1
|
Adediran E, Arte T, Pasupuleti D, Vijayanand S, Singh R, Patel P, Gulani M, Ferguson A, Uddin M, Zughaier SM, D’Souza MJ. Delivery of PLGA-Loaded Influenza Vaccine Microparticles Using Dissolving Microneedles Induces a Robust Immune Response. Pharmaceutics 2025; 17:510. [PMID: 40284505 PMCID: PMC12030082 DOI: 10.3390/pharmaceutics17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Influenza virus is one of the major respiratory virus infections that is a global health concern. Although there are already approved vaccines, most are administered via the intramuscular route, which is usually painful, leading to vaccine hesitancy. To this end, exploring the non-invasive, transdermal vaccination route using dissolving microneedles would significantly improve vaccine compliance. Research on innovative vaccine delivery systems, such as antigen-loaded PLGA microparticles, has the potential to pave the way for a broader range of vaccine candidates. Methods: In this proof-of-concept study, a combination of the inactivated influenza A H1N1 virus and inactivated influenza A H3N2 virus were encapsulated in a biodegradable poly (lactic-co-glycolic acid) (PLGA) polymeric matrix within microparticles, which enhanced antigen presentation. The antigen PLGA microparticles were prepared separately using a double emulsion (w/o/w), lyophilized, and characterized. Next, the vaccine microparticles were assessed in vitro in dendritic cells (DC 2.4) for immunogenicity. To explore pain-free transdermal vaccination, the vaccine microparticles were loaded into dissolving microneedles and administered in mice (n = 5). Results: Our vaccination study demonstrated that the microneedle-based vaccine elicited strong humoral responses as demonstrated by high antigen-specific IgA, IgG, IgG1, and IgG2a antibodies in serum samples and IgA in lung supernatant. Further, the vaccine also elicited a strong cellular response as evidenced by high levels of CD4+ and CD8a+ T cells in lymphoid organs such as the lymph nodes and spleen. Conclusion: The delivery of influenza vaccine-loaded PLGA microparticles using microneedles would be beneficial to individuals experiencing needle-phobia, as well as the geriatric and pediatric population.
Collapse
Affiliation(s)
- Emmanuel Adediran
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Tanisha Arte
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Dedeepya Pasupuleti
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Sharon Vijayanand
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Revanth Singh
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Parth Patel
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Mahek Gulani
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Amarae Ferguson
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Mohammad Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Martin J. D’Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (E.A.); (T.A.); (D.P.); (S.V.); (R.S.); (P.P.); (M.G.); (A.F.); (M.U.)
| |
Collapse
|
2
|
Wargantiwar S, Bhattacharya S. Biocompatible Natural Polymers and Cutting-Edge Fabrication Techniques in the Development of Next-Generation Oral Thin Films for Enhanced Drug Delivery Systems. Curr Pharm Des 2025; 31:331-343. [PMID: 39385418 DOI: 10.2174/0113816128329293241001090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Oral thin films are changing the way drugs are delivered, making drug administration more convenient and patient-friendly. This review delves into the fascinating possibilities of natural polymers in thin film design. We consider the benefits of biocompatible polymers produced from chitosan, gelatin, and pullulan. Their intrinsic biodegradability and safety make them excellent for use with a wide range of patients. Additionally, the research investigates novel strategies for creating these distinctive drug delivery systems. We look beyond standard solvent casting techniques, hot melt extrusion methods, rolling methods, etc. These technologies provide exact control over film qualities, allowing for tailored medication delivery and increased patient compliance. This review seeks to bridge the gap between natural polymers and cutting-edge fabrication processes. By investigating this combination, we pave the road for the development of next-generation oral thin films that are more efficacious, patient-acceptable, and environmentally-friendly.
Collapse
Affiliation(s)
- Siddhi Wargantiwar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
3
|
Yoon KW, Chu KB, Eom GD, Mao J, Heo SI, Quan FS. Dose sparing enabled by immunization with influenza vaccine using orally dissolving film. Int J Pharm 2024; 667:124945. [PMID: 39550013 DOI: 10.1016/j.ijpharm.2024.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Influenza vaccine delivered by orally dissolving film vaccine (ODFV) is a promising approach. In this study, we generated three ODFVs each comprising pulluan and trehalose with different doses of inactivated A/Puerto Rico/8/34, H1N1 virus (ODFV I, II, III) to evaluate their dose-sparing effect in mice. The ODFVs were placed on the tongues of mice to elicit immunization and after 3 immunizations at 4-week intervals, mice were challenged with a lethal dose of A/PR/8/34 to assess vaccine-induced protection. The 3 ODFVs containing 50, 250, or 750 μg of inactivated viruses elicited virus-specific antibody responses and virus neutralization in a dose-dependent manner. Dose-dependent antibody responses were also observed from the mucosal tissue samples, and also from antibody-secreting cells of the lungs and spleens. ODFV-induced cellular immunity, particularly germinal center B cells and T cells were also dose-dependent. Importantly, all 3 ODFVs evaluated in this study provided complete protection by strongly suppressing the pro-inflammatory cytokine production and lung virus titers. None of the immunized mice underwent noticeable weight loss nor succumbed to death, a phenomenon that was only observed in the infection challenge controls. These results indicated that the protection conferred by a low dose influenza vaccine formulated in ODF is comparable to that of a high-dose vaccine, thereby enabling vaccine dose sparing effect.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su In Heo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Yoon KW, Chu KB, Eom GD, Mao J, Kim SS, Quan FS. Orally dissolving film as a potential vaccine delivery carrier to prevent influenza virus infection. Antiviral Res 2024; 230:105979. [PMID: 39111639 DOI: 10.1016/j.antiviral.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Orally dissolving films (ODF) are designed to be dissolved on the tongue and absorbed in the mouth. It offers multiple advantages over the commonly used needle-based vaccines, especially in terms of convenience allowing safe, painless, and easy self-administration. As the efficacy of ODF-encapsulated influenza vaccines has not been demonstrated, we assessed the protection elicited by inactivated influenza virus (A/PR/8/34, H1N1) vaccine delivered using ODFs in mice. Trehalose and pullulan components of the ODF ensured that the HA antigens of the inactivated PR8 virus retained their stability while ensuring the rapid release of the vaccines upon exposure to murine saliva. Mice were immunized thrice by placing the PR8-ODF on the tongues of mice at 4-week intervals, and vaccine-induced protection was evaluated upon lethal homologous challenge infection. The PR8-ODF vaccination elicited virus-specific serum IgG and IgA antibody responses, hemagglutinin inhibition (HAI), and viral neutralization. Upon challenge infection, ODF vaccination showed higher levels of IgG and IgA antibody responses in the lungs and antibody-secreting cell (ASC) responses in both lung and spleen compared to unimmunized controls. These results corresponded with the enhanced T cell and germinal center B cell responses in the lungs and spleens. Importantly, ODF vaccination significantly reduced lung virus titers and inflammatory cytokines (IFN-γ, IL-6) production compared to unvaccinated control. ODF vaccination ensured 100% survival and prevented weight loss in mice. These findings suggest that influenza vaccine delivery through ODFs could be a promising approach for oral vaccine development.
Collapse
Affiliation(s)
- Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Khodaverdi K, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int J Biol Macromol 2024; 278:134962. [PMID: 39179064 DOI: 10.1016/j.ijbiomac.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.
Collapse
Affiliation(s)
- Khashayar Khodaverdi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
6
|
Esih H, Mezgec K, Billmeier M, Malenšek Š, Benčina M, Grilc B, Vidmar S, Gašperlin M, Bele M, Zidarn M, Zupanc TL, Morgan T, Jordan I, Sandig V, Schrödel S, Thirion C, Protzer U, Wagner R, Lainšček D, Jerala R. Mucoadhesive film for oral delivery of vaccines for protection of the respiratory tract. J Control Release 2024; 371:179-192. [PMID: 38795814 DOI: 10.1016/j.jconrel.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.
Collapse
Affiliation(s)
- Hana Esih
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klemen Mezgec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Billmeier
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia
| | - Blaž Grilc
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | | | - Tina Morgan
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | - Ingo Jordan
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Volker Sandig
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology & Hygiene, University Hospital, Regensburg, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
8
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
9
|
Mokabari K, Iriti M, Varoni EM. Mucoadhesive Vaccine Delivery Systems for the Oral Mucosa. J Dent Res 2023:220345231164111. [PMID: 37148290 DOI: 10.1177/00220345231164111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Vaccine technology has evolved continuously since its beginning, and mucosal vaccination, including intranasal, sublingual, and oral administrations, has recently gained great scientific interest. The oral mucosa represents a promising minimally invasive route for antigen delivery, mainly at sublingual and buccal mucosal sites, and it is easily accessible, immunologically rich, and able to promote an effective systemic and local immune response. The aim of this review is to provide an updated overview on the technologies for oral mucosal vaccination, with emphasis on mucoadhesive biomaterial-based delivery systems. Polymeric-based nanoparticles, multilayer films and wafers, liposomes, microneedles, and thermoresponsive gels are the most investigated strategies to deliver antigens locally, showing mucoadhesive properties, controlled release of the antigen, and the ability to enhance immunological responses. These formulations have achieved adequate properties in terms of vaccine stability, are minimally invasive, and are easy to produce and manage. To date, oral mucosa vaccine delivery systems represent a promising and open field of research. Future directions should focus on the role of these systems to induce sustained innate and adaptive immune responses, by integrating the recent advances achieved in mucoadhesion with those related to vaccine technology. Being painless, easy to administer, highly stable, safe, and effective, the antigen delivery systems via the oral mucosa may represent a useful and promising strategy for fast mass vaccination, especially during pandemic outbreaks.
Collapse
Affiliation(s)
- K Mokabari
- University of Turin (Department of Molecular Biotechnology and Health Sciences)
| | - M Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - E M Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Orodispersible Films-Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020361. [PMID: 36839683 PMCID: PMC9965071 DOI: 10.3390/pharmaceutics15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orodispersible Films (ODFs) are drug delivery systems manufactured with a wide range of methods on a big scale or for customized medicines and small-scale pharmacy. Both ODFs and their fabrication methods have certain limitations. Many pharmaceutical companies and academic research centers across the world cooperate in order to cope with these issues and also to find new formulations for a wide array of APIs what could make their work profitable for them and beneficial for patients as well. The number of pending patent applications and granted patents with their innovative approaches makes the progress in the manufacturing of ODFs unquestionable. The number of commercially available ODFs is still growing. However, some of them were discontinued and are no longer available on the markets. This review aims to summarize currently marketed ODFs and those withdrawn from sale and also provides an insight into recently published studies concerning orodispersible films, emphasizing of utilized APIs. The work also highlights the attempts of scientific communities to overcome ODF's manufacturing methods limitations.
Collapse
|
11
|
Gupta MS, Gowda DV, Kumar TP, Rosenholm JM. A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020). Pharmaceutics 2022; 14:pharmaceutics14040820. [PMID: 35456654 PMCID: PMC9031760 DOI: 10.3390/pharmaceutics14040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Orodispersible films (ODFs)are ultra-thin, stamp-sized, rapidly disintegrating, and attractive oral drug delivery dosage forms best suited for the pediatric and geriatric patient populations. They can be fabricated by different techniques, but the most popular, simple, and industrially applicable technique is the solvent casting method (SCM). In addition, they can also be fabricated by extrusion, printing, electrospinning, and by a combination of these technologies (e.g., SCM + printing). The present review is aimed to provide a comprehensive overview of patented technologies of the last two decades to fabricate ODFs. Through this review, we present evidence to adamantly confirm that SCM is the most popular method while electrospinning is the most recent and upcoming method to fabricate ODFs. We also speculate around the more patent-protected technologies especially in the domain of printing (two or three-dimensional), extrusion (ram or hot-melt extrusion), and electrospinning, or a combination of the methods thereof.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
- Correspondence: ; Tel.: +91-99-4549-0571
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, ÅboAkademi University, 20520 Turku, Finland;
| |
Collapse
|
12
|
Morath B, Sauer S, Zaradzki M, Wagner A. TEMPORARY REMOVAL: Orodispersible films – Recent developments and new applications in drug delivery and therapy. Biochem Pharmacol 2022; 200:115036. [DOI: 10.1016/j.bcp.2022.115036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
|
13
|
Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays. J Pharm Sci 2022; 111:1070-1080. [PMID: 35122832 DOI: 10.1016/j.xphs.2022.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Most influenza vaccines are administered via intramuscular injection which has several disadvantages that might jeopardize the compliance of vaccinees. Intradermal administration of dissolving-microneedle-arrays (dMNAs) could serve as minimal invasive alternative to needle injections. However, during the production process of dMNAs antigens are subjected to several stresses, which may reduce their potency. Moreover, the needles need to have sufficient mechanical strength to penetrate the skin and subsequently dissolve effectively to release the incorporated antigen. Here, we investigated whether blends of trehalose and pullulan are suitable for the production of stable dMNA fulfilling these criteria. Our results demonstrate that production of trehalose/pullulan-based dMNAs rendered microneedles that were sharp and stiff enough to pierce into ex vivo human skin and subsequently dissolve within 15 min. The mechanical properties of the dMNAs were maintained well even after four weeks of storage at temperatures up to 37°C. In addition, immunization of mice with influenza antigens via both freshly prepared dMNAs and dMNAs after storage (four weeks at 4°C or 37°C) resulted in antibody titers of similar magnitude as found in intramuscularly injected mice and partially protected mice from influenza virus infection. Altogether, our results demonstrate the potential of trehalose/pullulan-based dMNAs as alternative dosage form for influenza vaccination.
Collapse
|
14
|
Mangla B, Javed S, Sultan MH, Ahsan W, Aggarwal G, Kohli K. Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit. Front Pharmacol 2022; 12:757761. [PMID: 35087403 PMCID: PMC8787087 DOI: 10.3389/fphar.2021.757761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kanchan Kohli
- Director Research and Publication, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| |
Collapse
|
15
|
Stable Atropine Loaded Film As a Potential Ocular Delivery System For Treatment Of Myopia. Pharm Res 2021; 38:1931-1946. [PMID: 34773183 DOI: 10.1007/s11095-021-03135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The objective of the present study was to prepare stable and high bioavailability ocular atropine loaded films (ATR-films) as potential ocular drug delivery systems for the treatment of myopia. METHODS ATR-films were prepared by the solvent casting method and the physical properties of films were evaluated including thickness, water content, light transparency, disintegration time, and mechanical properties. FT-IR, DSC, XRD, TGA, AFM, and Raman spectroscopy were performed to characterize the film. The stability test was conducted under different conditions, such as high humidity, high temperature, and strong light. The pharmacokinetic study and irritation assessment were conducted in rabbits. The efficacy of ATR-films was evaluated by refraction and ocular biometry in myopia guinea pigs. RESULT After optimizing the formulation, the resulting ATR-film was flexible and transparent with lower water content (8.43% ± 1.25). As expected, the ATR-film was stable and hydrolysate was not detected, while the content of hydrolysate in ATR eye drops can reach up to 8.1867% (limit: < 0.2%) in the stability study. The safety assessment both in vitro and in vivo confirmed that the ATR-film was biocompatible. Moreover, the bioavailability (conjunctiva 3.21-fold, cornea 2.87-fold, retina 1.35-fold, sclera 2.05-fold) was greatly improved compared with the ATR eye drops in vivo pharmacokinetic study. The pharmacodynamic study results showed that the ATR-film can slow the progress of form-deprivation myopia (~ 100 ± 0.81D), indicating that it has a certain therapeutic effect on form-deprivation myopia. CONCLUSION The ATR-film with good stability and high bioavailability will have great potential for the treatment of myopia.
Collapse
|
16
|
Gupta MS, Kumar TP, Gowda DV, Rosenholm JM. Orodispersible films: Conception to quality by design. Adv Drug Deliv Rev 2021; 178:113983. [PMID: 34547323 DOI: 10.1016/j.addr.2021.113983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Orodispersible films (ODFs) are ultra-thin, stamp-sized, elegant, portable and patient-centric pharmaceutical dosage forms that do not need water to be ingested. They are particularly useful for paediatric and geriatric patient populations with special needs such as dysphagia, Parkinson's disease, and oral cancer. Accordingly, they hold tremendous potential in gaining patient compliance, convenience and pharmacotherapy. In the present review, conception and evolution of ODFs as a product and its technology are discussed. The review continues by providing overview about the potential of ODFs as carriers for delivering drugs, herbal extracts, probiotics and vaccines. Besides, strategies employed in drug cargo loading, taste masking of bitter drugs and enhancing drug stability are discussed. Finally, the review concludes by providing a brief overview about quality by design (QbD) principles in development of ODFs.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Devegowda Vishkante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, Karnataka, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
17
|
Trincado V, Gala RP, Morales JO. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines (Basel) 2021; 9:vaccines9101177. [PMID: 34696284 PMCID: PMC8539688 DOI: 10.3390/vaccines9101177] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, most vaccines available on the market are for parental use; however, this may not be the best option on several occasions. Mucosal routes of administration such as intranasal, sublingual, and buccal generate great interest due to the benefits they offer. These range from increasing patient compliance to inducing a more effective immune response than that achieved through conventional routes. Due to the activation of the common mucosal immune system, it is possible to generate an effective systemic and local immune response, which is not achieved through parenteral administration. Protection against pathogens that use mucosal entry routes is provided by an effective induction of mucosal immunity. Mucosal delivery systems are being developed, such as films and microneedles, which have proven to be effective, safe, and easy to administer. These systems have multiple advantages over commonly used injections, which are simple to manufacture, stable at room temperature, painless for the patient since they do not require puncture. Therefore, these delivery systems do not require to be administered by medical personnel; in fact, they could be self-administered.
Collapse
Affiliation(s)
- Valeria Trincado
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
| | - Rikhav P. Gala
- Biotechnology Division, Center Mid-Atlantic, Fraunhofer USA, Newark, DE 19702, USA;
| | - Javier O. Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
- Correspondence:
| |
Collapse
|
18
|
Olechno K, Basa A, Winnicka K. "Success Depends on Your Backbone"-About the Use of Polymers as Essential Materials Forming Orodispersible Films. MATERIALS 2021; 14:ma14174872. [PMID: 34500962 PMCID: PMC8432670 DOI: 10.3390/ma14174872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Polymers constitute a group of materials having a wide-ranging impact on modern pharmaceutical technology. Polymeric components provide the foundation for the advancement of novel drug delivery platforms, inter alia orodispersible films. Orodispersible films are thin, polymeric scraps intended to dissolve quickly when put on the tongue, allowing them to be easily swallowed without the necessity of drinking water, thus eliminating the risk of choking, which is of great importance in the case of pediatric and geriatric patients. Polymers are essential excipients in designing orodispersible films, as they constitute the backbone of these drug dosage form. The type of polymer is of significant importance in obtaining the formulation of the desired quality. The polymers employed to produce orodispersible films must meet particular requirements due to their oral administration and have to provide adequate surface texture, film thickness, mechanical attributes, tensile and folding strength as well as relevant disintegration time and drug release to obtain the final product characterized by optimal pharmaceutical features. A variety of natural and synthetic polymers currently utilized in manufacturing of orodispersible films might be used alone or in a blend. The goal of the present manuscript was to present a review about polymers utilized in designing oral-dissolving films.
Collapse
Affiliation(s)
- Katarzyna Olechno
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Correspondence: (K.O.); (K.W.)
| | - Anna Basa
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Correspondence: (K.O.); (K.W.)
| |
Collapse
|
19
|
Sublingual vaccination and delivery systems. J Control Release 2021; 332:553-562. [DOI: 10.1016/j.jconrel.2021.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
|
20
|
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol 2021; 178:504-513. [PMID: 33647337 DOI: 10.1016/j.ijbiomac.2021.02.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration. They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water ingestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydrophilic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving natural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to overview the recent publications and discuss how natural polymers can influence ODFs properties.
Collapse
Affiliation(s)
- Murilo Santos Pacheco
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Douglas Barbieri
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Classius Ferreira da Silva
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
21
|
Gupta MS, Kumar TP. The potential of ODFs as carriers for drugs/vaccines against COVID-19. Drug Dev Ind Pharm 2021; 47:179-188. [PMID: 33300820 PMCID: PMC7784830 DOI: 10.1080/03639045.2020.1862180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
COVID-19 has spread out its wings across the globe and is taking away many lives. Millions of people are (self) quarantined to prevent the spread of this viral disease. World Health Organization (WHO) has affirmed that there is not any medicine for COVID-19. Besides, there is also no single drug that is approved by any regulatory agency for usage against this dangerous disease. Researchers across the globe are working tirelessly to fix an end to this virus and to save precious lives. While the research is in full swing, one is not sure whether they would come up with a chemical/herbal drug or a vaccine. Irrespective of the type of active ingredient for COVID-19, one needs to have a proper system to deliver the identified active ingredient to subjects/patients across the globe. Orodispersible films (ODFs) are excellent and attractive drug delivery carriers that have the potential to deliver drugs, herbal extracts, and vaccines. They are apt for patients who have a problem consuming traditional drug products such as tablets or capsules. The beauty of this dosage form is that it does not need water to consume by the subjects and can be readily administered to the tongue. The present review highlights the true potential of ODFs to act as a carrier for the delivery of various antiviral drugs/herbs/vaccines.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, India
| |
Collapse
|