1
|
Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-Based Drug Delivery Systems for Therapeutic Applications in Osteoporosis. Adv Biol (Weinh) 2025:e2400721. [PMID: 40195930 DOI: 10.1002/adbi.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The etiology of osteoporosis is rooted in the disruption of the intricate equilibrium between bone formation and bone resorption processes. Nevertheless, the conventional anti-osteoporotic medications and hormonal therapeutic regimens currently employed in clinical practice are associated with a multitude of adverse effects, thereby constraining their overall therapeutic efficacy and potential. Recently, nanomaterials have emerged as a promising alternative due to their minimal side effects, efficient drug delivery, and ability to enhance bone formation, aiding in restoring bone balance. This review delves into the fundamental principles of bone remodeling and the bone microenvironment, as well as current clinical treatment approaches for osteoporosis. It subsequently explores the research status of nanomaterial-based drug delivery systems for osteoporosis treatment, encompassing inorganic nanomaterials, organic nanomaterials, cell-mimicking carriers and exosomes mimics and emerging therapies targeting the osteoporosis microenvironment. Finally, the review discusses the potential of nanomedicine in treating osteoporosis and outlines the future trajectory of this burgeoning field. The aim is to provide a comprehensive reference for the application of nanomaterial-based drug delivery strategies in osteoporosis therapy, thereby fostering further advancements and innovations in this critical area of medical research.
Collapse
Affiliation(s)
- Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuling Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Meng Tian
- Hebei Tourism College, Hebei, Chengde, 067000, P. R. China
| | - Mengge Xue
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
2
|
Dey S, Kumari P, Samal PP, Rao VS, Dey B. Engineered mesoporous silica: a robust solution for inorganic and organic pollutant removal from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:462. [PMID: 40131560 DOI: 10.1007/s10661-025-13854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
This review explores the multifaceted role of functionalized mesoporous silica in removing both inorganic and organic pollutants from various environmental matrices. The growing interest in mesoporous silica for pollution remediation was examined. The synthesis and analysis of organosilica materials with mesoporous structures were discussed, highlighting their unique properties and potential applications. The review explains the mechanisms behind the adsorption of inorganic contaminants like heavy metals. It highlights the interaction of mercury (Hg(II)) with thiol-functionalized mesoporous silica and the effectiveness of amino, poly-amino groups, advanced ligands, and bi-functionalized adsorbents. It also discusses the selectivity and functionality of these materials, focusing on their ability to target specific pollutants and reduce environmental harm. Furthermore, the review addresses the crucial aspect of regeneration and reuse of absorbent materials, enhancing the sustainability of pollution remediation processes. In addition to inorganic pollutants, the review examines the adsorption of hazardous organic species by pristine and uncalcined mesoporous silica, as well as aluminum-containing mesoporous silica. The incorporation of cyclodextrins into mesoporous silica matrices is explored as a strategy to enhance the adsorption capacity of organic compounds. Oxyanions and radionuclides are also considered, underscoring the versatility of mesoporous silica-based adsorbents in addressing a wide range of environmental contaminants. This review provides insights into the potential of enhanced mesoporous silica as a versatile and efficient solution for the removal of both inorganic and organic pollutants, paving the way for sustainable environmental remediation strategies.
Collapse
Affiliation(s)
- Soumen Dey
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India.
| | - Pooja Kumari
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Priyanka Priyadarsini Samal
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Vullakula Srinivas Rao
- Environment Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Sakchi, Jamshedpur, 831001, India
| |
Collapse
|
3
|
Li J, Gao Z, Li N, Yao L, Liu C, Xu C, Ren X, Wang A, Gao S, Wang M, Gao X, Li K, Wang J. Evaluation of the Ocular Safety of Hollow Mesoporous Organosilica Nanoparticles with Different Tetrasulfur Bond Content. Int J Nanomedicine 2024; 19:7123-7136. [PMID: 39055375 PMCID: PMC11269456 DOI: 10.2147/ijn.s464524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Drug therapy for eye diseases has been limited by multiple protective mechanisms of the eye, which can be improved using well-designed drug delivery systems. Mesoporous silica nanoparticles (MSNs) had been used in many studies as carriers of therapeutic agents for ocular diseases treatment. However, no studies have focused on ocular biosafety. Considering that MSNs containing tetrasulfur bonds have unique advantages and have drawn increasing attention in drug delivery systems, it is necessary to explore the ocular biosafety of tetrasulfur bonds before their widespread application as ophthalmic drug carriers. Methods In this study, hollow mesoporous silica nanoparticles (HMSNs) with different tetrasulfur bond contents were prepared and characterized. The ocular biosafety of HMSN-E was evaluated in vitro on the three selected ocular cell lines, including corneal epithelial cells, lens epithelial cells and retinal endothelial cells (HREC), and in vivo by using topical eye drops and intravitreal injections. Results In cellular experiments, HMSNs caused obvious S content-dependent cytotoxic effect. HMSNs with the highest tetrasulfur bond content (HMSN-E), showed the highest cytotoxicity among all the HMSNs, and HREC was the most vulnerable cell to HMSN-E. It was shown that HMSN-E could react with intracellular GSH to generate H2S and decrease intracellular GSH concentration. Treatment of HREC with HMSN-E increased intracellular ROS, decreased mitochondrial membrane potential, and induced cell cycle arrest at the G1/S checkpoint, finally caused apoptosis and necrosis of HREC. Topical eye drops of HMSN-E could cause corneal damage. The intravitreal injection of HMSN-E could induce inflammation in the vitreum and ganglion cell layers, resulting in vitreous opacities and retinal abnormalities. Conclusion The incorporation of tetrasulfur bonds into HMSN can have toxic effects on ocular tissues. Therefore, when mesoporous silica nanocarriers are designed for ophthalmic pharmaceuticals, the ocular toxicity of the tetrasulfur bonds should be considered.
Collapse
Affiliation(s)
- Juan Li
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ziqing Gao
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ning Li
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ling Yao
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Chao Liu
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Che Xu
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xiaohui Ren
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Aiqin Wang
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Siqi Gao
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Miao Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xiang Gao
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Kun Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People’s Republic of China
| | - Jianfeng Wang
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
4
|
Mao J, Bi J, Sun Z, Wang L. MgSiO 3 Fiber Membrane Scaffold with Triggered Drug Delivery for Osteosarcoma Synergetic Therapy and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34669-34683. [PMID: 38946103 DOI: 10.1021/acsami.4c05744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this research, a novel MgSiO3 fiber membrane (MSFM) loaded with indocyanine green (ICG) and doxorubicin (DOX) was prepared. Because of MgSiO3's unique lamellar structure composed of a silicon-oxygen tetrahedron, magnesium ion (Mg2+) moves easily and can be further replaced with other cations. Therefore, because of the positively charged functional group of ICG, MSFM has a rather high drug loading for ICG. In addition, there is electrostatic attraction between DOX (a cationic drug) and ICG (an anionic drug). Hence, after loading ICG, more DOX can be adsorbed into MSFM because of electrostatic interaction. The ICG endows the MSFM outstanding photothermal therapy (PTT) performance, and DOX as a chemotherapeutic drug can restrain tumor growth. On the one hand, H+ exchanged with the positively charged DOX based on the MgSiO3 special lamellar structure. On the other hand, the thermal effect could break the electrostatic interaction between ICG and DOX. Based on the above two points, both tumor acidic microenvironment and photothermal effect can trigger DOX release. What's more, in vitro and in vivo antiosteosarcoma therapy evaluations displayed a superior synergetic PTT-chemotherapy anticancer treatment and excellent biocompatibility of DOX&ICG-MSFM. Finally, the MSFM was proven to greatly promote cell proliferation, differentiation, and bone regeneration performance in vitro and in vivo. Therefore, MSFM provides a creative perspective in the design of multifunctional scaffolds and shows promising applications in controlled drug delivery, antitumor performance, and osteogenesis.
Collapse
Affiliation(s)
- Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P. R. China
- The First Clinical Medical School, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
5
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
6
|
Klara J, Onak S, Kowalczyk A, Wójcik K, Lewandowska-Łańcucka J. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int J Biol Macromol 2024; 271:132675. [PMID: 38845259 DOI: 10.1016/j.ijbiomac.2024.132675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
7
|
Sil M, Mukherjee D, Goswami A, Nag M, Lahiri D, Bhattacharya D. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3617-3633. [PMID: 38051365 DOI: 10.1007/s00210-023-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.
Collapse
Affiliation(s)
- Moumita Sil
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Dipro Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India.
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering and Management, Kolkata, India
| |
Collapse
|
8
|
Wu MY, Kuo YT, Kao IF, Yen SK. Porous Chitosan/Hydroxyapatite Composite Microspheres for Vancomycin Loading and Releasing. Pharmaceutics 2024; 16:730. [PMID: 38931852 PMCID: PMC11206644 DOI: 10.3390/pharmaceutics16060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Porous chitosan/hydroxyapatite (Chi-HAp) composite microspheres were prepared in an aqueous solution containing chitosan, calcium nitrate, and ammonium dihydrogen phosphate by using a hydrothermal method at various temperatures. The investigation indicated that temperature significantly impacted the final product's appearance. Hydroxyapatite (HAp) coupled with dicalcium phosphate dihydrate (DCPD) flakes were obviously found at 65 and 70 °C, while the latter gradually disappeared at higher temperatures. Conversely, synthesis at 90 °C led to smaller particle sizes due to the broken chitosan chains. The microspheres synthesized at 75 °C were selected for further analysis, revealing porous structures with specific surface areas of 36.66 m2/g, pores ranging from 3 to 100 nm, and pore volumes of 0.58 cm3/g. Vancomycin (VCM), an antibiotic, was then absorbed on and released from the microspheres derived at 75 °C, with a drug entrapment efficiency of 20% and a release duration exceeding 20 days. The bacteriostatic activity of the VCM/composite microspheres against Staphylococcus aureus increased with the VCM concentration and immersion time, revealing a stable inhibition zone diameter of approximately 4.3 mm from 24 to 96 h, and this indicated the retained stability and efficacy of the VCM during the encapsulating process.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
- Department of Orthopedics, National Defense Medical Center, Taipei 114, Taiwan
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Yi-Ting Kuo
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| |
Collapse
|
9
|
Gupta A, Choudhury AM, Meena J, Bauri S, Maiti P. Ordered Mesoporous Silica Delivering siRNA as Cancer Nanotherapeutics: A Comprehensive Review. ACS Biomater Sci Eng 2024; 10:2636-2658. [PMID: 38606473 DOI: 10.1021/acsbiomaterials.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nanosized mesoporous silica has emerged as a promising flexible platform delivering siRNA for cancer treatment. This ordered mesoporous nanosized silica provides attractive features of well-defined and tunable porosity, structure, high payload, and multiple functionalizations for targeted delivery and increasing biocompatibility over other polymeric nanocarriers. Moreover, it also overcomes the lacunae associated with traditional administration of drugs. Chemically modified porous silica matrix efficiently entraps siRNA molecules and prevents their enzymatic degradation and premature release. This Review discusses the synthesis of silica using the sol-gel approach and the advantages with different silica mesostructure. Herein, the factors affecting the synthesis of silica at nanometer scale, shape, porosity and nanoparticle surface modification are also highlighted to attain the desired nanostructured silica carriers. Additional emphasis is given to chemically modified silica delivering siRNA, where the silica nanoparticle surface was modified with different chemical moieties such as amine modified with (3-aminoropyl) triethoxysilane, polyethylenimine, chitosan, poly(ethylene glycol), and cyclodextrin polymer modification to attain high therapeutic loading, improved dispersibility and biocompatibility. Upon systemic administration, ordered mesoporous nanosized silica encounters blood cells, immune cells, and organs mainly of the reticuloendothelial system (RES). Thereby, biocompatibility and biodistribution of silica based nanocarriers are deliberated to design principles for smart and efficacious nanostructured silica-siRNA carriers and their clinical trial status. This Review further reports the future scopes and challenges for developing silica nanomaterial as a promising siRNA delivery vehicle demanding FDA approval.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jairam Meena
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
10
|
Li Y, Stewart CA, Finer Y. Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review. Dent J (Basel) 2024; 12:125. [PMID: 38786523 PMCID: PMC11120417 DOI: 10.3390/dj12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure.
Collapse
Affiliation(s)
- Yihan Li
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| |
Collapse
|
11
|
Florczyk A, Krajcer A, Wójcik K, Lewandowska-Łańcucka J. Innovative Vancomycin-Loaded Hydrogel-Based Systems - New Opportunities for the Antibiotic Therapy. Int J Nanomedicine 2024; 19:3991-4005. [PMID: 38720939 PMCID: PMC11078026 DOI: 10.2147/ijn.s443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.
Collapse
Affiliation(s)
- Aleksandra Florczyk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Kinga Wójcik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
12
|
Kalash A, Tsamesidis I, Pouroutzidou GK, Kontonasaki E, Gkiliopoulos D, Arhakis A, Arapostathis KN, Theocharidou A. Effect of Modified Bioceramic Mineral Trioxide Aggregate Cement with Mesoporous Nanoparticles on Human Gingival Fibroblasts. Curr Issues Mol Biol 2024; 46:3005-3021. [PMID: 38666918 PMCID: PMC11048828 DOI: 10.3390/cimb46040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies with high success rates. The aim of this study was to investigate the effect of the modification of MTA with cerium (Ce)- or calcium (Ca)-doped MSNs on the biological behavior of human gingival fibroblasts (hGFs). MSNs were synthesized via sol-gel, doped with Ce and Ca ions, and mixed with MTA at three ratios each. Powder specimens were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Biocompatibility was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay following hGFs' incubation in serial dilutions of material eluates. Antioxidant status was evaluated using Cayman's antioxidant assay after incubating hGFs with material disc specimens, and cell attachment following dehydration fixation was observed through SEM. Material characterization confirmed the presence of mesoporous structures. Biological behavior and antioxidant capacity were enhanced in all cases with a statistically significant increase in CeMTA 50.50. The application of modified MTA with cerium-doped MSNs offers a promising strategy for vital pulp therapies.
Collapse
Affiliation(s)
- Alexandra Kalash
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Ioannis Tsamesidis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Georgia K. Pouroutzidou
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Eleana Kontonasaki
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Aristidis Arhakis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Konstantinos N. Arapostathis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Anna Theocharidou
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| |
Collapse
|
13
|
Wang Y, Liu J, Shi J, Zhou X, Tan Y, Dai Z, Zhen D, Li L. Colorimetric sensing for the sensitive detection of UO 22+via the phosphorylation functionalized mesoporous silica-based controlled release system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:837-845. [PMID: 38230997 DOI: 10.1039/d3ay01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 μM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.
Collapse
Affiliation(s)
- Yating Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jiao Shi
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Xiayu Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low-Grade Uranium Resources, University of South China, Hengyang 421001, People's Republic of China
| | - Deshuai Zhen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
14
|
Colilla M, Vallet-Regí M. Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8788-8805. [PMID: 38027542 PMCID: PMC10653088 DOI: 10.1021/acs.chemmater.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
15
|
de Moraes R, Plepis AMDG, Martins VDCA, Garcia CF, Galdeano EA, Maia FLM, Machado EG, Munhoz MDAES, Buchaim DV, Fernandes VAR, Beraldo RA, Buchaim RL, da Cunha MR. Viability of Collagen Matrix Grafts Associated with Nanohydroxyapatite and Elastin in Bone Repair in the Experimental Condition of Ovariectomy. Int J Mol Sci 2023; 24:15727. [PMID: 37958710 PMCID: PMC10649653 DOI: 10.3390/ijms242115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Collapse
Affiliation(s)
- Renato de Moraes
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil;
| | | | - Claudio Fernandes Garcia
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ewerton Alexandre Galdeano
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rodrigo Alves Beraldo
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| |
Collapse
|
16
|
Skwira A, Szewczyk A, Barros J, Laranjeira M, Monteiro FJ, Sądej R, Prokopowicz M. Biocompatible antibiotic-loaded mesoporous silica/bioglass/collagen-based scaffolds as bone drug delivery systems. Int J Pharm 2023; 645:123408. [PMID: 37703959 DOI: 10.1016/j.ijpharm.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Local delivery of antibiotics has gained increasing interest in the treatment of osteomyelitis due to its effectiveness and safety. Since the regeneration of bone tissue at the site of infection is as important as bacterial eradication, implantable drug delivery systems should not only release the drugs in a proper manner but also exert the osseointegration capability. Herein, we present an implantable drug delivery system in a scaffold form with a unique set of features for local treatment of osteomyelitis. For the first time, collagen type I, ciprofloxacin-loaded mesoporous silica, and bioglass were combined to obtain scaffolds using the molding method. Drug-loaded mesoporous silica was blended with polydimethylsiloxane to prolong the drug release, whereas bioglass served as a remineralization agent. Collagen-silica scaffolds were evaluated in terms of physicochemical properties, drug release rate, mineralization potential, osteoblast response in vitro, antimicrobial activity, and biological properties using an in vivo preclinical model - chick embryo chorioallantoic membrane (CAM). The desirable multifunctionality of the proposed collagen-silica scaffolds was confirmed. They released the ciprofloxacin for 80 days, prevented biofilm development, and induced hydroxyapatite formation. Moreover, the resulting macroporous structure of the scaffolds promoted osteoblast attachment, infiltration, and proliferation. Collagen-silica scaffolds were also biocompatible and effectively integrated with CAM.
Collapse
Affiliation(s)
- Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Joana Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Marta Laranjeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
17
|
THIRUMALAI A, ELBOUGHDIRI N, HARINI K, GIRIGOSWAMI K, GIRIGOSWAMI A. Phosphorus-carrying cascade molecules: inner architecture to biomedical applications. Turk J Chem 2023; 47:667-688. [PMID: 38174062 PMCID: PMC10760543 DOI: 10.55730/1300-0527.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/25/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Cascade molecules are nearly uniform-sized macromolecules of small molecules or linear polymer cores built around symmetric branching units. A wide range of biological properties can be achieved with phosphorus-containing dendrimers, depending on their terminal functions, ranging from biomaterials to imaging, drug delivery, and acting as a drug by themselves. This feature article presents significant examples of phosphorus-containing dendrimers used to develop biochips, support cell cultures, carry or deliver biomacromolecules and drugs, bioimaging, and combinational benefits. Because of the thermal stability, ferrocene function, and physical and chemical properties of phosphorus, dendrimers show greater rigidity, mobility, and strength. These dendrimers will be discussed as having a favorable effect on cell growths, especially on neuronal cells, as well as human immune cells like natural killer cells and monocytes, which have a crucial part in preventing cancerous and viral infections. Several phosphorus dendrimers are effective as drugs by themselves (drug per se) and show their activity against neurodegenerative diseases, cancer, inflammation, ocular hypertension, and transmissible spongiform encephalopathies (TSEs) in both in vivo and in vitro. The present review discusses the synthetic route, fabrications, and biomedical applications of phosphorus-containing dendrimers. The toxicity of these dendrimers was also reported.
Collapse
Affiliation(s)
- Anbazhagan THIRUMALAI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Noureddine ELBOUGHDIRI
- Department of Chemical Engineering, College of Engineering, University of Hail, Hail,
Saudi Arabia
- Department of Chemical Engineering Process, National School of Engineers Gabes, University of Gabes, Gabes,
Tunisia
| | - Karthick HARINI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Koyeli GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Agnishwar GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| |
Collapse
|
18
|
Ismail A, Sial N, Rehman R, Abid S, Ismail MS. Survival, growth, behavior, hematology and serum biochemistry of mice under different concentrations of orally administered amorphous silica nanoparticle. Toxicol Rep 2023; 10:659-668. [PMID: 37274627 PMCID: PMC10238806 DOI: 10.1016/j.toxrep.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023] Open
Abstract
Silica nanoparticles (SiNPs) are used extensively in consumer products and biomedical research basically due to ease of production and low cost. However, insufficient literature is reported regarding the toxicity and biocompatibility of SiNPs. The present study aimed to investigate the potential role of amorphous SiNPs on survival, growth, behavioral alterations, hematology and serum biochemistry of mice at four concentrations (control, 50, 100 and 150 mg/kg/day) of an oral supplementation for a period of 3 months. Signs of toxicity (lethargy, nausea, coma, tremors, vomiting and diarrhea, etc.) were noted at 9:00 am and 9:00 pm (twice a day) and the body weight of each of these mice was measured every week. The data were subjected to mean, standard deviation (S.D). Moreover, One-Way Analysis of Variance (ANOVA) and Dunnett's test were applied for analysis of statistical significance between groups by using SPSS software, version 20. All the mice survived with minor alterations in behavior and no significant weight changes were observed during the stipulated time period. Complete blood count (CBC) analysis indicated non-significant (P ≥ 0.05) systemic dysfunctions of organ systems. However, there was elevation in the level of AST and ALT in the analysis of serum biochemistry, while the values of all other examined parameters were not-significant (P ≥ 0.05). The study concluded that orally administered large silica nanoparticles up to the dose level of 150 mg/kg/day are nontoxic for the in vivo use in mice.
Collapse
Affiliation(s)
- Amna Ismail
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Nuzhat Sial
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Rakhshanda Rehman
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Sobia Abid
- Department of Zoology, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Shoaib Ismail
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| |
Collapse
|
19
|
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0089. [PMID: 36996343 PMCID: PMC10042443 DOI: 10.34133/research.0089] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Rapid and effective repair of injured or diseased bone defects remains a major challenge due to shortages of implants. Smart hydrogels that respond to internal and external stimuli to achieve therapeutic actions in a spatially and temporally controlled manner have recently attracted much attention for bone therapy and regeneration. These hydrogels can be modified by introducing responsive moieties or embedding nanoparticles to increase their capacity for bone repair. Under specific stimuli, smart hydrogels can achieve variable, programmable, and controllable changes on demand to modulate the microenvironment for promoting bone healing. In this review, we highlight the advantages of smart hydrogels and summarize their materials, gelation methods, and properties. Then, we overview the recent advances in developing hydrogels that respond to biochemical signals, electromagnetic energy, and physical stimuli, including single, dual, and multiple types of stimuli, to enable physiological and pathological bone repair by modulating the microenvironment. Then, we discuss the current challenges and future perspectives regarding the clinical translation of smart hydrogels.
Collapse
Affiliation(s)
- Weikai Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Qirong Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- Department of Orthopedics Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an 710000, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards Controlling the Local Bone Tissue Remodeling-Multifunctional Injectable Composites for Osteoporosis Treatment. Int J Mol Sci 2023; 24:ijms24054959. [PMID: 36902390 PMCID: PMC10002562 DOI: 10.3390/ijms24054959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate for osteoporosis therapy. However, its administration is associated with serious side effects. Therefore, the drug delivery systems (DDS) enabling local administration and localized action of that drug are still of great importance. Herein, a novel multifunctional DDS system based on the hydroxyapatite-decorated mesoporous silica particles (MSP-NH2-HAp-ALN) embedded into collagen/chitosan/chondroitin sulfate hydrogel for simultaneous osteoporosis treatment and bone regeneration is proposed. In such a system, the hydrogel serves as a carrier for the controlled delivery of ALN at the site of implantation, thus limiting potential adverse effects. The involvement of MSP-NH2-HAp-ALN in the crosslinking process was established, as well as the ability of hybrids to be used as injectable systems. We have shown that the attachment of MSP-NH2-HAp-ALN to the polymeric matrix provides a prolonged ALN release (up to 20 days) and minimizes the initial burst effect. It was revealed that obtained composites are effective osteoconductive materials capable of supporting the osteoblast-like cell (MG-63) functions and inhibiting osteoclast-like cell (J7741.A) proliferation in vitro. The purposely selected biomimetic composition of these materials (biopolymer hydrogel enriched with the mineral phase) allows their biointegration (in vitro study in the simulated body fluid) and delivers the desired physicochemical features (mechanical, wettability, swellability). Furthermore, the antibacterial activity of the composites in in vitro experiments was also demonstrated.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
21
|
Suriya R, Lekshmi G, Anirudhan T. Hyaluronic Acid-Targeted Protein Capped AMSN for Inhibiting Tumour Growth and Side Effects by the Controlled Release of Curcumin and Doxorubicin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Jiménez-Jiménez C, Moreno-Borrallo A, Dumontel B, Manzano M, Vallet-Regí M. Biomimetic camouflaged nanoparticles with selective cellular internalization and migration competences. Acta Biomater 2023; 157:395-407. [PMID: 36476646 DOI: 10.1016/j.actbio.2022.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In the last few years, nanotechnology has revolutionized the potential treatment of different diseases. However, the use of nanoparticles for drug delivery might be limited by their immune clearance, poor biocompatibility and systemic immunotoxicity. Hypotheses for overcoming rejection from the body and increasing their biocompatibility include coating nanoparticles with cell membranes. Additionally, source cell-specific targeting has been reported when coating nanoparticles with tumor cells membranes. Here we show that coating mesoporous silica nanoparticles with membranes derived from preosteoblastic cells could be employed to develop potential treatments of certain bone diseases. These nanoparticles were selected because of their well-established drug delivery features. On the other hand MC3T3-E1 cells were selected because of their systemic migration capabilities towards bone defects. The coating process was here optimized ensuring their drug loading and delivery features. More importantly, our results demonstrated how camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments. STATEMENT OF SIGNIFICANCE: This work presents a new nanoparticle formulation for drug delivery able to selectively target certain cells. This approach is based on Mesoporous Silica Nanoparticles coated with cell membranes to overcome the potential rejection from the body and increase their biocompatibility prolonging their circulation time. We have employed membranes derived from preosteoblastic cells for the potential treatment of certain bone diseases. Those cells have shown systemic migration capabilities towards bone defects. The coating process was optimized and their appropriate drug loading and releasing abilities were confirmed. The important novelty of this work is that the camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Almudena Moreno-Borrallo
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain
| | - Bianca Dumontel
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
23
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
24
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
25
|
Trzeciak K, Wielgus E, Kaźmierski S, Khalaji M, Dudek MK, Potrzebowski MJ. Unexpected Factors Affecting the Kinetics of Guest Molecule Release from Investigation of Binary Chemical Systems Trapped in a Single Void of Mesoporous Silica Particles. Chemphyschem 2022; 24:e202200884. [PMID: 36507917 DOI: 10.1002/cphc.202200884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
In this work, we present results for loading of well-defined binary systems (cocrystal, solid solution) and untreated materials (physical mixtures) into the voids of MCM-41 mesoporous silica particles employing three different filling methods. The applied techniques belong to the group of "wet methods" (diffusion supported loading - DiSupLo) and "solvent-free methods" (mechanical ball-mill loading - MeLo, thermal solvent free - TSF). As probes for testing the guest1-guest2 interactions inside the MCM-41 pores we employed the benzoic acid (BA), perfluorobenzoic acid (PFBA), and 4-fluorobenzoic acid (4-FBA). The guests intermolecular contacts and phase changes were monitored employing magic angle spinning (MAS) NMR Spectroscopy techniques and powder X-ray diffraction (PXRD). Since mesoporous silica materials are commonly used in drug delivery system research, special attention has been paid to factors affecting guest release kinetics. It has been proven that not only the content and composition of binary systems, but also the loading technique have a strong impact on the rate of guests release. Innovative methods of visualizing differences in release kinetics are presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Mehrnaz Khalaji
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| |
Collapse
|
26
|
Klara J, Lewandowska-Łańcucka J. How Efficient are Alendronate-Nano/Biomaterial Combinations for Anti-Osteoporosis Therapy? An Evidence-Based Review of the Literature. Int J Nanomedicine 2022; 17:6065-6094. [PMID: 36510618 PMCID: PMC9738991 DOI: 10.2147/ijn.s388430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because of the systemic nature of osteoporosis, the associated escalation in fracture risk affects virtually all skeletal sites. The problem is serious since it is estimated that more than 23 million men and women are at high risk of osteoporotic-like breakages in the European Union. Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate (BP) for the prevention and the therapy of osteoporosis. This is also one of the most intensely studied drugs in this field. However, ALN is characterized by restricted oral absorption and bioavailability and simultaneously its administration has serious side-effects (jaw osteonecrosis, irritation of the gastrointestinal system, nausea, musculoskeletal pain, and cardiovascular risks). Therefore, delivery systems enabling controlled release and local action of this drug are of great interest, being widely researched and presented in the literature. In this review, we discuss the current trends in the design of various types of alendronate carriers. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for ALN delivery, including nano/microformulations, synthetic/natural polymeric and inorganic materials, hydrogel-based materials, scaffolds, coated-like structures, as well as organic-inorganic hybrids. Topics related to the treatment of complex bone diseases including osteoporosis have been covered in several more general reviews; however, the systems for this particular drug have not yet been discussed in detail.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland
| | | |
Collapse
|
27
|
Aguilera-Correa JJ, Gisbert-Garzarán M, Mediero A, Fernández-Aceñero MJ, de-Pablo-Velasco D, Lozano D, Esteban J, Vallet-Regí M. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomater 2022; 154:608-625. [PMID: 36341887 DOI: 10.1016/j.actbio.2022.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Osteomyelitis is a hard-to-treat infection of the bone and bone marrow that is mainly caused by Staphylococcus aureus, with an increasing incidence of methicillin-resistant S. aureus (MRSA). Owing to the aggressiveness of these bacteria in colonizing and destroying the bone, systemic antibiotic treatments fail to eradicate the infection. Instead, it normally entails surgery to remove the dead or infected bone. In this work, we report bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis. The nanoparticles have been engineered with a functional gelatine/colistin coating able to hamper premature release from the mesopores while effectively disaggregating the bacterial biofilm. Because antibiotic resistance is a global emergency, we have designed two sets of identical nanoparticles, carrying each of them a clinically relevant antibiotic, that have demonstrated to have synergistic effect. The bone-targeted nanoparticles have been thoroughly evaluated in vitro and in vivo, obtaining a notable reduction of the amount of bacteria in the bone in just 24 h after only one dose, and paving the way for localized, nanoparticle-mediated treatment of MRSA-caused osteomyelitis. STATEMENT OF SIGNIFICANCE: In this work, we propose the use of bone-targeted mesoporous silica nanoparticles to address S. aureus-caused osteomyelitis that render synergistic therapeutic effect via multidrug delivery. Because the bacterial biofilm is responsible for an aggressive surgical approach and prolonged antibiotic treatment, the nanoparticles have been functionalized with a functional coating able to both disaggregate the biofilm, hamper premature antibiotic release and protect the intact bone. These engineered nanoparticles are able to effectively target bone tissue both in vitro and in vivo, showing high biocompatibility and elevated antibacterial effect.
Collapse
Affiliation(s)
- J J Aguilera-Correa
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - M Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - A Mediero
- Bone and Joint Unit, IIS- Fundación Jimenez Diaz, UAM, Avenida Reyes Católicos, 2 28037 Madrid, Spain
| | | | | | - D Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - J Esteban
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes Católicos, 2 28037 Madrid, Spain.
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
28
|
Theoretical modelling of electrostatic interactions in pH-dependent drug loading and releasing by functionalized mesoporous silica nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
pH-Responsive Drug Delivery and Imaging Study of Hybrid Mesoporous Silica Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196519. [PMID: 36235055 PMCID: PMC9572296 DOI: 10.3390/molecules27196519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
A system of pH-responsive and imaging nanocarriers was developed using mesoporous silica nanoparticles (MSNs), in which gadolinium (Gd) was doped through in situ doping (Gd2O3@MSN). Sodium alginate (SA) was attached to the surfaces of the amino groups of MSNs (NH2-Gd2O3@MSN) through the electrostatic adsorption between the amino groups and the carboxyl groups with the formation of hybrid SA-Gd2O3@MSN nanoparticles (NPs). The SA-coated NPs were spherical or near-spherical in shape with an average size of nearly 83.2 ± 8.7 nm. The in vitro drug release experiments of a model rhodamine B (RhB) cargo were performed at different pH values. The result confirmed the pH-responsiveness of the nanocarriers. The results of the cytotoxicity studies indicated that the SA-Gd2O3@MSN NPs were not cytotoxic by themselves. The results of the in vivo safety evaluation and the hemolysis assay confirmed that the system is highly biocompatible. It is noteworthy that the T1 contrast of the system was significantly enhanced by the Gd, as indicated by the result of the MR imaging. This study confirms that the synthesized hybrid nanosystem is promising for pH-responsive drug delivery and MR imaging for cancer diagnosis and treatment.
Collapse
|
30
|
Premixed Calcium Silicate-Based Root Canal Sealer Reinforced with Bioactive Glass Nanoparticles to Improve Biological Properties. Pharmaceutics 2022; 14:pharmaceutics14091903. [PMID: 36145651 PMCID: PMC9506183 DOI: 10.3390/pharmaceutics14091903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, bioactive glass nanoparticles (BGns) have been acknowledged for their ability to promote interactions with the periapical tissue and enhance tissue regeneration by releasing therapeutic ions. However, there have been no studies on calcium silicate sealers with bioactive glass nanoparticle (BGn) additives. In the present study, a premixed calcium silicate root canal sealer reinforced with BGn (pre-mixed-RCS@BGn) was developed and its physicochemical features and biological effects were analyzed. Three specimens were in the trial: 0%, 0.5%, and 1% bioactive glass nanoparticles (BGns) were gradually added to the premixed type of calcium silicate-based sealer (pre-mixed-RCS). To elucidate the surface properties, scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy were used and flowability, setting time, solubility, and radiopacity were analyzed to evaluate the physical properties. Chemical properties were investigated by water contact angle, pH change, and ion release measurements. The antibacterial effects of the bioactive set sealers were tested with Enterococcus faecalis and the viability of human bone marrow-derived mesenchymal stem cells (hMSCs) with this biomaterial was examined. In addition, osteogenic differentiation was highly stimulated, which was confirmed by ALP (Alkaline phosphatase) activity and the ARS (Alizarin red S) staining of hMSCs. The pre-mixed-RCS@BGn satisfied the ISO standards for root canal sealers and maintained antimicrobial activity. Moreover, pre-mixed-RCS@BGn with more BGns turned out to have less cytotoxicity than pre-mixed-RCS without BGns while promoting osteogenic differentiation, mainly due to calcium and silicon ion release. Our results suggest that BGns enhance the biological properties of this calcium silicate-based sealer and that the newly introduced pre-mixed-RCS@BGn has the capability to be applied in dental procedures as a root canal sealer. Further studies focusing more on the biocompatibility of pre-mixed-RCS@BGn should be performed to investigate in vivo systems, including pulp tissue.
Collapse
|
31
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Manzano M, Gabizón A, Vallet-Regí M. Characterization of a Mesoporous Silica Nanoparticle Formulation Loaded with Mitomycin C Lipidic Prodrug (MLP) and In Vitro Comparison with a Clinical-Stage Liposomal Formulation of MLP. Pharmaceutics 2022; 14:pharmaceutics14071483. [PMID: 35890378 PMCID: PMC9323893 DOI: 10.3390/pharmaceutics14071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Nanomedicines have revolutionized the treatment of certain types of cancer, as is the case of doxil, liposomal formulation with doxorubicin encapsulated, in the treatment of certain types of ovarian cancer, AIDS-related Kaposi sarcoma, and multiple myeloma. These nanomedicines can improve the performance of conventional chemotherapeutic treatments, with fewer side effects and better efficiency against cancer. Although liposomes have been used in some formulations, different nanocarriers with better features in terms of stability and adsorption capabilities are being explored. Among the available nanoparticles in the field, mesoporous silica nanoparticles (MSNP) have attracted great attention as drug delivery platforms for the treatment of different diseases. Here, a novel formulation based on MSNP loaded with a potent antitumor prodrug that works in vitro as well as in a clinically evaluated liposomal formulation has been developed. This novel formulation shows excellent prodrug encapsulation efficiency and effective release of the anticancer drug only under certain stimuli typical of tumor environments. This behavior is of capital importance for translating this nanocarrier to the clinic in the near future.
Collapse
Affiliation(s)
- Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28034 Madrid, Spain
| | - Alberto Gabizón
- Oncology Institute and Nano-Oncology Research Center, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 9112102, Israel;
| | - María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
33
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
34
|
Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14061137. [PMID: 35745710 PMCID: PMC9227760 DOI: 10.3390/pharmaceutics14061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Silver diamine fluoride (SDF) is an outstanding dental material for arresting and preventing caries, but some drawbacks, such as high flowability due to low viscosity and cytotoxicity to the pulp, have been reported. To overcome these problems, copper-doped bioactive glass nanoparticles (CuBGns) were combined with SDF. After synthesis, CuBGns were examined by physical analysis and added in SDF at different weight/volume% (SDF@CuBGn). After assessing physical properties (viscosity and flowability) of SDF@CuBGn, physicochemical properties (morphology before and after simulated body fluid (SBF) immersion and ion release) of SDF@CuBGn-applied hydroxyapatite (HA) discs were evaluated. Biological properties were further evaluated by cytotoxicity test to pulp stem cells and antibacterial effect on cariogenic organisms (Streptococcus mutans and Staphylococcus aureus). Combining CuBGns in SDF increased the viscosity up to 3 times while lowering the flowability. More CuBGns and functional elements in SDF (Ag and F) were deposited on the HA substrate, even after SBF immersion test for 14 days, and they showed higher Cu, Ca, and Si release without changing F and Ag release. Cell viability test suggested lower cytotoxicity in SDF@CuBGn-applied HA, while CuBGns in SDF boosted antibacterial effect against S. aureus, ~27% in diameter of agar diffusion test. In conclusion, the addition of CuBGn to SDF enhances viscosity, Ag and F deposition, and antibacterial effects while reducing cell toxicity, highlighting the role of bioactive CuBGns for regulating physical and biological effects of dental materials.
Collapse
|
35
|
Dexamethasone-Loaded Radially Mesoporous Silica Nanoparticles for Sustained Anti-Inflammatory Effects in Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14050985. [PMID: 35631571 PMCID: PMC9143902 DOI: 10.3390/pharmaceutics14050985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Radially mesoporous silica nanoparticles (RMSNs) with protonated amine functionality are proposed to be a dexamethasone (Dex) carrier that could achieve a sustained anti-inflammatory effect in rheumatoid arthritis (RA). High-capacity loading and a sustained release of target drugs were achieved by radially oriented mesopores and surface functionality. The maximum loading efficiency was confirmed to be about 76 wt%, which is about two times greater than that of representative mesopores silica, SBA-15. In addition, Dex-loaded RMSNs allow a sustained-release profile with about 92% of the loaded Dex for 100 h in vitro, resulting in 2.3-fold better delivery efficiency of Dex than that of the SBA-15 over the same period. In vivo evaluation of the inhibitory effects on inflammation in a RA disease rat model showed that, compared with the control groups, the group treated with Dex-loaded RMSNs sustained significant anti-inflammatory effects and recovery of cartilage over a period of 8 weeks. The in vivo effects were confirmed via micro-computed tomography, bone mineral density measurements, and modified Mankin scoring. The proposed Dex-loaded RMSNs prolonged the life of the in vivo concentrations of therapeutic agents and maximized their effect, which should encourage its application.
Collapse
|
36
|
Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7:8. [PMID: 35467307 PMCID: PMC9038981 DOI: 10.1186/s41181-022-00161-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Derya İlem-Özdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21940000, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Mohammed Al Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
37
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
38
|
Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. COATINGS 2022. [DOI: 10.3390/coatings12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has transformed engineering designs across a wide spectrum of materials and applications. Mesoporous Silica Nanoparticles (MSNs) are one of the new fabrications of nanostructures as medication delivery systems. MSNs have pore sizes varying from 2 to 50 nm, making them ideal for a variety of biological applications. They offer unique characteristics such as a tunable surface area, well-defined surface properties, and the ability to improve drug pharmacokinetic characteristics. Moreover, they have the potential to reduce adverse effects by delivering a precise dose of medications to a specific spot rather than the more frequent systemic delivery, which diffuses across tissues and organs. In addition, the vast number of pores allow drug incorporation and transportation of drugs to various sites making MSNs a feasible platform for orally administered drugs. Though the oral route is the most suitable and convenient platform for drug delivery, conventional oral drug delivery systems are associated with several limitations. Surpassing gastrointestinal barriers and the low oral bioavailability of poorly soluble medicines pose a major challenge in the pharmaceutical industry. This review provides insights into the role of MSNs and its mechanism as an oral drug delivery system.
Collapse
|
39
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
40
|
Kolathupalayam Shanmugam B, Murugan V, Karthik A, Rangaraj S, Subramani K, Srinivasan S, Kandhasamy N, Aicher WK, Rajendran V. Silica incorporated chitosan-sodium alginate nanocomposite scaffolds for tissue engineering applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Vinoth Murugan
- Department of Electrical and Electronics Engineering, Selvam College of Technology, Namakkal, India
| | - Arumugam Karthik
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| | | | - Karthik Subramani
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, India
| | - Surendhiran Srinivasan
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| | - Narthana Kandhasamy
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
- Centre for Nanoscience and Technology, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, India
| | - Wilhelm K. Aicher
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Venkatachalam Rajendran
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, India
| |
Collapse
|
41
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Sutthavas P, Tahmasebi Birgani Z, Habibovic P, van Rijt S. Calcium Phosphate-Coated and Strontium-Incorporated Mesoporous Silica Nanoparticles Can Effectively Induce Osteogenic Stem Cell Differentiation. Adv Healthc Mater 2022; 11:e2101588. [PMID: 34751004 PMCID: PMC11468810 DOI: 10.1002/adhm.202101588] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Indexed: 01/16/2023]
Abstract
Ceramic (nano)materials are promising materials for bone regeneration applications. The addition of bioinorganics such as strontium (Sr) and zinc (Zn) is a popular approach to further improve their biological performance. However, control over ion delivery is important to prevent off-target effects. Mesoporous silica nanoparticles (MSNs) are popular nanomaterials that can be designed to incorporate and controllably deliver multiple ions to steer specific regenerative processes. In this work, MSNs loaded with Sr (MSNSr ) and surface coated with a pH-sensitive calcium phosphate (MSNSr -CaP) or calcium phosphate zinc layer (MSNSr -CaZnP) are developed. The ability of the MSNs to promote osteogenesis in human mesenchymal stromal cells (hMSCs) under basic cell culture conditions is explored and compared to ion administration directly to the cell culture media. Here, it is shown that MSN-CaPs can effectively induce alkaline phosphatase (ALP) levels and osteogenic gene expression in the absence of other osteogenic stimulants, where an improved effect is observed for MSNs surface coated with multiple ions. Moreover, comparatively lower ion doses are needed when using MSNs as delivery vehicles compared to direct ion administration in the medium. In summary, the MSNs developed here represent promising vehicles to deliver (multiple) bioinorganics and promote hMSC osteogenesis in basic conditions.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityP.O. Box 616Maastricht6200 MDthe Netherlands
| |
Collapse
|
43
|
Effect of Gold Nanostars Plus Amikacin against Carbapenem-Resistant Klebsiella pneumoniae Biofilms. BIOLOGY 2022; 11:biology11020162. [PMID: 35205029 PMCID: PMC8869706 DOI: 10.3390/biology11020162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
Abstract
Simple Summary Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infection rates represent a challenging treatment since the pipeline for effective antibiotics against this pathogen, such as beta-lactams among others, is practically nil. This study aims to evaluate the antibacterial effect of gold nanostars (GNS) alone or associated with some of the most widely used antibiotics for the treatment of CR-KP strains, i.e., meropenem or amikacin, on both planktonic or free-living and sessile forms. GNS were able to inhibit the planktonic growth of CR-KP at 80 µM, to eradicate the bacterial viability at 160 µM, and were unable to inhibit or eradicate the biofilm growth of this bacterium. GNS gave rise to filamentous bacteria through mechanisms mediated by the inhibition of energy-dependent cytoplasmic proteases. The combination of GNS and amikacin was able to inhibit or even eradicate the CR-KP biofilm. This combination was administered to greater wax moth larvae (Galleria mellonella), and this treatment was found to be tolerated well and to prevent the CR-KP infection. Thus, GNS in combination with amikacin represent a promising anti-CR-KP nanomaterial. Abstract (1) Background: Carbapenem-resistant Klesiella pneumoniae (CR-KP) infection rates depict an almost pre-antibiotic scenario since the pipeline for effective antibiotics against this pathogen has been almost entirely depleted. This study aims to evaluate the antibacterial effect of gold nanostars (GNS) alone or associated with some of the most widely used antibiotics for the treatment of CR-KP strains, i.e., meropenem or amikacin, on both planktonic and sessile forms. Additionally, we measured the effect of GNS on cell proliferation and biocompatibility in invertebrate in vivo models. (2) Materials and methods: GNS were made from gold seeds grown using a seeded-growth surfactant-free method assisted by silver ions and functionalized with mercapto-poly(ethylene glycol)amino by ligand exchange. The antimicrobial capacity, effect on cell proliferation, and biocompatibility of the most effective combination was evaluated in a Galleria mellonella model. (3) Results: The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were 80 and 160 µM of GNS for all strains, respectively. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were >320 µM of GNS for both. A synergy was found between GNS and amikacin. Larvae administered GNS plus amikacin were found to tolerate the treatment well, which prevented infection. (4) Conclusions: GNS are a promising anti-CR-KP nanomaterial.
Collapse
|
44
|
Aguilera-Correa J, Gisbert-Garzarán M, Mediero A, Carias-Cálix R, Jiménez-Jiménez C, Esteban J, Vallet-Regí M. Arabic gum plus colistin coated moxifloxacin-loaded nanoparticles for the treatment of bone infection caused by Escherichia coli. Acta Biomater 2022; 137:218-237. [PMID: 34653694 DOI: 10.1016/j.actbio.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead to patient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier. STATEMENT OF SIGNIFICANCE: In this work, we propose a methodology to address E.coli bone infections by using moxifloxacin-loaded mesoporous silica nanoparticles coated with Arabic gum containing colistin (AG+CO-coated MX-loaded MSNs). The in vitro evaluation of this nanosystem demonstrated high affinity toward E. coli biofilm matrix thanks to the Arabic gum coating, a disaggregating and antibacterial effect of colistin, and a remarkable antibiofilm action because of the bactericidal ability of moxifloxacin and colistin. This anti-E. coli capacity of AG+CO-coated MX-loaded MSNs was brought out in an in vivo rabbit model of osteomyelitis where the nanosystem was able to eradicate more than 90% of the bacterial load within the infected bone.
Collapse
|
45
|
Vallet-Regí M. Our contributions to applications of mesoporous silica nanoparticles. Acta Biomater 2022; 137:44-52. [PMID: 34653693 DOI: 10.1016/j.actbio.2021.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022]
Abstract
Our contributions to mesoporous silica materials in the field of biomedicine are reported in this article. This perspective article represents our work in the basics of the material, preparing different ranges of mesoporous silica nanoparticles with different diameters and with varied pore sizes. We demonstrated the high loading capacity of these materials. Additionally, the possibility of functionalizing both internal and external surface with different organic or inorganic moieties allowed the development of stimuli-responsive features which allowed a proper control on the administered dose. In addition, we have demonstrated that these carriers are not toxic, and we have also ensured that the load reaches its destination without affecting healthy tissues. STATEMENT OF SIGNIFICANCE: This paper presents my personal opinion and background on a hot topic as mesoporous silica nanoparticles for drug delivery. To this aim it provides a comprehensive and historical overview on the innovative contributions of my research group to this rapidly expanding field of research.
Collapse
|
46
|
Manzano M. Chronology of Global Success: 20 Years of Prof Vallet-Regí Solving Questions. Pharmaceutics 2021; 13:pharmaceutics13122179. [PMID: 34959461 PMCID: PMC8708866 DOI: 10.3390/pharmaceutics13122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Twenty years ago, a group of bold scientists led by Prof Vallet-Regí suggested for the first time the use of mesoporous materials as potential drug delivery systems. Without knowing it; these pioneers unleashed the beast of creativity around the world because that original idea has been the inspiration of hundreds of scientific groups for the design of many versatile delivery systems based on mesoporous materials. Because the dream is not the destination, it is the journey, the present review aims to summarise the chain of events that catapulted a small and young research team from the grassroots of academia to the elite of the Biomedical Engineering field.
Collapse
Affiliation(s)
- Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain;
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-28034 Madrid, Spain
| |
Collapse
|
47
|
Álvarez E, Estévez M, Jiménez-Jiménez C, Colilla M, Izquierdo-Barba I, González B, Vallet-Regí M. A versatile multicomponent mesoporous silica nanosystem with dual antimicrobial and osteogenic effects. Acta Biomater 2021; 136:570-581. [PMID: 34551333 DOI: 10.1016/j.actbio.2021.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
In this manuscript, we propose a simple and versatile methodology to design nanosystems based on biocompatible and multicomponent mesoporous silica nanoparticles (MSNs) for infection management. This strategy relies on the combination of antibiotic molecules and antimicrobial metal ions into the same nanosystem, affording a significant improvement of the antibiofilm effect compared to that of nanosystems carrying only one of these agents. The multicomponent nanosystem is based on MSNs externally functionalized with a polyamine dendrimer (MSN-G3) that favors internalization inside the bacteria and allows the complexation of multiactive metal ions (MSN-G3-Mn+). Importantly, the selection of both the antibiotic and the cation may be done depending on clinical needs. Herein, levofloxacin and Zn2+ ion, chosen owing to both its antimicrobial and osteogenic capability, have been incorporated. This dual biological role of Zn2+ could have and adjuvant effect thought destroying the biofilm in combination with the antibiotic as well as aid to the repair and regeneration of lost bone tissue associated to osteolysis during infection process. The versatility of the nanosystem has been demonstrated incorporating Ag+ ions in a reference nanosystem. In vitro antimicrobial assays in planktonic and biofilm state show a high antimicrobial efficacy due to the combined action of levofloxacin and Zn2+, achieving an antimicrobial efficacy above 99% compared to the MSNs containing only one of the microbicide agents. In vitro cell cultures with MC3T3-E1 preosteoblasts reveal the osteogenic capability of the nanosystem, showing a positive effect on osteoblastic differentiation while preserving the cell viability. STATEMENT OF SIGNIFICANCE: A simple and versatile methodology to design biocompatible and multicomponent MSNs based nanosystems for infection management is proposed. These nanosystems, containing two antimicrobial agents, levofloxacin and Zn2+, have been synthetized by external functionalization of MSNs with a polycationic dendrimer (MSNs-G3), which favours its internalization inside the bacteria and lead the complexation with metal ions through the amines of the dendrimer. The nanosystems offer a notable improvement of the antibiofilm effect (above 99%) than both components separately as well as osteogenic capability with positive effect on the osteoblastic differentiation and preserved cell viability.
Collapse
Affiliation(s)
- Elena Álvarez
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Manuel Estévez
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Blanca González
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
48
|
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021; 13:2033. [PMID: 34959315 PMCID: PMC8703556 DOI: 10.3390/pharmaceutics13122033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the design of mesoporous silica nanoparticles for infection treatment. Written within a general context of contributions in the field, this manuscript highlights the major scientific achievements accomplished by professor Vallet-Regí's research group in the field of silica-based mesoporous materials for drug delivery. The aim is to bring out her pivotal role on the envisage of a new era of nanoantibiotics by using a deep knowledge on mesoporous materials as drug delivery systems and by applying cutting-edge technologies to design and engineer advanced nanoweapons to fight infection. This review has been divided in two main sections: the first part overviews the influence of the textural and chemical properties of silica-based mesoporous materials on the loading and release of antibiotic molecules, depending on the host-guest interactions. Furthermore, this section also remarks on the potential of molecular modelling in the design and comprehension of the performance of these release systems. The second part describes the more recent advances in the use of mesoporous silica nanoparticles as versatile nanoplatforms for the development of novel targeted and stimuli-responsive antimicrobial nanoformulations for future application in personalized infection therapies.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio L. Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
49
|
Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology 2021; 19:399. [PMID: 34844632 PMCID: PMC8630862 DOI: 10.1186/s12951-021-01150-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
With the growing demands for personalized medicine and medical devices, nanomedicine is a modern scientific field, and research continues to apply nanomaterials for therapeutic and damaged tissue diagnosis. In this regard, substantial progress has been made in synthesizing magnetic nanoparticles with desired sizes, chemical composition, morphologies, and surface chemistry. Among these materials, nanomagnetic iron oxides have demonstrated promise as unique drug delivery carriers due to cancer treatment. This carrier could lead to responsive properties to a specific trigger, including heat, pH, alternative magnetic field, or even enzymes, through functionalization and coating of magnetic nanoparticles, along with biocompatibility, good chemical stability, easy functionalization, simple processing, and ability to localize to the tumor site with the assistance of external magnetic field. Current studies have focused on magnetic nanoparticles' utilities in cancer therapy, especially for colorectal cancer. Additionally, a bibliometric investigation was performed on the public trends in the field of the magnetic nanoparticle to drug delivery and anticancer, which represented progressing applications of these carriers in the multidisciplinary zones with a general view on future research and identified potential opportunities and challenges. Furthermore, we outline the current challenges and forthcoming research perspective for high performance and fostering advanced MNPs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Gholami
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
50
|
García A, Cabañas MV, Peña J, Sánchez-Salcedo S. Design of 3D Scaffolds for Hard Tissue Engineering: From Apatites to Silicon Mesoporous Materials. Pharmaceutics 2021; 13:pharmaceutics13111981. [PMID: 34834396 PMCID: PMC8624321 DOI: 10.3390/pharmaceutics13111981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
Advanced bioceramics for bone regeneration constitutes one of the pivotal interests in the multidisciplinary and far-sighted scientific trajectory of Prof. Vallet Regí. The different pathologies that affect osseous tissue substitution are considered to be one of the most important challenges from the health, social and economic point of view. 3D scaffolds based on bioceramics that mimic the composition, environment, microstructure and pore architecture of hard tissues is a consolidated response to such concerns. This review describes not only the different types of materials utilized: from apatite-type to silicon mesoporous materials, but also the fabrication techniques employed to design and adequate microstructure, a hierarchical porosity (from nano to macro scale), a cell-friendly surface; the inclusion of different type of biomolecules, drugs or cells within these scaffolds and the influence on their successful performance is thoughtfully reviewed.
Collapse
Affiliation(s)
- Ana García
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, 28040 Madrid, Spain
| | - María Victoria Cabañas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
| | - Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|