Park SJ. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019; 11:E305. [PMID: 31266186 PMCID: PMC6680404 DOI: 10.3390/pharmaceutics11070305] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Electrospinning has emerged as one of the potential techniques for producing nanofibers. The use of electrospun nanofibers in drug delivery has increased rapidly over recent years due to their valuable properties, which include a large surface area, high porosity, small pore size, superior mechanical properties, and ease of surface modification. A drug loaded nanofiber membrane can be prepared via electrospinning using a model drug and polymer solution; however, the release of the drug from the nanofiber membrane in a safe and controlled way is challenging as a result of the initial burst release. Employing a core-sheath design provides a promising solution for controlling the initial burst release. Numerous studies have reported on the preparation of core-sheath nanofibers by coaxial electrospinning for drug delivery applications. This paper summarizes the physical phenomena, the effects of various parameters in coaxial electrospinning, and the usefulness of core-sheath nanofibers in drug delivery. Furthermore, this report also highlights the future challenges involved in utilizing core-sheath nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
| | - Mira Park
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|
24
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|
25
|
Kalantary S, Jahani A, Pourbabaki R, Beigzadeh Z. Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC Adv 2019; 9:24858-24874. [PMID: 35528697 PMCID: PMC9069871 DOI: 10.1039/c9ra04927d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Prediction of the diameter of a nanofiber is very difficult, owing to complexity of the interactions of the parameters which have an impact on the diameter and the fact that there is no comprehensive method to predict the diameter of a nanofiber. Therefore, the aim of this study was to compare the multi-layer perceptron (MLP), radial basis function (RBF), and support vector machine (SVM) models to develop mathematical models for the diameter prediction of poly(ε-caprolactone) (PCL)/gelatin (Gt) nanofibers. Four parameters, namely, the weight ratio, applied voltage, injection rate, and distance, were considered as input data. Then, a prediction of the diameter for the nanofiber model (PDNFM) was developed using data mining techniques such as MLP, RBFNN, and SVM. The PDNFMMLP is introduced as the most accurate model to predict the diameter of PCL/Gt nanofibers on the basis of costs and time-saving. According to the results of the sensitivity analysis, the value of the PCL/Gt weight ratio is the most significant input which influences PDNFMMLP in PCL/Gt electrospinning. Therefore, the PDNFM model, using a decision support system (DSS) tool can easily predict the diameter of PCL/Gt nanofibers prior to electrospinning. A new tool for prediction the diameter of nanofibers is presented: the use of adaptive modeling techniques to predict fiber diameter and study the impact of electrospinning process parameters on electrospinning fiber diameter.![]()
Collapse
Affiliation(s)
- Saba Kalantary
- Department of Occupational Health Engineering
- School of Public Health
- Tehran University of Medical Sciences
- Tehran 1416753955
- Iran
| | - Ali Jahani
- Department of Natural Environment and Biodiversity
- Faculty of Environment
- College of Environment
- Karaj 31746118
- Iran
| | - Reza Pourbabaki
- Department of Occupational Health Engineering
- School of Public Health
- Tehran University of Medical Sciences
- Tehran 1416753955
- Iran
| | - Zahra Beigzadeh
- Environmental Health Engineering Research Center
- Kerman University of Medical Sciences
- Kerman 7616913555
- Iran
| |
Collapse
|