1
|
Zarif Attalla K, Hassan DH, Teaima MH, Yousry C, El-Nabarawi MA, Said MA, Elhabal SF. Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management. Pharmaceuticals (Basel) 2025; 18:421. [PMID: 40143197 PMCID: PMC11944838 DOI: 10.3390/ph18030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). Results: The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of -18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. Conclusions: These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Kristina Zarif Attalla
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, km. 22 Cairo-Alex Road, Giza P.O. Box 12577, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt;
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
2
|
Talele P, Jadhav A, Sahu S, Shimpi N. Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1451-1466. [PMID: 39851141 DOI: 10.1039/d4ay01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Solid lipid nanoparticles (SLNs) are potential drug carriers due to the several advantages they offer. The physicochemical stability of lipid carriers varies significantly due to their diverse compositions and structures. Appropriate analytical methods are required for the complete characterization of SLNs. Physicochemical characterization includes analysis of bulk properties like particle size, size distribution, zeta potential, morphology, stability, polymorphism, crystallinity, and molecular level properties like microenvironments within nanoparticles and their interactions with drugs. Moreover, drug loading, drug entrapment efficiency, and drug release kinetics are essential parameters to evaluate the efficacy of SLNs as drug delivery systems. In addition to testing the physicochemical stability and functionality of SLN formulations, it is essential to investigate their desired actions through in vivo studies, which are beyond the scope of this article. This review briefly discusses the different experimental techniques and their applications in the field of solid lipid nanoparticles. These techniques can also be used to characterize nanostructure lipid carriers, which are second-generation lipid nanoparticles.
Collapse
Affiliation(s)
- Paurnima Talele
- Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded 431606, India
| | - Anand Jadhav
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | - Navinchandra Shimpi
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
3
|
Alves da Silva BT, Silva Lautenschlager SDO, Nakamura CV, Ximenes VF, Ogawa Y, Michel R, Auzély-Velty R. Design of solid lipid nanoparticles for skin photoprotection through the topical delivery of caffeic acid-phthalimide. Int J Pharm 2025; 669:125010. [PMID: 39622306 DOI: 10.1016/j.ijpharm.2024.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Exposure of the skin to ultraviolet (UV) radiation is associated with many pathological conditions such as premature aging and skin cancer. Furthermore, members of Nicotinamide Adenine Dinucleotide Phosphate-oxidase (NADPH oxidase or NOX) enzyme family can produce UV-induced reactive oxygen species (ROS), even after cessation of radiation exposure. The caffeic acid-phthalimide (CF) compound is a potent antioxidant, which reduces the generation of ROS. However, its high lipophilicity may hamper its permeation through the skin. Solid lipid nanoparticles (SLNs) can ensure close contact and increase the amount of drug absorbed into the skin. The present work aims to develop and optimize SLNs containing CF to achieve enhanced skin photoprotection along with antioxidant and anti-aging effects. SLNs were prepared by the hot homogenization method using Compritol 888 ATO as lipid matrix, and Tween 80 and Pluronic® F-127 as surfactants to stabilize the nanoparticle dispersion. The particles had high stability for at least 30 days. Physicochemical characterizations of the selected SLNs formulations showed sizes in the range 150-180 nm, polydispersity index (PDI) of 0.2, and a negative zeta potential (≅ -25 mV). The SLNs had high CF entrapment efficiency (96-97 %) and showed a controlled drug-release profile. The in vitro study revealed low cytotoxic properties of CF-loaded SLNs towards fibroblasts and a photoprotective effect, reflected from the increased viability of UVB-irradiated fibroblasts treated with CF-SLNs. Moreover, the CF-SLNs induced fibroblast migration and closure, showing that these nanosystems offer not only biological photoprotection, but also stimulate wound healing.
Collapse
Affiliation(s)
| | - Sueli de Oliveira Silva Lautenschlager
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Yu Ogawa
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Raphaël Michel
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | | |
Collapse
|
4
|
Lim HS, Choi WI, Lim JM. Continuous Production of Docetaxel-Loaded Nanostructured Lipid Carriers Using a Coaxial Turbulent Jet Mixer with Heating System. Molecules 2025; 30:279. [PMID: 39860147 PMCID: PMC11767693 DOI: 10.3390/molecules30020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants. We reported the flow regime according to the Reynolds number (Re). Also, we confirmed the size controllability of NLCs as dependent on both Re and lipid concentration. The optimized synthesis yields NLCs around 80 nm, ideal for targeted drug delivery by enhanced permeability and retention (EPR) effect. The coaxial turbulent jet mixer enables effective mixing, producing uniform size distribution of NLCs. The NLCs prepared using the coaxial turbulent jet mixer were smaller, more uniform, and had higher drug loading compared to the NLCs synthesized by a bulk nanoprecipitation method, showcasing its potential for advancing nanomedicine.
Collapse
Affiliation(s)
- Hyeon Su Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong-Min Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Roy D, Balasubramanian S, Kunte PP, Natarajan J, Sola P, Rymbai E, R PKM. Roflumilast-loaded nanostructured lipid carriers attenuate oxidative stress and neuroinflammation in Parkinson's disease model. J Drug Target 2025; 33:127-142. [PMID: 39316825 DOI: 10.1080/1061186x.2024.2408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with limited symptomatic treatment options. Targeting phosphodiesterase 4 (PDE4) has shown a promising result in several preclinical studies. In our study, we aim to repurpose US FDA-approved PDE4 inhibitor for PD. Through in-silico study, we identified roflumilast (ROF) as the potential candidate targeting PDE4B2. In Drosophila PD expressing the A30P mutant α-synuclein model, ROF exhibited anti-PD effects as indicated by negative geotaxis and antioxidant activities. Given the low brain distribution of ROF (<50%) at clinical doses, incorporation into nanostructured lipid carriers (NLCs) was carried out to enhanced blood-brain barrier permeability. In vitro release studies indicated sustained ROF release from NLCs (≈75%) over 24 h. Single-dose oral toxicity studies reported no mortality or toxicity signs. ROF-loaded NLCs significantly alleviated behavioural deficits, increased antioxidant parameters (p < 0.05), and reduced TNF-α and IL-6 levels (p < 0.5) in the striatum compared to pure ROF. ROF-loaded NLCs demonstrated potential anti-PD effects with high efficacy than pure ROF. Our study suggests that nanostructured lipid carriers (NLCs) can be a promising drug delivery system to overcome limitations associated with poor brain bioavailability of lipophilic drugs like ROF for PD treatment. Further investigation related to brain occupancy and underlying mechanisms of our formulation is warranted to confirm and strengthen our current findings.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Prajwal P Kunte
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praharsh Kumar M R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
6
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
7
|
Yang W, Shi Y, Zhang Y, Yang Y, Du Y, Yang Z, Wang X, Lei T, Xu Y, Chen Y, Tong F, Wang Y, Huang Q, Hu C, Gao H. Intranasal Carrier-Free Nanomodulator Addresses Both Symptomatology and Etiology of Alzheimer's Disease by Restoring Neuron Plasticity and Reprogramming Lesion Microenvironment. ACS NANO 2024; 18:29779-29793. [PMID: 39415568 DOI: 10.1021/acsnano.4c09449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The unsatisfactory treatment outcome of Alzheimer's disease (AD) can be attributed to two primary factors, the intricate pathogenic mechanisms leading to restricted treatment effectiveness against single targets and the hindered drug accumulation in brain due to blood-brain barrier obstruction. Therefore, we developed a carrier-free nanomodulator (NanoDS) through the self-assembly of donepezil and simvastatin for direct nose-to-brain delivery. This approach facilitated a rapid and efficient traversal through the nasal epithelial barrier, enabling subsequent drug release and achieving multiple therapeutic effects. Among them, donepezil effectively ameliorated the symptoms of AD and restored synaptic plasticity. Simvastatin exerted a neurotrophic effect and facilitated the clearance of amyloid-β aggregation. At the same time, NanoDS demonstrated effective anti-inflammatory and antioxidative stress effects. This therapy for AD is approached from both symptomatic and etiological perspectives. In the treatment of FAD4T transgenic mice, it highly improved spatial memory impairment and cognitive deficits while restoring the homeostasis of brain microenvironment. Collectively, our study presented a paradigm for both achieving efficient brain delivery and offering pleiotropic therapies for AD.
Collapse
Affiliation(s)
- Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yulong Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yanyan Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yongke Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
8
|
Tawfeek HM, Mekkawy AI, Abdelatif AAH, Aldosari BN, Mohammed-Saeid WA, Elnaggar MG. Intranasal delivery of sulpiride nanostructured lipid carrier to central nervous system; in vitro characterization and in vivo study. Pharm Dev Technol 2024; 29:841-854. [PMID: 39264666 DOI: 10.1080/10837450.2024.2404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
The low and erratic oral absorption of sulpiride (SUL) a dopaminergic receptor antagonist, and its P-glycoprotein efflux in the gastrointestinal tract restricted its oral route for central nervous system disorders. An intranasal formulation was formulated based on nanostructured lipid carrier to tackle these obstacles and deliver SUL directly to the brain. Sulipride-loaded nanostructured lipid carrier (SUL-NLC) was prepared using compritol®888 ATO and different types of liquid lipids and emulsifiers. SUL-NLCs were characterized for their particle size, charge, and encapsulation efficiency. Morphology and compatibility with other NLC excipients were also studied. Moreover, SUL in vitro release, nanodispersion stability, in vivo performance and SUL pharmacokinetics were investigated. Results delineates that SUL-NLC have a particle size ranging from 366.2 ± 62.1 to 640.4 ± 50.2 nm and encapsulation efficiency of 75.5 ± 1.5%. SUL showed a sustained release pattern over 24 h and maintained its physical stability for three months. Intranasal SUL-NLC showed a significantly (p < 0.01) higher SUL brain concentration than that found in plasma after oral administration of commercial SUL product with 4.47-fold increase in the relative bioavailability. SUL-NLCs as a nose to brain approach is a promising formulation for enhancing the SUL bioavailability and efficient management of neurological disorders.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed A H Abdelatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Waleed A Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
10
|
K M AS, Angolkar M, Rahamathulla M, Thajudeen KY, Ahmed MM, Farhana SA, Shivanandappa TB, Paramshetti S, Osmani RAM, Natarajan J. Box-Behnken Design-Based Optimization and Evaluation of Lipid-Based Nano Drug Delivery System for Brain Targeting of Bromocriptine. Pharmaceuticals (Basel) 2024; 17:720. [PMID: 38931387 PMCID: PMC11206536 DOI: 10.3390/ph17060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson's disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD.
Collapse
Affiliation(s)
- Asha Spandana K M
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Kamal Y. Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia;
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | | | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy-Ootacamund, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
11
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
12
|
Salimi-Sabour E, Tahri RA, Asgari A, Ghorbani M. The novel hepatoprotective effects of silibinin-loaded nanostructured lipid carriers against diazinon-induced liver injuries in male mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105643. [PMID: 38072518 DOI: 10.1016/j.pestbp.2023.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.
Collapse
Affiliation(s)
- Ebrahim Salimi-Sabour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramazan-Ali Tahri
- Nanobiotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Asgari
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
14
|
Sotirova Y, Gugleva V, Stoeva S, Kolev I, Nikolova R, Marudova M, Nikolova K, Kiselova-Kaneva Y, Hristova M, Andonova V. Bigel Formulations of Nanoencapsulated St. John's Wort Extract-An Approach for Enhanced Wound Healing. Gels 2023; 9:gels9050360. [PMID: 37232952 DOI: 10.3390/gels9050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John's wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl behenate (GB) as a solid lipid, almond oil (AO), or borage oil (BO) representing the liquid lipid, along with polyoxyethylene (20) sorbitan monooleate (PSMO) and sorbitan monooleate (SMO) as surfactants. The dispersions demonstrated anisometric nanoscale particles with acceptable size distribution and disrupted crystalline structure, providing entrapment capacity higher than 70%. The carrier exhibiting preferable characteristics (HP-NLC2) was gelled with Poloxamer 407 (PM407) to serve as the hydrophilic phase of a bigel, to which the combination of BO and sorbitan monostearate (SMS) organogel was added. The eight prepared bigels with different proportions (blank and nanodispersion-loaded) were characterized rheologically and texturally to investigate the impact of the hydrogel-to-oleogel ratio. The therapeutic potential of the superior formulation (HP-NLC-BG2) was evaluated in vivo on Wistar male rats through the tensile strength test on a primary-closed incised wound. Compared with a commercial herbal semisolid and a control group, the highest tear resistance (7.764 ± 0.13 N) was achieved by HP-NLC-BG2, proving its outstanding wound-healing effect.
Collapse
Affiliation(s)
- Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Stanila Stoeva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rositsa Nikolova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria
| | - Maria Marudova
- Department of Physics, Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 4000 Plovdiv, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| |
Collapse
|
15
|
Nicoleti LR, Di Filippo LD, Duarte JL, Luiz MT, Sábio RM, Chorilli M. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells. Colloids Surf B Biointerfaces 2023; 226:113309. [PMID: 37054466 DOI: 10.1016/j.colsurfb.2023.113309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Glioblastoma multiforme is the most common and most aggressive human brain cancer. GBM treatment is still a challenge because many drugs are not able to cross the blood-brain barrier, in addition to the increasing resistance to currently available chemotherapy. New therapeutic alternatives are emerging, and, in this context, we highlight kaempferol, a flavonoid with remarkable anti-tumor activity but with limited bioavailability due to its strong lipophilic property. A promising tool to improve the biopharmaceutical properties of molecules such as kaempferol is the use of drug-delivery nanosystems, such as nanostructured lipid carriers (NLC), which can facilitate the dispersion and delivery of highly lipophilic molecules. The present work aimed at the development and characterization of kaempferol-loaded NLC (K-NLC) and the evaluation of its biological properties using in vitro models. The K-NLC showed an average size of 120 nm, zeta potential of - 21 mV, and polydispersity index of 0.099. The K-NLC presented high kaempferol encapsulation efficiency (93%), a drug loading of 3.58%, and a sustained kaempferol release profile for up to 48 h. In addition to presenting a 7-fold increase in kaempferol cytotoxicity, its encapsulation in NLC promoted a cellular uptake of 75%, which corroborates with increased cytotoxicity in U-87MG cells, as observed. Together, these data reinforce the promising antineoplastic properties of kaempferol in addition to the key role of NLC as a platform for the efficient delivery of lipophilic drugs to neoplastic cells, which improved their uptake and therapeutic efficacy in glioblastoma multiforme cells.
Collapse
Affiliation(s)
- Luisa Ribeiro Nicoleti
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil.
| | - Jonatas Lobato Duarte
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Marcela Tavares Luiz
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University "Júlio de Mesquita Filho", School of Pharmaceutical Sciences, Araraquara 14800903, São Paulo, Brazil
| |
Collapse
|
16
|
Ibrahim SS. Nanostructured Lipid Carriers for Oral Delivery of a Corticosteroid: Role of Formulation on Biopharmaceutical Performance. J Pharm Sci 2023; 112:790-797. [PMID: 36270540 DOI: 10.1016/j.xphs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Corticosteroids are potent anti-inflammatory and immunosuppressive drugs widely used world-wide for treatment of diverse conditions. However, their use is restricted by their poor bioavailability and high risk-benefit ratio. Therefore, the aim of this study was to develop nanostructred lipid carriers (NLC) of prednisolone acetate (PA) to improve the drug's therapeutic outcome by altering its pharmacokinetic profile and/or allow preferential targeting to inflammatory tissues. PA-loaded NLCs were formulated by solvent injection method using Compritol (solid lipid), oleic acid (liquid lipid) and Tween 80 or Pluronic F68 (surfactant). Formulation conditions, such as liquid lipid concentration, total lipids, drug:lipid ratio and surfactant type were optimized based on particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE%) results. Optimized formulation was further characterized for its surface morphology, thermal properties, storage stability and anti-inflammatory activity in an animal acute inflammation model. Selected NLCs displayed PS of 170.7 nm, EE% of 67.4%, sustained release over 72 h and good stability for 30 days at refrigeration conditions. PA NLCs displayed superior anti-inflammatory activity of 83.9 ± 4.46% compared to PA suspension (40.5 ± 7.03%) and drug-free NLCs (54.7 ± 6.12%). The current work delineates the potential of NLCs for distinctly improved biopharmaceutical performance of PA.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
17
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
18
|
Lamptey RNL, Sun C, Layek B, Singh J. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. Int J Mol Sci 2023; 24:2213. [PMID: 36768536 PMCID: PMC9916775 DOI: 10.3390/ijms24032213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH. Blood pressure control in NH has been demonstrated through intracerebrovascular injection of agents that reduce the sympathetic influence on cardiac functions. However, traditional antihypertensive agents lack effective brain permeation, making NH management extremely challenging. Therefore, developing strategies that allow brain-targeted delivery of antihypertensives at the therapeutic level is crucial. Targeting nanotherapeutics have become popular in delivering therapeutics to hard-to-reach regions of the body, including the brain. Despite the frequent use of nanotherapeutics in other pathological conditions such as cancer, their use in hypertension has received very little attention. This review discusses the underlying pathophysiology and current management strategies for NH, as well as the potential role of targeted therapeutics in improving current treatment strategies.
Collapse
Affiliation(s)
| | | | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
19
|
Fernandez-Fernandez A, Manchanda R, Kumari M. Lipid-engineered nanotherapeutics for cancer management. Front Pharmacol 2023; 14:1125093. [PMID: 37033603 PMCID: PMC10076603 DOI: 10.3389/fphar.2023.1125093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
- *Correspondence: Alicia Fernandez-Fernandez,
| | - Romila Manchanda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Manisha Kumari
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
21
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
22
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Gupta U, Saren BN, Khaparkhuntikar K, Madan J, Singh PK. Applications of lipid-engineered nanoplatforms in the delivery of various cancer therapeutics to surmount breast cancer. J Control Release 2022; 348:1089-1115. [PMID: 35640765 DOI: 10.1016/j.jconrel.2022.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is the most extensively accounted malignancy among the women across the globe and is treatable in 70-80% of patients with early-stage, non-metastatic cancer. The current available therapies have been found to be less effective to treat distant organ metastases and advanced breast cancers. The clinical efficacy hugely suffers from chemoresistance, non-specific toxicity, relapse and other associated adverse effects. Furthermore, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Nanotechnology based approaches have been widely used over the period as they are nanometric, offer controlled and site-specific drug release along with reduced toxicity, improved half-life, and stability. Lipid-based nanoplatforms have grabbed a tremendous attention for delivering cancer therapeutics as they are cost-effective, scalable and provide better entrapment efficiency. In this review, all the promising applications of lipid-engineered nanotechnological tools for breast cancer will be summarized and discussed. Subsequently, BC therapy achieved with the aid of chemotherapeutics, phytomedicine, genes, peptides, photosensitizers, diagnostic and immunogenic agents etc. will be reviewed and discussed. This review gives tabular information on all the results obtained pertaining to the physicochemical properties of the lipidic nanocarrier, in vitro studies conferring to mechanistic drug release profile, cell viability, cellular apoptosis and in vivo studies referring to cellular internalisation, reduction of tumor volume, PK-PD profile, bioavailability achieved and anti-tumor activity in detail. It also gives complete information on the most relevant clinical trials done on lipidic nanoplatforms over two decades in tabular form. The review highlights the current status and future prospects of lipidic nanoplatforms with streamlined focus on cancer nanotherapeutics.
Collapse
Affiliation(s)
- Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
24
|
Makhdoomi S, Mahboobian MM, Haddadi R, Komaki A, Mohammadi M. Silibinin-loaded nanostructured lipid carriers (NLCs) ameliorated cognitive deficits and oxidative damages in aluminum chloride-induced neurotoxicity in male mice. Toxicology 2022; 477:153260. [PMID: 35850386 DOI: 10.1016/j.tox.2022.153260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Aluminum chloride (AlCl3) and its accumulation in the brain are associated with neurodegenerative disease. Recent investigations have illustrated that silibinin is known to have neuroprotective properties. The present study investigates the neuroprotective effects of silibinin-loaded nanostructured lipid carriers (Sili-NLCs) against AlCl3-induced neurotoxicity in male mice. Sili-NLCs were prepared using the emulsification-solvent evaporation method and subjected to particle size, zeta potential, and entrapment efficiency (% EE) analysis. Mice were treated with AlCl3 (100 mg/kg/day, p.o.) and with the same concentration of silibinin and Sili-NLCs (50,100, and 200 mg/kg/day, p.o.) for 30 days in different groups. After treating animals, behavioral studies were assessed. Also, the brain tissue samples were collected from all mice to evaluate oxidative damage and histological changes. The particle size, polydispersity index, zeta potential, and entrapment efficiency (% EE) of prepared Sili-NLCs found 239.7 ± 4.04 nm, 0.082 ± 0.003, - 16.33 ± 0.15 mV, and 72.65 ± 2.03 %, respectively. Brain uptake studies showed that Sili-NLCs had a 5.7-fold greater uptake in the mice brain than the free drug. The AlCl3 caused significant cognitive impairment and increased the level of lipid peroxidation accompanied by decreasing antioxidant enzyme activity in the brain tissue. These findings correlated well with the histopathological experiments. Furthermore, treatment with Sili-NLCs significantly improved the AlCl3-induced cognitive impairment, neurochemical anomalies, and histopathological changes. Given these results, silibinin, when delivered using NLCs, is potentially more effective than free silibinin in decreasing AlCl3- induced neurotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and natural product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Sakamula R, Yata T, Thong-Asa W. Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration. Metab Brain Dis 2022; 37:1465-1476. [PMID: 35353275 DOI: 10.1007/s11011-022-00967-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Neurodegenerative disease, for instance, Parkinson's disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc (p < 0.05). The significant reduction of brain superoxide dismutase activity (p < 0.05) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc (p < 0.05). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex (p < 0.05). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities (p < 0.05). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.
Collapse
Affiliation(s)
- Romgase Sakamula
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, 10900, Bangkok Bangkok, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, 10900, Bangkok Bangkok, Thailand.
| |
Collapse
|
26
|
Garg J, Pathania K, Sah SP, Pawar SV. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
In recent years, the field of nanotechnology and nanomedicine has transformed the pharmaceutical industry with the development of novel drug delivery systems that overcome the shortcomings of traditional drug delivery systems. Nanostructured lipid carriers (NLCs), also known as the second-generation lipid nanocarriers, are one such efficient and targeted drug delivery system that has gained immense attention all across due to their myriad advantages and applications. Scientific advancements have revolutionized our health system, but still, brain diseases like brain tumour have remained formidable owing to poor prognosis and the challenging drug delivery to the brain tissue. In this review, we highlighted the application and potential of NLCs in brain-specific delivery of chemotherapeutic agents.
Main body
NLCs are lipid-based formulations with a solid matrix at room temperature and offer advantages like enhanced stability, low toxicity, increased shelf life, improved drug loading capacity, and biocompatibility over other conventional lipid-based nanocarriers such as nanoemulsions and solid lipid nanoparticles. This review meticulously articulates the structure, classification, components, and various methods of preparation exemplified with various research studies along with their advantages and disadvantages. The concept of drug loading and release has been discussed followed by a brief about stability and strategies to improve stability of NLCs. The review also summarizes various in vitro and in vivo research studies on NLCs encapsulated with cytotoxic drugs and their potential application in brain-specific drug delivery.
Conclusion
NLCs are employed as an important carrier for the delivery of food, cosmetics, and medicines and recently have been used in brain targeting, cancer, and gene therapy. However, in this review, the applications and importance of NLCs in targeting brain tumour have been discussed in detail stating examples of various research studies conducted in recent years. In addition, to shed light on the promising role of NLCs, the current clinical status of NLCs has also been summarized.
Graphical Abstract
Collapse
|
27
|
Teixeira MI, Lopes CM, Gonçalves H, Catita J, Silva AM, Rodrigues F, Amaral MH, Costa PC. Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the Brain. Pharmaceutics 2022; 14:185. [PMID: 35057079 PMCID: PMC8778224 DOI: 10.3390/pharmaceutics14010185] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood-brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NLC) were prepared and functionalized with lactoferrin (Lf), facilitating transport across the BBB by interacting with Lf receptors expressed in the brain endothelium. NLC were characterized with respect to their physicochemical properties (size, zeta potential, polydispersity index) as well as their stability, encapsulation efficiency, morphology, in vitro release profile, and biocompatibility. Moreover, crystallinity and melting behavior were assessed by DSC and PXRD. Nanoparticles exhibited initial mean diameters between 180 and 220 nm and a polydispersity index below 0.3, indicating a narrow size distribution. NLC remained stable over at least 3 months. Riluzole encapsulation efficiency was very high, around 94-98%. FTIR and protein quantification studies confirmed the conjugation of Lf on the surface of the nanocarriers, with TEM images showing that the functionalized NLC presented a smooth surface and uniform spherical shape. An MTT assay revealed that the nanocarriers developed in this study did not cause a substantial reduction in the viability of NSC-34 and hCMEC/D3 cells at a riluzole concentration up to 10 μM, being therefore biocompatible. The results suggest that Lf-functionalized NLC are a suitable and promising delivery system to target riluzole to the brain.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.H.A.); (P.C.C.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech—Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Martins Lopes
- FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Portugal and Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal;
| | | | - José Catita
- FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Portugal and Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal;
- Paralab, AS, 4420-437 Gondomar, Portugal;
| | - Ana Margarida Silva
- REQUIMTE/LAQV—Polytechnic of Porto, School of Engineering, Rua Dr. António Bernardino de Almeida, 4229-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV—Polytechnic of Porto, School of Engineering, Rua Dr. António Bernardino de Almeida, 4229-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Maria Helena Amaral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.H.A.); (P.C.C.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech—Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.H.A.); (P.C.C.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech—Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
Markova E, Taneska L, Kostovska M, Shalabalija D, Mihailova L, Glavas Dodov M, Makreski P, Geskovski N, Petrushevska M, N Taravari A, Simonoska Crcarevska M. Design and evaluation of nanostructured lipid carriers loaded with Salvia officinalis extract for Alzheimer's disease treatment. J Biomed Mater Res B Appl Biomater 2022; 110:1368-1390. [PMID: 35019231 DOI: 10.1002/jbm.b.35006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 μm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.
Collapse
Affiliation(s)
- Elena Markova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Lea Taneska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Monika Kostovska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Ljubica Mihailova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Petrushevska
- Institute of Pharmacology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Arben N Taravari
- University Clinic for Neurology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| |
Collapse
|
29
|
Abdel-Rashid RS, El-leithy ES, Abdel-monem R. Formulation and Evaluation of Topical Biodegradable Films Loaded with Levofloxacin Lipid Nanocarriers. AAPS PharmSciTech 2021; 23:34. [PMID: 34950989 DOI: 10.1208/s12249-021-02189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Skin ulcers have increased sharply due to rise in the incidence of obesity and diabetes. This study investigated lipid nanocarriers as a strategy to improve the efficacy of levofloxacin (LV) in penetrating skin. Two surfactant types and different lipid mixtures were used in preparation of lipid nanocarriers. Mean particle size, percentage entrapment efficiency (%EE), in vitro release, and antimicrobial activity were examined. The selected formula was incorporated into a chitosan (CS) film that was subjected to physic-chemical characterization and ex vivo permeation study. The selected formula showed particle size, PDI, and ZP: 80.3 nm, -0.21, and -26 mV, respectively, synchronized with 82.12 %EE. In vitro release study showed slow biphasic release of LV from lipid nanocarriers. The antimicrobial effect illustrated statistically significant effect of lipid nanocarriers on decreasing the minimum effective concentration (MIC) of LV, particularly against E. coli. The optimized nanocarriers' formula loaded into CS film was clear, colorless, translucent, and smooth in texture. Based on the release profiles, it could be speculated that the CS film loaded with LV nanocarriers can maintain the antibacterial activity for 4 consecutive days. Thus, the local delivery of the drug in a sustained release manner could be predicted to enhance the therapeutic effect. Further clinical studies are strongly recommended. Graphical Abstract.
Collapse
|
30
|
Amiri M, Jafari S, Kurd M, Mohamadpour H, Khayati M, Ghobadinezhad F, Tavallaei O, Derakhshankhah H, Sadegh Malvajerd S, Izadi Z. Engineered Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as New Generations of Blood-Brain Barrier Transmitters. ACS Chem Neurosci 2021; 12:4475-4490. [PMID: 34841846 DOI: 10.1021/acschemneuro.1c00540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is considered as the most challenging barrier in brain drug delivery. Indeed, there is a definite link between the BBB integrity defects and central nervous systems (CNS) disorders, such as neurodegenerative diseases and brain cancers, increasing concerns in the contemporary era because of the inability of most therapeutic approaches. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have already been identified as having several advantages in facilitating the transportation of hydrophilic and hydrophobic agents across the BBB. This review first explains BBB functions and its challenges in brain drug delivery, followed by a brief description of nanoparticle-based drug delivery for brain diseases. A detailed presentation of recent progressions in optimizing SLNs and NLCs for controlled release drug delivery, gene therapy, targeted drug delivery, and diagnosis of neurodegenerative diseases and brain cancers is approached. Finally, the problems, challenges, and future perspectives in optimizing these carriers for potential clinical application were described briefly.
Collapse
Affiliation(s)
- Mahtab Amiri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Masoumeh Kurd
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Tehran 15469-13111, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Student’s Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Soroor Sadegh Malvajerd
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
31
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
32
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
33
|
Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7:e07994. [PMID: 34632135 PMCID: PMC8488847 DOI: 10.1016/j.heliyon.2021.e07994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Advancements in both material science and bionanotechnology are transforming the health care sector. To this end, nanoparticles are increasingly used to improve diagnosis, monitoring, and therapy. Huge research is being carried out to improve the design, efficiency, and performance of these nanoparticles. Nanoparticles are also considered as a major area of research and development to meet the essential requirements for use in nanomedicine where safety, compatibility, biodegradability, biodistribution, stability, and effectiveness are requirements towards the desired application. In this regard, lipids have been used in pharmaceuticals and medical formulations for a long time. The present work focuses on the use of lipid nanostructures to combat brain tumors. In addition, this review summarizes the literature pertaining to solid lipid nanoparticles (SLN) and nanostructured lipid carriers (LNC), methods of preparation and characterization, developments achieved to overcome blood brain barrier (BBB), and modifications used to increase their effectiveness.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman 11931, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Fedaa Al-Adaileh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Suma Al-Taher
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
34
|
Yin W, Qian SM. CD44v6-O-MWNTS-Loaded Gemcitabine and CXCR4 siRNA Improves the Anti-tumor Effectiveness of Ovarian Cancer. Front Cell Dev Biol 2021; 9:687322. [PMID: 34307366 PMCID: PMC8292962 DOI: 10.3389/fcell.2021.687322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is one of the most common malignancies of the female reproductive system and the deadliest gynecologic cancer. CXCR4 is expressed in a variety of malignant tumors such as breast, prostate, and ovarian cancers. It is also closely related to the migration, invasion, and metastasis of tumor cells. Carbon nanotubes have great potential for targeted therapy of tumors. CD44v6 is not expressed in normal ovarian tissues but is highly expressed in ovarian epithelial carcinoma. In the present study, we applied small interfering RNA targeting the CXCR4 gene and the clinical treatment gemcitabine and oxaliplatin of ovarian cancer as the therapeutic drug, and organically integrated chemotherapy and gene therapy through carbon nanotubes, and used CD44v6 single chain antibody as the targeting moiety to explore its application in ovarian cancer treatment. Significantly, we successfully synthesized CD44v6-O-MWNTS/Gemcitabine/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/siRNA system and the results were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). CD44v6-O-MWNTS/Gemcitabine/DOTAP was able to fully load siRNA at the ratio of 1:2.5. The carbon nanotubes could protect the siRNA. The drug release analysis showed that O-MWNTS/drug/DOTAP/siRNA was able to effectively release the siRNA, and gemcitabine or oxaliplatin in a time-dependent manner. O-MWNTS/drug/DOTAP/siRNA was able to be effectively uptake by ovarian cancer cells. The cellular uptake of CD44v6-O-MWNTS/drug/DOTAP/siRNA mainly depends on lipid raft-mediated endocytosis. CD44v6-O-MWNTS/drug/DOTAP/siRNA improved the effect of siRNA on the inhibition of ovarian cancer cell viability and the induction of cell apoptosis. The expression of CXCR4 was decreased by CD44v6-O-MWNTS/drug/DOTAP/siRNA in ovarian cancer cells. Tumorigenicity analysis in nude mice showed that CD44v6-O-MWNTS/drug/DOTAP/siRNA significantly repressed the tumor growth of ovarian cancer cells in vivo. The levels of Ki-67 and CXCR4 were repressed by CD44v6-O-MWNTS/drug/DOTAP/siRNA in the system. Thus, we concluded that the obtained CD44v6-O-MWNTS could effectively load gemcitabine or oxaliplatin, and CXCR4 siRNA, internalized by cancer cells and realized notable in vitro and in vivo inhibitory function against ovarian cancer growth. Our study provides a promising nanomaterial for the co-delivery of siRNA and anti-tumor drugs for the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Wen Yin
- Department of Gynecology II, Cangzhou Central Hospital, Cangzhou, China
| | - Su-Min Qian
- Department of Gynecology II, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
35
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
36
|
Rojekar S, Fotooh Abadi L, Pai R, Mahajan K, Kulkarni S, Vavia PR. Multi-organ targeting of HIV-1 viral reservoirs with etravirine loaded nanostructured lipid carrier: An in-vivo proof of concept. Eur J Pharm Sci 2021; 164:105916. [PMID: 34166780 DOI: 10.1016/j.ejps.2021.105916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
The inadequate bioavailability and toxicity potential of antiretroviral therapy limit their effectiveness in the complete eradication of HIV from viral reservoirs. The penetration of these drugs into the brain is challenging because of the unfavorable physicochemical properties required to cross the membranes, limiting the transport of the drugs. Thus, in the current study, the authors report a nanocarrier-based drug delivery of a highly hydrophobic drug to overcome the existing limitations of the conventional therapies. An explicitly simple approach was used to overcome the limitations of existing anti-HIV therapies. The monophasic hot homogenized solution of lipid, drug, and solubilizer was diluted with the predetermined hot surfactant solution followed by the ultrasonication to generate the polydisperse nanoparticles with the size range of 50-1000 nm. The anti-HIV1 potential of nanostructured lipid carriers of Etravirine on HIV-infected cell lines showed efficacy with an appreciable increase in the therapeutic index as compared with the plain drug. Further, the results obtained from confocal microscopy along with flow cytometry exhibited efficient uptake of the nanocarrier loaded with coumarin-6 in cells. The pharmacokinetics of Etravirine nanostructured carriers was significantly better in all aspects compared to the plain drug solution, which could be attributed to molecular dispersion in the lipid matrix of the nanocarrier. A significant enhancement of Etravirine concentration of several-fold was also observed in the liver, ovary, lymph node, and brain, respectively, as compared to plain drug solution when assessed by biodistribution studies in rats. In conclusion, ETR-NLC systems could serve as a promising approach for simultaneous multi-site targeting and could provide therapeutic benefits for the efficient eradication of HIV/AIDS infections.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Ketan Mahajan
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
37
|
Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods 2021; 199:3-8. [PMID: 33992771 DOI: 10.1016/j.ymeth.2021.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Construction of nanocarriers of different structures and properties have shown great promise as delivery systems for a wide range of drugs to improve therapeutic effects and reduce side effects. Nanostructured lipid carriers (NLCs) have been introduced as a new generation of solid lipid nanoparticles (SLNs) to overcome several of the limitations associated with the SLNs. NLCs consist of a blend of solid and liquid lipids which result in a partially crystallized lipid system that enables higher drug loading efficiency compared to SLNs. Owing to their biocompatibility, low toxicity, ease of preparation and scaling-up, and high stability, NLCs have been exploited in numerous pharmaceutical applications. Different methods for fabrication of NLCs have been described in the literature. In this article, procedures involved in emulsification-solvent evaporation method, one of the commonly utilized methods for preparation of NLCs, are described in detail. Critical aspects that should be considered throughout preparation process are also highlighted to allow for consistent and reproducible construction of NLCs.
Collapse
Affiliation(s)
- Eman Gomaa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elsabahy
- Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Misr University for Science and Technology, 6(th) of October City, 12566, Egypt.
| |
Collapse
|
38
|
Sesame Oil-Based Nanostructured Lipid Carriers of Nicergoline, Intranasal Delivery System for Brain Targeting of Synergistic Cerebrovascular Protection. Pharmaceutics 2021; 13:pharmaceutics13040581. [PMID: 33921796 PMCID: PMC8072759 DOI: 10.3390/pharmaceutics13040581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC–NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC–NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box–Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC–SOL) was studied. In vivo bioavailability from optimized NIC–NLC and NIC–SOL following IN and IV administration was evaluated and compared. The optimized NIC–NLC formula showed an average particle size of 111.18 nm, zeta potential of −15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC–NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC–NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC–NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
Collapse
|
39
|
Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm 2021; 598:120380. [PMID: 33609725 DOI: 10.1016/j.ijpharm.2021.120380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Blindness and impaired vision are considered as the most troublesome health conditions leading to significant socioeconomic strains. The current study focuses on development of nanoparticulate systems (i.e., niosomes) as drug vehicles to enhance the ocular availability of betaxolol hydrochloride for management of glaucoma. Betaxolol-loaded niosomes were further laden into pH-responsive in situ forming gels to further extend precorneal retention of the drug. The niosomes were evaluated in terms of vesicle size, morphology, size distribution, surface charge and encapsulation efficiency. The optimized niosomes, comprised of Span® 40 and cholesterol at a molar ratio of 4:1, displayed particle size of 332 ± 7 nm, zeta potential of -46 ± 1 mV, and encapsulation efficiency of 69 ± 5%. The optimal nanodispersion was then incorporated into a pH-triggered in situ forming gel comprised of Carbopol® 934P and hydroxyethyl cellulose. The formed gels were translucent, pseudoplastic, mucoadhesive, and displayed a sustained in vitro drug release pattern. Upon instillation of the betaxolol-loaded niosomal gel into rabbits' eyes, a prolonged intraocular pressure reduction and significant enhancement in the relative bioavailability of betaxolol (280 and 254.7%) in normal and glaucomatous rabbits, were attained compared to the marketed eye drops, respectively. Hence, the developed pH-triggered nanoparticulate gelling system might provide a promising carrier for ophthalmic drug delivery and for improved augmentation of glaucoma.
Collapse
Affiliation(s)
- Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Mahmoud Elsabahy
- Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt.
| | - Mahmoud El Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
40
|
Higazy IM, Mahmoud AA, Ghorab MM, Ammar HO. Development and evaluation of polyvinyl alcohol stabilized polylactide-co-caprolactone-based nanoparticles for brain delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Ghanem HA, Nasr AM, Hassan TH, Elkhoudary MM, Alshaman R, Alattar A, Gad S. Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization. Pharmaceutics 2021; 13:178. [PMID: 33525642 PMCID: PMC7911144 DOI: 10.3390/pharmaceutics13020178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the current study is to establish a comprehensive experimental design for the screening and optimization of Atorvastatin-loaded nanostructured lipid carriers (AT-NLCs). Initially, combined D-optimal screening design was applied to find the most significant factors affecting AT-NLCs properties. The studied variables included mixtures of solid and liquid lipids, the solid/liquid lipid ratio, surfactant type and concentration, homogenization speed as well as sonication time. Then, the variables homogenization speed (A), the ratio of solid lipid/liquid lipid (B), and concentration of the surfactant (C) were optimized using a central composite design. Particle size, polydispersity index, zeta potential, and entrapment efficiency were chosen as dependent responses. The optimized AT-NLCs demonstrated a nanometric size (83.80 ± 1.13 nm), Polydispersity Index (0.38 ± 0.02), surface charge (-29.65 ± 0.65 mV), and high drug incorporation (93.1 ± 0.04%). Fourier Transform Infrared Spectroscopy (FTIR) analysis showed no chemical interaction between Atorvastatin and the lipid mixture. Differential Scanning Calorimetry (DSC) analysis of the AT-NLCs suggested the transformation of Atorvastatin crystal into an amorphous state. Administration of the optimized AT-NLCs led to a significant reduction (p < 0.001) in serum levels of rats' total cholesterol, triglycerides, and low-density lipoproteins. This change was histologically validated by reducing the relevant steatosis of the liver.
Collapse
Affiliation(s)
- Heba A. Ghanem
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Al Qantarah Sharq 41636, Egypt;
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, North Sinai 45511, Egypt
| | - Tamer H. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mahmoud M. Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia; (R.A.); (A.A.)
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia; (R.A.); (A.A.)
| | - Shadeed Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
42
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
43
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|