1
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
2
|
Abdelhalim WA, Rabee AR, Soliman SM, Hagar M, Moneer EA, Bakr BA, Barakat A, Haukka M, Rasheed HA. New formyl indole derivatives based on thiobarbituric acid and their nano-formulations; synthesis, characterization, parasitology and histopathology investigations. Sci Rep 2025; 15:299. [PMID: 39747136 PMCID: PMC11696224 DOI: 10.1038/s41598-024-81683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
New formyl indole derivatives based on thiobarbituric acid were designed for targeting parasitological applications. The new compounds (5-((1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3a), and 5-((1-benzyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3b) were synthesized as thioxodihydropyrimidine derivatives via aldol condensation reaction. The structures of the synthesized compounds were confirmed based on their spectral data via FT-IR, 1H and 13C NMR spectral characterization. In addition, the structure of 3a is confirmed using X-ray crystallography. The synthesized compounds were prepared in nm scale via chitosan as a matrix, and their size was measured via scanning electronic microscope. Interestingly, the newly synthesized nano formulations show higher positive zeta potential (mV) values + 29.6 and + 26.1 for compounds NP-3a, and NP-3b; respectively. These compounds were tested for their parasitological activity. The results revealed that 3b had a great activity against cryptosporidium infection. Moreover, the nano formulation of compound 3b showed a significant reduction percent of oocyst count of cryptosporidium infected mice representing 66%. Furthermore, these compounds were screened by in-vitro hemolytic activity assay (IC50) values (cytotoxicity on RBCs) to assess their cytotoxic potentials and safety profiles.
Collapse
Affiliation(s)
- Walaa Ali Abdelhalim
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Ahmed R Rabee
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Saied M Soliman
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Esraa A Moneer
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland
| | - Hanaa A Rasheed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
3
|
Jeganathan A, Arunachalam K, Byju A, Rani George A, Sajeev S, Thangasamy K, Natesan G. Chitosan Nanoparticle-Mediated Delivery of Alstonia venenata R.Br. Root Methanolic Extract: A Promising Strategy for Breast Cancer Therapy in DMBA-Induced Breast Cancer in Sprague Dawley Rats. Antioxidants (Basel) 2024; 13:1513. [PMID: 39765841 PMCID: PMC11673636 DOI: 10.3390/antiox13121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Alstonia venenata R.Br., a plant native to the Western Ghats, is recognized for its diverse medicinal properties. The plant's extracts, particularly rich in alkaloids and other bioactive compounds, have shown potential anticancer activity. This study investigates the therapeutic potential of chitosan nanoparticles (CNPs) loaded with the root methanolic extract (RME) of A. venenata in combating breast cancer induced by dimethylbenz(a)anthracene (DMBA) in female Sprague Dawley rats. The RME-loaded chitosan nanoparticles (RME-EnCNPs) were synthesized and characterized, and their in vivo efficacy was evaluated. Treatment with RME-EnCNPs significantly inhibited tumor progression, which is evidenced by reduced tumor volume, burden, and incidence. Moreover, the nanoparticles demonstrated a sustained release of the active compounds, leading to marked improvements in various biochemical, enzymatic, and histopathological parameters. The study found that both RME and RME-EnCNPs effectively suppressed tumor growth, with RME-EnCNPs showing superior efficacy in modulating tumor progression. Antioxidant assays revealed that treatment with RME-EnCNPs (500 mg/kg) resulted in significant increases in total protein, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) levels, alongside a marked reduction in lipid peroxidation (LPO) (p < 0.001). These findings suggest that RME-EnCNPs exert a potent antioxidant effect, mitigating oxidative stress within the tumor microenvironment. The root extract of A. venenata and its nanoparticle formulation hold promise as a potential therapeutic agent for breast cancer, warranting further investigation to isolate active bioactive compounds and elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Aarthi Jeganathan
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cellular Therapy and Toxicological Genetics (CeTroGen), Faculty of Medicine (FAMED), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Anju Byju
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Anju Rani George
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Sradha Sajeev
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Kavimani Thangasamy
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore 641046, TN, India; (A.J.); (A.B.); (A.R.G.); (S.S.); (K.T.)
| |
Collapse
|
4
|
Reyna-Urrutia VA, Robles-Zepeda RE, Estevez M, Gonzalez-Reyna MA, Alonso-Martínez GV, Cáñez-Orozco JR, López-Romero JC, Torres-Moreno H. Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity. Pharmaceuticals (Basel) 2024; 17:1565. [PMID: 39770407 PMCID: PMC11678475 DOI: 10.3390/ph17121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Background: Bursera microphylla (B) A. Gray, a plant native to northwest Mexico, has long been utilized in traditional medicine for its anti-inflammatory effects. Previous studies have highlighted the bioactivity of B. microphylla fruit extract. Chitosan (Cs), a biopolymer known for its favorable physicochemical properties, has proven effective in encapsulating bioactive compounds. This study aimed to synthesize and characterize Cs-based microparticles containing B. microphylla fruit extract and evaluate their in vitro anti-inflammatory activity. Methods: Cs-based three-dimensional hydrogels were synthesized using physical cross-linking with ammonium hydroxide, incorporating B. microphylla fruit extract. The hydrogels were freeze-dried and mechanically ground into microparticles. The physicochemical properties of the microencapsulates were analyzed through scanning electron microscopy (SEM), optical microscopy (OM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and moisture absorption tests. Anti-inflammatory activity was assessed by measuring nitric oxide (NO) reduction in LPS-activated RAW 264.7 cells. Antimicrobial activity was evaluated against Staphylococcus aureus. Results: SEM and OM analyses revealed irregular morphologies with rounded protuberances, with particle sizes ranging from 135 to 180 µm. FTIR spectra indicated that no new chemical bonds were formed, preserving the integrity of the original compounds. TGA confirmed that the encapsulated extract was heat-protected. The moisture absorption test indicated the microparticles' hydrophilic nature. In vitro, the microencapsulated extract reduced NO production by 46%, compared to 32% for the non-encapsulated extract. The microencapsulated extract was effective in reducing the microbial load of S. aureus between 15-24%. Conclusions: Cs-based microencapsulates containing B. microphylla fruit extract exhibited no chemical interactions during synthesis and demonstrated significant anti-inflammatory and antimicrobial activity. These results suggest that the Cs-based system is a promising candidate for managing inflammatory conditions.
Collapse
Affiliation(s)
- Víctor Alonso Reyna-Urrutia
- Department of Chemical Biological and Agricultural Sciences, University of Sonora, Avenida University and Irigoyen, Caborca 83600, Sonora, Mexico; (V.A.R.-U.); (G.V.A.-M.)
| | - Ramón Enrique Robles-Zepeda
- Department of Chemical Biological Sciences, University of Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (R.E.R.-Z.); (J.R.C.-O.)
| | - Miriam Estevez
- Center for Applied Physics and Advacend Technologya, National Autonomous University of Mexico, Juriquilla Campus, Juriquilla 76230, Queretaro, Mexico; (M.E.); (M.A.G.-R.)
| | - Marlen Alexis Gonzalez-Reyna
- Center for Applied Physics and Advacend Technologya, National Autonomous University of Mexico, Juriquilla Campus, Juriquilla 76230, Queretaro, Mexico; (M.E.); (M.A.G.-R.)
| | - Grecia Vianney Alonso-Martínez
- Department of Chemical Biological and Agricultural Sciences, University of Sonora, Avenida University and Irigoyen, Caborca 83600, Sonora, Mexico; (V.A.R.-U.); (G.V.A.-M.)
| | - Juan Ramón Cáñez-Orozco
- Department of Chemical Biological Sciences, University of Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (R.E.R.-Z.); (J.R.C.-O.)
| | - Julio César López-Romero
- Department of Chemical Biological and Agricultural Sciences, University of Sonora, Avenida University and Irigoyen, Caborca 83600, Sonora, Mexico; (V.A.R.-U.); (G.V.A.-M.)
| | - Heriberto Torres-Moreno
- Department of Chemical Biological and Agricultural Sciences, University of Sonora, Avenida University and Irigoyen, Caborca 83600, Sonora, Mexico; (V.A.R.-U.); (G.V.A.-M.)
| |
Collapse
|
5
|
Nasaj M, Chehelgerdi M, Asghari B, Ahmadieh-Yazdi A, Asgari M, Kabiri-Samani S, Sharifi E, Arabestani M. Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. Int J Biol Macromol 2024; 277:134321. [PMID: 39084423 DOI: 10.1016/j.ijbiomac.2024.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Chitosan, a versatile amino polysaccharide biopolymer derived from chitin, exhibits broad-spectrum antimicrobial activity against various pathogenic microorganisms, including gram-negative and gram-positive bacteria, as well as fungi. Due to its ubiquitous use in medications, food, cosmetics, chemicals, and crops, it is an effective antibacterial agent. However, the antimicrobial performance of chitosan is influenced by multiple factors, which have been extensively investigated and reported in the literature. The goal of this review paper is to present a thorough grasp of the mechanisms of action and determining variables of chitosan and its derivatives' antibacterial activity. The article begins by providing a brief background on chitosan and its antimicrobial properties, followed by the importance of understanding the mechanism of action and factors influencing its activity".
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran; Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Babak Asghari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Asgari
- Department of Nutritional Science, School of Medicine, Hamadan university of Medical Science, Hamadan, Iran
| | - Saber Kabiri-Samani
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran; Infectious Disease Research Centre, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| |
Collapse
|
6
|
Macêdo HLRDQ, de Oliveira LL, de Oliveira DN, Lima KFA, Cavalcanti IMF, Campos LADA. Nanostructures for Delivery of Flavonoids with Antibacterial Potential against Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:844. [PMID: 39335017 PMCID: PMC11428843 DOI: 10.3390/antibiotics13090844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Flavonoids are secondary metabolites that exhibit remarkable biological activities, including antimicrobial properties against Klebsiella pneumoniae, a pathogen responsible for several serious nosocomial infections. However, oral administration of these compounds faces considerable challenges, such as low bioavailability and chemical instability. Thus, the encapsulation of flavonoids in nanosystems emerges as a promising strategy to mitigate these limitations, offering protection against degradation; greater solubility; and, in some cases, controlled and targeted release. Different types of nanocarriers, such as polymeric nanoparticles, liposomes, and polymeric micelles, among others, have shown potential to increase the antimicrobial efficacy of flavonoids by reducing the therapeutic dose required and minimizing side effects. In addition, advances in nanotechnology enable co-encapsulation with other therapeutic agents and the development of systems responsive to more specific stimuli, optimizing treatment. In this context, the present article provides an updated review of the literature on flavonoids and the main nanocarriers used for delivering flavonoids with antibacterial properties against Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Hanne Lazla Rafael de Queiroz Macêdo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Lara Limeira de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - David Nattan de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Karitas Farias Alves Lima
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
- Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 50670-901, PE, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| |
Collapse
|
7
|
Galván KLP, Veríssismo NVP, Santana JS, Lemos PVF, de Souza CO, Cardoso LG, de Jesus Assis D, Marcelino HR, de Oliveira TTB, Biasoto ATC, Junior AGT, Chorilli M, de Carvalho Santos-Ebinuma V, da Silva JBA. Encapsulation of polyketide colorants in chitosan and maltodextrin microparticles. Int J Biol Macromol 2024; 269:132173. [PMID: 38729461 DOI: 10.1016/j.ijbiomac.2024.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to encapsulate Talaromyces amestolkiae colorants in maltodextrin and chitosan microparticles using the spraydrying technique and to evaluate the biopolymers' capacities to protect the fungal colorant against temperature (65 °C) and extreme pH (2.0 and 13.0). The compact microparticles exhibited smooth or indented surfaces with internal diameters ranging between 2.58-4.69 μm and ζ ~ -26 mV. The encapsulation efficiencies were 86 % and 56 % for chitosan and maltodextrin microparticles, respectively. The shifted endothermic peaks of the free colorants indicated their physical stabilization into microparticles. The encapsulated colorants retained most of their absorbance (compared to the 0 h) even after 25 days at 65 °C. Contrary, the free colorant presented almost no absorbance after 1 day under the same conditions. Colorants in chitosan and maltodextrin matrices also partially maintained their colorimetric and fluorometric properties at acidic pH. However, only maltodextrin improved the resistance of the red colorant to alkaline environments. For the first time, the potential of polysaccharide-based microparticles to preserve polyketide colorants was demonstrated using 3D fluorescence. Therefore, this study demonstrated an alternative in developing functional products with natural color additives.
Collapse
Affiliation(s)
- Karina Lizzeth Pedraza Galván
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), Brazil.
| | - Nathália Vieira Porhírio Veríssismo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, São Paulo University, Ribeirão Preto, Brazil.
| | - Jamille Santos Santana
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil.
| | - Paulo Vitor França Lemos
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), Brazil.
| | | | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, University Salvador (UNIFACS), Brazil.
| | - Denílson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, University Salvador (UNIFACS), Brazil.
| | | | | | | | - Alberto Gomes Tavares Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Jania Betania Alves da Silva
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; Center for Exact and Technological Sciences, Collegiate of Mechanical Engineering, Federal University of Recôncavo da Bahia (UFRB), Brazil.
| |
Collapse
|
8
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
9
|
Tița O, Constantinescu MA, Rusu L, Tița MA. Natural Polymers as Carriers for Encapsulation of Volatile Oils: Applications and Perspectives in Food Products. Polymers (Basel) 2024; 16:1026. [PMID: 38674945 PMCID: PMC11054478 DOI: 10.3390/polym16081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The technique of encapsulating different materials into matrices that can both protect and release their contents under specific circumstances is known as encapsulation. It serves the primary function of shielding delicate components from outside influences, including heat, light, and humidity. This can be accomplished by a variety of procedures that, depending on the method and materials selected, result in the creation of particles with various structures. The materials used for encapsulation in food applications must be of high quality, acceptable for human consumption, and stable during processing and storage. The most suitable natural polymers for food applications are carbohydrates, proteins, or mixtures thereof. Volatile oils are end products of plant metabolism, accumulated and stored in various plant organs, cells, or secretory tissues. These are natural and are characterized by the scent of the aromatic plants they come from. Because of their antibacterial and antioxidant qualities, they are being utilized more and more in the food and pharmaceutical industries. Since volatile oils are highly sensitive to environmental changes, they must be stored under specific conditions after being extracted from a variety of plant sources. A promising method for increasing the applicability of volatile oils is their encapsulation into colloidal particles by natural polymers such as carbohydrates and proteins. Encapsulation hides the unfavorable taste of nutrients while shielding delicate dietary ingredients from the effects of heat, moisture, oxygen, and pH. This technique results in improved stability for volatile oils that are often sensitive to environmental factors and offers the possibility of using them in an aqueous system even if they are insoluble in water. This paper aims to provide an overview of the current advances in volatile oil encapsulation technologies and presents a variety of natural polymers used in the food industry for encapsulation. Also, a distinct section is created to highlight the current advances in dairy products enriched with encapsulated volatile oils.
Collapse
Affiliation(s)
- Ovidiu Tița
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| | - Maria Adelina Constantinescu
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| | - Lăcrămioara Rusu
- Department of Chemical Engineering and Food, Vasile Alecsandri University of Bacău, 600115 Bacău, Romania
| | - Mihaela Adriana Tița
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| |
Collapse
|
10
|
Balboni RDC, Cholant CM, Lemos RMJ, Rodrigues LS, Carreno NLV, Santos MJL, Avellaneda CAO, Andreazza R. Highly transparent sustainable biogel electrolyte based on cellulose acetate for application in electrochemical devices. Int J Biol Macromol 2024; 265:130757. [PMID: 38462107 DOI: 10.1016/j.ijbiomac.2024.130757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, an easy and low-cost production method for a cellulose acetate-based gel polymer containing lithium perchlorate and propylene carbonate is described, as well as the investigation of its properties for potential use as an electrolyte in electrochemical devices. Cellulose acetate, a biopolymer derived from natural matrix, is colourless and transparent, as confirmed by the UV-Vis spectroscopy, with 85 % transparency in visible spectrum. The gels were prepared and tested at different concentrations and proportions to optimise their properties. Thermogravimetry, XRD, and FTIR analyses revealed crucial characteristics, including a substantial 90 % mass loss between 150 and 250 °C, a semi-crystalline nature with complete salt dissociation within the polymer matrix, and a decrease in intensity at 1780 cm-1 with increasing Li+ ion concentration, suggesting an improvement in ionic conduction capacity. In terms of electrochemical performance, the gel containing 10 % by mass of cellulose acetate and 1.4 M of LiClO4 emerged as the most promising. It exhibited a conductivity of 2.3 × 10-4 S.cm-1 at 25 °C and 3.0 × 10-4 S.cm-1 at 80 °C. Additionally, it demonstrated an ideal shape of cyclic voltammetry curves and stability after 400 cycles, establishing its suitability as an electrolyte in electrochemical devices.
Collapse
Affiliation(s)
- Raphael D C Balboni
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Camila M Cholant
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Rafaela M J Lemos
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Lucas S Rodrigues
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Neftali L V Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| | - Marcos J L Santos
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Cesar A O Avellaneda
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Robson Andreazza
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| |
Collapse
|
11
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
12
|
El Hammadi N, Almajano MP, Pastor MV, Codina-Torrella I. Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions. Polymers (Basel) 2024; 16:649. [PMID: 38475332 DOI: 10.3390/polym16050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Myrtus communis L. is a species of the Myrtaceae family that is found in the Mediterranean region, and it is traditionally recognized for its importance and different uses. The objective of this study was to determine the effect of M. communis L. leaf extract (MCLE), which was incorporated directly into alginate spheres and films, on preserving oil-in-water emulsions from oxidation. For this purpose, the solvent extraction (with ethanol at 40, 60, and 80%) of the antioxidant compounds was optimized (total phenolic compounds (TPCs) and total flavonoid content (TFC)) along with the scavenging activity. The best condition for the extraction corresponded with 60% ethanol (MCLE60), with a TPC of ~66.06 g GAE/L and a TFC of ~18.91 g QE/L, which was selected for use in the following assays. MCLE60 showed a considerable radical scavenging activity (24.85 mmol TE/L in FRAP, 28.75 mmol TE/L in DPPH, 30.61 mmol TE/L in ABTS, and 14.94 mmol TE/L in ORAC), which was probably due to its content in the phenolic compounds arbutin (122.08 mg/L), epicatechin (73.89 mg/L), sinapic acid (51.85 mg/L), and gallic acid (36.72 mg/L). The oil-in-water emulsions with the MCLE60 spheres showed the best oxidative stability (TBARS ~2.64 mg MDA/kg of emulsion, PV ~35.7 meq hydroperoxides/kg of emulsion) in comparison to the control. The film was also able to protect the emulsion from oxidation for more than a week at 30 °C (TBARS ~1.9 mg MDA/kg of emulsion). The alginate films with MCLE60 presented an important release of phenolic compounds in water and acetic food simulants, while in both ethanol simulants, the release of TPC remained more stable over time. Thus, this study highlights the potential uses of MCLE as a natural ingredient for emulsion oxidative preservation and the production of alginate delivery systems (spheres and films).
Collapse
Affiliation(s)
- Nisserine El Hammadi
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Maria Vicenta Pastor
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Idoia Codina-Torrella
- Agri-Food Engineering and Biotechnology Department, Universitat Politècnica de Catalunya, Esteve Terrades 8, 08860 Castelldefels, Spain
| |
Collapse
|
13
|
Santonocito D, Campisi A, Pellitteri R, Sposito G, Basilicata MG, Aquino G, Pepe G, Sarpietro MG, Pittalà MGG, Schoubben A, Pignatello R, Puglia C. Lipid Nanoparticles Loading Steroidal Alkaloids of Tomatoes Affect Neuroblastoma Cell Viability in an In Vitro Model. Pharmaceutics 2023; 15:2573. [PMID: 38004552 PMCID: PMC10675799 DOI: 10.3390/pharmaceutics15112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Manuela Giovanna Basilicata
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | | | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
14
|
Pan Q, Su W, Yao Y. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering. Biomed Mater 2023; 18:062004. [PMID: 37751762 DOI: 10.1088/1748-605x/acfd78] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Bone/cartilage repair and regeneration have been popular and difficult issues in medical research. Tissue engineering is rapidly evolving to provide new solutions to this problem, and the key point is to design the appropriate scaffold biomaterial. In recent years, microsphere-based scaffolds have been considered suitable scaffold materials for bone/cartilage injury repair because microporous structures can form more internal space for better cell proliferation and other cellular activities, and these composite scaffolds can provide physical/chemical signals for neotissue formation with higher efficiency. This paper reviews the research progress of microsphere-based scaffolds in bone/chondral tissue engineering, briefly introduces types of microspheres made from polymer, inorganic and composite materials, discusses the preparation methods of microspheres and the exploration of suitable microsphere pore size in bone and cartilage tissue engineering, and finally details the application of microsphere-based scaffolds in biomimetic scaffolds, cell proliferation and drug delivery systems.
Collapse
Affiliation(s)
- Qian Pan
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Weixian Su
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongchang Yao
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
15
|
González-Chavarría I, Roa FJ, Sandoval F, Muñoz-Flores C, Kappes T, Acosta J, Bertinat R, Altamirano C, Valenzuela A, Sánchez O, Fernández K, Toledo JR. Chitosan Microparticles Enhance the Intestinal Release and Immune Response of an Immune Stimulant Peptide in Oncorhynchus mykiss. Int J Mol Sci 2023; 24:14685. [PMID: 37834146 PMCID: PMC10572396 DOI: 10.3390/ijms241914685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1β, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1β, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Francisco J. Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Tomas Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Romina Bertinat
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Oliberto Sánchez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| |
Collapse
|
16
|
Li Y, Meng Y, Wang Y, Wang Y, Wang Z. Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering. COATINGS 2023; 13:1644. [DOI: 10.3390/coatings13091644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Chitosan (CS) is a natural cationic polysaccharide obtained via the N-deacetylation of chitin. It has various outstanding biological properties such as nontoxicity, biodegradability, biocompatibility, and antimicrobial properties. Minerals can be deposited on the CS template using different methods to construct composites with structures and functions similar to those of natural bone tissue. These ideal scaffolds can produce bone via osteogenesis, osteoinduction, and osteoconduction, with good biocompatibility and mechanical properties, and are thus considered promising novel biomaterials for repairing hard tissue defects. In the last decade, the field of mineralized CS scaffolds has provided novel fundamental knowledge and techniques to better understand the aforementioned fascinating phenomenon. This study mainly focused on the basic structures and properties of mineralized CS scaffolds to understand the current research progress and explore further development. Further, it summarizes the types, preparation methods, components, properties, and applications of mineralized CS scaffolds in bone tissue engineering during the last 5 years. The defects and shortcomings of the scaffolds are discussed, and possible improvement measures are put forward. We aimed to provide complete research progress on mineralized CS scaffolds in bone tissue engineering for researchers and clinicians, and also ideas for the next generation of mineralized CS scaffolds.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yufeng Meng
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China, Hefei 230026, China
| | - Yuning Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yun Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Zuolin Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
17
|
Katopodi A, Safari K, Kalospyros A, Politopoulos K, Alexandratou E, Detsi A. Preparation and characterization of solid lipid nanoparticles incorporating bioactive coumarin analogues as photosensitizing agents. Colloids Surf B Biointerfaces 2023; 229:113439. [PMID: 37422991 DOI: 10.1016/j.colsurfb.2023.113439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Daphnetin (7,8-dihydroxy-coumarin, DAPH) is a naturally occurring coumarin presenting a wide array of biological activities. In the present study, daphnetin and its novel synthetic analogue 7,8-dihydroxy-4-methyl-3-(4-hydroxyphenyl)-coumarin (DHC) were encapsulated in solid lipid nanoparticles (SLNs) with Encapsulation Efficiency values of 80% and 40%, respectively. Nanoparticles of an average hydrodynamic diameter of approximately 250 nm were formed, showing a good stability in aqueous dispersion (polydispersity index 0.3-0.4), as determined by Dynamic Light Scattering (DLS). The SLNs were also characterized using Fourier Transform-Infrared (FT-IR) spectroscopy and Thermogravimetric Analysis (TGA). TEM images of the blank-SLNs indicated a spherical morphology and a size of 20-50 nm. The release studies of the coumarin analogues indicated a non-Fickian diffusion mechanism, while the release profiles better fitted on the Higuchi kinetic model. Moreover, the coumarin analogues and their SLNs were examined for their antioxidant activity using DPPH and anti-lipid peroxidation assays, exhibiting stronger antioxidant activity when encapsulated than in their free form. The coumarin derivatives and their SLNs were examined for their photodynamic therapy (PDT) efficacy against the human squamous carcinoma A431 cell line, with DHC coumarin both in its free and encapsulated form exhibiting significant PDT activity, reducing the cell viability to 11% after irradiation with a fluence rate of 2.16 J/cm2. Finally, the intracellular localization studies indicated the enhanced cellular uptake of the coumarin analogues when loaded in the SLNs.
Collapse
Affiliation(s)
- Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens, Greece; Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Kyriaki Safari
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens, Greece
| | - Alexandros Kalospyros
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens, Greece; Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens, Greece.
| |
Collapse
|
18
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
19
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
20
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023; 309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The perishability nature of harvested fruits and vegetables, along with the effect of environmental factors, storage conditions, and transportation, reduce the products' quality and shelf-life. Considerable efforts have been allocated to alternate conventional coatings based on new edible biopolymers for packaging. Chitosan is an attractive alternative to synthetic plastic polymers due to its biodegradability, antimicrobial activity, and film-forming properties. However, its conservative properties can be improved by adding active compounds, limiting microbial agents' growth and biochemical and physical damages, and enhancing the stored products' quality, shelf-life, and consumer acceptability. Most of the research on chitosan-based coatings focuses on antimicrobial or antioxidant properties. Along with the advancement of polymer science and nanotechnology, novel chitosan blends with multiple functionalities are required and should be fabricated using numerous strategies, especially for application during storage. This review discusses recent developments in using chitosan as a matrix to fabricate bioactive edible coatings and their positive impacts on increasing the quality and shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
21
|
Corchero JL, Favaro MTP, Márquez-Martínez M, Lascorz J, Martínez-Torró C, Sánchez JM, López-Laguna H, de Souza Ferreira LC, Vázquez E, Ferrer-Miralles N, Villaverde A, Parladé E. Recombinant Proteins for Assembling as Nano- and Micro-Scale Materials for Drug Delivery: A Host Comparative Overview. Pharmaceutics 2023; 15:pharmaceutics15041197. [PMID: 37111682 PMCID: PMC10144854 DOI: 10.3390/pharmaceutics15041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.
Collapse
Affiliation(s)
- José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marianna T P Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Merce Márquez-Martínez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Neus Ferrer-Miralles
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1166. [PMID: 37049259 PMCID: PMC10097199 DOI: 10.3390/nano13071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Collapse
Affiliation(s)
- Rafael O. de A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Eloyse Mikaelly de S. Silva
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Ana Heloneida de A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
23
|
Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int J Biol Macromol 2023; 236:123954. [PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Collapse
|
24
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
25
|
Cerdá-Bernad D, Pitterou I, Tzani A, Detsi A, Frutos MJ. "Novel chitosan/alginate hydrogels as carriers of phenolic-enriched extracts from saffron floral by-products using natural deep eutectic solvents as green extraction media". Curr Res Food Sci 2023; 6:100469. [PMID: 36926417 PMCID: PMC10011189 DOI: 10.1016/j.crfs.2023.100469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
The current saffron production system is generating several hundreds of tons of tepal waste, because only stigmas are used for food. Consequently, the valorization of saffron floral by-products by developing stable functional ingredients could lead to the environmental impact minimization. Thus, the main aim of this study was to develop innovative green extraction processes from saffron floral by-products by using Natural Deep Eutectic Solvents (NaDES) and ultrasound-assisted extraction (UAE) as ecological extraction method. Response surface methodology was used to optimize process parameters. To improve the stability of the optimal extracts, they were incorporated into chitosan/alginate hydrogels, studying their water-uptake and water retention capacity and the total phenolic content (TPC) during the in vitro digestion. The results indicated that the optimal extraction, regarding total phenolic and flavonoid content, was achieved in 20 min, using 180 W ultrasound power and 90% of NaDES. The results of the DPPH assay revealed the potent antioxidant activity of saffron floral by-products. The chitosan/alginate hydrogels incorporating the as-obtained NaDES extracts showed favorable properties whereas the TPC remained stable under intestinal conditions. Therefore, NaDES combined with UAE was an efficient technique to isolate high added-value compounds from saffron flowers, succeeding also the valorization of discarded waste by using green and low-cost strategies. Furthermore, these novel hydrogels could be used as promising candidates for food or cosmetic applications.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312, Orihuela, Spain
| | - Ioanna Pitterou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - María José Frutos
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312, Orihuela, Spain
| |
Collapse
|
26
|
Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, Nunes N, Gouveia CSS, Alves S, Borges JP, Pinheiro de Carvalho MÂA. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010055. [PMID: 36616183 PMCID: PMC9823467 DOI: 10.3390/plants12010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.
Collapse
Affiliation(s)
- David Jíménez-Arias
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, Avenida, Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Spain
| | - Patrícia Silva
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Henrique Carrêlo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Gonçalves
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - José Filipe Teixeira Ganança
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nuno Nunes
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carla S. S. Gouveia
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sónia Alves
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - João Paulo Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Miguel Â. A. Pinheiro de Carvalho
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
27
|
Development of Chincho ( Tagetes elliptica Sm.) Essential Oil Organogel Nanoparticles through Ionic Gelation and Process Optimization with Box-Behnken Design. Gels 2022; 8:gels8120815. [PMID: 36547339 PMCID: PMC9777601 DOI: 10.3390/gels8120815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to obtain chitosan nanoparticles (<1000 nm) with chincho (Tagetes elliptica Sp.) essential oil (CEO-CSNPs) using the ionic gelation method. A Box−Behnken design (BBD) was applied, using chitosan solution (CS) pH (4.0, 4.4, 4.8); the mass ratio of CS/CEO (1:0.7, 1:0.85, 1:1.0) and the mass ratio of CS/CS-tripolyphosphate (1:0.46, 1:0.58, 1:0.7) as independent variables. The formulation-dependent variables, encapsulation efficiency (EE) and loading capacity (LC) of the CEO-CSNPs were evaluated. BBD determined that optimal conditions for CEO-CSNPs were pH: 4.4, CS/CEO mass ratio 1:0.7 and CS/TPP mass ratio 1:0.46. Once the optimization was defined, particle size (PS), zeta potential (ZP), polydispersity index (PDI), CEO-CSNPs morphological studies, in vitro CEO release, and antibacterial activity were determined. The CEO-CSNPs showed an EE of 52.64% and a LC of 11.56%, with a diameter of 458.5 nm, with a ZP of 23.30mV, and a PDI of 0.418. The SEM studies showed that the nanoparticles were rounded and had uniform shapes. In addition, CEO-CSNPs showed a minimum inhibitory concentration against Staphylococcus aureus, Salmonella infantis and Escherichia coli of 5.29, 10.57 and 10.57 µg/mL, respectively. These results could be very useful for the stabilization of chincho essential oil for food industry purposes. However, several studies about the release, as well as interaction with food matrices, will be necessary.
Collapse
|
28
|
El-Sherbiny MM, Elekhtiar RS, El-Hefnawy ME, Mahrous H, Alhayyani S, Al-Goul ST, Orif MI, Tayel AA. Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol. Front Bioeng Biotechnol 2022; 10:1030936. [PMID: 36568301 PMCID: PMC9773392 DOI: 10.3389/fbioe.2022.1030936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer management and control, the most challenging difficulties are the complications resulting from customized therapies. The constitution of bioactive anticancer nanoconjugates from natural derivatives, e.g., chitosan (Ct), curcumin (Cur), and eugenol (Eug), was investigated for potential alternatives to cancer cells' treatment. Ct was extracted from Erugosquilla massavensis (mantis shrimp); then, Ct nanoparticles (NCt) was fabricated and loaded with Cur and/or Eug using crosslinking emulsion/ionic-gelation protocol and evaluated as anticancer composites against CaCo2 "colorectal adenocarcinoma" and MCF7 "breast adenocarcinoma" cells. Ct had 42.6 kDa molecular weight and 90.7% deacetylation percentage. The conjugation of fabricated molecules/composites and their interactions were validated via infrared analysis. The generated nanoparticles (NCt, NCt/Cur, NCt/Eug, and NCt/Cur/Eug composites) had mean particle size diameters of 268.5, 314.9, 296.4, and 364.7 nm, respectively; the entire nanoparticles carried positive charges nearby ≥30 mV. The scanning imaging of synthesized nanoconjugates (NCt/Cur, NCt/Eug, and NCt/Cur/Eug) emphasized their homogenous distributions and spherical shapes. The cytotoxic assessments of composited nanoconjugates using the MTT assay, toward CaCo2 and MCF7 cells, revealed elevated anti-proliferative and dose-dependent activities of all nanocomposites against treated cells. The combined nanocomposites (NCt/Eug/Cur) emphasized the highest activity against CaCo2 cells (IC50 = 11.13 μg/ml), followed by Cur/Eug then NCt/Cur. The exposure of CaCo2 cells to the nanocomposites exhibited serious DNA damages and fragmentation in exposed cancerous cells using the comet assay; the NCt/Eug/Cur nanocomposite was the most forceful with 9.54 nm tail length and 77.94 tail moment. The anticancer effectuality of innovatively combined NCt/Cur/Eug nanocomposites is greatly recommended for such biosafe, natural, biocompatible, and powerful anticancer materials, especially for combating colorectal adenocarcinoma cells, with elevated applicability, efficiency, and biosafety.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| |
Collapse
|
29
|
Marcião Vieira AC, Azevedo SG, Linhares RA, Brandão Justiniano SC, Pontes GO, Lima AR, Campelo PH, Bezerra JDA, da Costa Pinto C, da Fonseca Filho HD, Matos RS, Ţălu Ş, Bagnato VS, Inada NM, Sanches EA. Biodefensive Based on Piper nigrum Essential Oil for Controlling of Anopheles aquasalis Larvae: Influence of Temperature (35 °C) and Preservatives. Biomolecules 2022; 12:1711. [PMID: 36421726 PMCID: PMC9687424 DOI: 10.3390/biom12111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/06/2024] Open
Abstract
Considerable efforts have been spent on the development of biodefensives based on the encapsulation of essential oils for controlling of urban pests from their larval stage, especially as anopheline controlling agents. The larval source management of Anopheles aquasalis is important for malaria prevention. For this reason, this research proposes larvicidal biodefensives based on polymeric particles loaded with Piper nigrum essential oil, considering the influence of temperature (35 °C) and preservatives on the formulation stability. The biodefensive containing the preservative phenoxyethanol/methylisothiazolinone (PNE) resulted in 5 months of shelf-life storage with an Encapsulation Efficiency (EE%) of essential oil of 70%. The biodefensive PNE (containing 500 µg.mL-1 of encapsulated essential oil) presented a polydisperse particle size distribution, ranging from D10 = (127 ± 10) nm to D90 = (472 ± 78) nm and a particle mean size of (236 ± 34) nm. The AFM images revealed a spherical morphology with an external surface almost regular and smooth. The controlled release of the essential oil was evaluated up to 72 h according to the Korsmeyer-Peppas mathematical model, confirming the anomalous transport (n = 0.64 in pH = 3 and pH = 10, and n = 0.65 in pH = 7). The total larvae mortality on the in loco bioassays was almost reached (92%) after 24 h. However, according to the in vitro bioassays applying the in natura essential oil alone, the concentration of 454 μg.mL-1 resulted on the mortality of 70% of the larvae after 24 h. For this reason, the highest efficiency of the biodefensive PNE may be related to the encapsulation of essential oil, delivering the loaded particles more efficiently inside the larvae. From this perspective, the present study shows that a formulation based on P. nigrum essential oil may be taken into account in the integrated management of disease vector mosquitoes.
Collapse
Affiliation(s)
- Ayná Caroline Marcião Vieira
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Sidney Gomes Azevedo
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Ramon Andrade Linhares
- Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Grafe Oliveira Pontes
- Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | - Alessandra Ramos Lima
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, Brazil
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil
| | | | - Camila da Costa Pinto
- Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120, Brazil
| | | | - Robert Saraiva Matos
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 68903-419, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, Brazil
- Hagler Institute for Advanced Studies, Texas A&M University, College Station, TX 77843-3572, USA
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
| |
Collapse
|
30
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Patentology of chitinous biomaterials. Part II: chitosan. Carbohydr Polym 2022; 301:120224. [DOI: 10.1016/j.carbpol.2022.120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
|
32
|
Chignola R, Mainente F, Zoccatelli G. Rheology of individual chitosan and polyphenol/chitosan microparticles for food engineering. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
34
|
Karthik C, Caroline DG, Pandi Prabha S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sallam MF, Ahmed HMS, Diab KA, El-Nekeety AA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J Trace Elem Med Biol 2022; 73:127024. [PMID: 35753172 DOI: 10.1016/j.jtemb.2022.127024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2-NPs) are widely utilized in medicine and industry; however, their safety in biological organisms is still unclear. In this study, we determined the bioactive constitutes of thyme essential oil (TEO) and utilized the nanoemulsion technique to improve its protective efficiency against oxidative stress, genotoxicity, and DNA damage of biosynthesized titanium dioxide nanoparticles (TiO2-NPs). METHODS TEO nanoemulsion (TEON) was prepared using whey protein isolate (WPI). Sixty male Sprague-Dawley rats were divided into six groups and treated orally for 21 days including the control group, TEO, or TEON- treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w) and the groups received TiO2-NPs plus TEO or TEON. Blood and tissues samples were collected for different assays. RESULTS The GC-MS analysis identified 17 bioactive compounds in TEO and thymol and carvacrol were the major compounds. TEON was irregular with average particles size of 230 ± 3.7 nm and ζ-potential of -24.17 mV. However, TiO2-NPs showed a polygonal shape with an average size of 50 ± 2.4 nm and ζ-potential of -30.44 mV. Animals that received TiO2-NPs showed severe disturbances in liver and kidney indices, lipid profile, oxidant/antioxidant indices, inflammatory cytokines, gene expressions, increased DNA damage, and pathological changes in hepatic tissue. Both TEO and TEON showed potential protection against these hazards and TEON was more effective than TEO. CONCLUSION The nanoemulsion of TEO enhances the oil bioactivity, improves its antioxidant characteristics, and protects against oxidative damage and genotoxicity of TiO2-NPs.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Kawther A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
36
|
Kishore K, Selvasudha N, Subi M TM, Vasanthi HR. The multifaceted role of pectin in keratin based nanocomposite with antimicrobial and anti-oxidant activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Kedir WM, Abdi GF, Goro MM, Tolesa LD. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon 2022; 8:e10196. [PMID: 36042744 PMCID: PMC9420383 DOI: 10.1016/j.heliyon.2022.e10196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Due to their improved structural and functional properties as well as biocompatibility, biodegradability, and nontoxicity, chitosan and its nanoparticles are currently grasping the interest of researchers. Although numerous attempts have been made to apply chitosan and its derivatives to biological applications, few have reported in achieving its pharmacological and drug delivery. The goal of the current work is to provide a summary of the chitosan biopolymer's physical, chemical, and biological properties as well as its synthesis of nanoparticles and characterization of its modified nanocomposites. The drug delivery method and pharmaceutical applications of chitosan biopolymer and its modified nanocomposites are examined in further detail in this research. We will introduce also about the most current publications in this field of study as well as its recent expansion.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Gamachu Fikadu Abdi
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Meta Mamo Goro
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Leta Deressa Tolesa
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| |
Collapse
|
38
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
39
|
Piri-Gharaghie T, Doosti A, Mirzaei SA. Fabrication and Characterization of pcDNA3.1(+) Location within Chitosan/Nanoparticles Complexes for Enhanced Gene Delivery. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3110. [PMID: 36381280 PMCID: PMC9618014 DOI: 10.30498/ijb.2022.297534.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chitosan nanoparticles (CSNP) are becoming a popular alternative for delivering nucleic acids to tissues for gene transfer (gene therapy). The size and morphology of these biodegradable nano-carriers are adjustable, and their positive charge allows them to interact strongly with negatively charged nucleic acids. OBJECTIVE This study aimed to fabricate and characterize pcDNA3.1 (+) plasmid (pDNA) and CSNP complexes and determine the plasmid location in these vehicles. MATERIALS AND METHODS The characteristics of the pDNA/CSNP complex after production were investigated by SEM, XRD, DLS, TGA, and FTIR. The capacity of CSNP to form complexes with pDNA was investigated by labeling free plasmids with the fluorescent intercalating dye OliGreen. The stability of pDNA/CSNP in the presence of chitosanase was evaluated. Surface-Enhanced Raman Spectroscopy (SERS) for pDNA localization was performed, and absorption rate in BALB/c mice was assessed by real-time PCR. RESULTS The optimum pDNA/CSNP ratio for plasmid complex formation was established to be 1:2 (w.w) by measuring spectroscopy. At these optimum complex formation ratios, spectroscopy, and gel digest experiments, SERS indicated that a part of the pDNA was present on the complex outer surface. The findings of plasmid absorption in mouse thigh tissue by real-time PCR revealed that the rate of gene uptake was significantly greater at a dose of 1:2 (w.w) of pDNA/CSNP than in other groups (P< 0.001). CONCLUSIONS The findings of this study reveal exactly pDNA fits into polymer nanostructured delivery systems, allowing the formulation to be adjusted for selective distribution. This understanding will aid future research into the system's functioning in vitro and in vivo.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
40
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
41
|
Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants (Basel) 2022; 11:antiox11061210. [PMID: 35740107 PMCID: PMC9220116 DOI: 10.3390/antiox11061210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
Although osteoarthritis (OA) is a chronic inflammatory degenerative disease affecting millions of people worldwide, the current therapies are limited to palliative care and do not eliminate the necessity of surgical intervention in the most severe cases. Several dietary and nutraceutical factors, such as hydroxytyrosol (Hyt), have demonstrated beneficial effects in the prevention or treatment of OA both in vitro and in animal models. However, the therapeutic application of Hyt is limited due to its poor bioavailability following oral administration. In the present study, a localized drug delivery platform containing a combination of Hyt-loading chitosan nanoparticles (Hyt-NPs) and in situ forming hydrogel have been developed to obtain the benefits of both hydrogels and nanoparticles. This thermosensitive formulation, based on Pluronic F-127 (F-127), hyaluronic acid (HA) and Hyt-NPs (called Hyt@tgel) presents the unique ability to be injected in a minimally invasive way into a target region as a freely flowing solution at room temperature forming a gel at body temperature. The Hyt@tgel system showed reduced oxidative and inflammatory effects in the chondrocyte cellular model as well as a reduction in senescent cells after induction with H2O2. In addition, Hyt@tgel influenced chondrocytes gene expression under pathological state maintaining their metabolic activity and limiting the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features. Hence, it can be concluded that the formulated hydrogel injection could be proposed for the efficient and sustained Hyt delivery for OA treatment. The next step would be the extraction of “added-value” bioactive polyphenols from by-products of the olive industry, in order to develop a green delivery system able not only to enhance the human wellbeing but also to promote a sustainable environment.
Collapse
|
42
|
Fathima E, Nallamuthu I, Anand T, Naika M, Khanum F. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int J Biol Macromol 2022; 208:596-610. [PMID: 35292282 DOI: 10.1016/j.ijbiomac.2022.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/04/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Folic acid is a synthetic form of folate widely used for food fortification. However, its bioavailability is limited due to its inherent instability at several conditions. Therefore, a suitable encapsulation system is highly required. In the present study, the fabrication condition for folic acid-loaded chitosan nanoparticle (FA-Chi-NP) was optimized and then subjected to characterization. The optimized formulation had the particle size, zeta potential, and encapsulation efficiency of 180 nm, +52 mV, and 90%, respectively. In vitro release profile showed a controlled release of folic acid from the nanoparticles. Treatment of Caco-2 cells with the formulation showed no adverse effects based on MTT and LDH assays, and also, the cellular uptake was significantly higher after 2 h compared to free folic acid. Further, the oral administration of rats with FA-Chi-NPs (1 mg/kg BW) increased the plasma level of both folic acid (3.2-fold) and its metabolites such as tetrahydrofolate (2.3-fold) and 5-methyltetrahydrofolate (1.6-fold) significantly compared to free folic acid. In a bio-distribution study, duodenum and jejunum were found to be the primary sites for absorption. These findings suggest that chitosan may be a promising carrier for the delivery of folic acid and, therefore, could be exploited for various food applications.
Collapse
Affiliation(s)
- Eram Fathima
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India.
| | - Mahadeva Naika
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| |
Collapse
|
43
|
Pena GA, da Costa Lopes AS, de Morais SHS, do Nascimento LD, dos Santos FRR, da Costa KS, Alves CN, Lameira J. Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082519. [PMID: 35458718 PMCID: PMC9028570 DOI: 10.3390/molecules27082519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Repellents are compounds that prevent direct contact between the hosts and the arthropods that are vectors of diseases. Several studies have described the repellent activities of natural compounds obtained from essential oils. In addition, these chemical constituents have been pointed out as alternatives to conventional synthetic repellents due to their interesting residual protection and low toxicity to the environment. However, these compounds have been reported with short shelf life, in part, due to their volatile nature. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, we review the most commonly used polymeric/lipid nanosystems applied in the encapsulation of small organic molecules obtained from essential oils that possess repellent activity, and we also explore the theoretical aspects related to the intermolecular interactions, thermal stability, and controlled release of the nanoencapsulated bioactive compounds.
Collapse
Affiliation(s)
- Gueive Astur Pena
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Anna Sylmara da Costa Lopes
- Laboratório de Catalálise e Oleoquímica, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Sylvano Heleno Salgado de Morais
- Laboratório de Química Analítica e Ambiental, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Lidiane Diniz do Nascimento
- Museu Paraense Emilio Goeldi, Laboratório Adolpho Ducke, Perimetral Avenue, Nuber 1901, Belém 66077-830, Brazil;
| | | | - Kauê Santana da Costa
- Laboratório de Simulação Computacional, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil
- Correspondence: (K.S.d.C.); (J.L.)
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
- Correspondence: (K.S.d.C.); (J.L.)
| |
Collapse
|
44
|
Alshahrani SM. Optimization and Characterization of Cuscuta reflexa Extract Loaded Phytosomes by the Box-Behnken Design to Improve the Oral Bioavailability. J Oleo Sci 2022; 71:671-683. [PMID: 35387912 DOI: 10.5650/jos.ess21318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to determine whether the complexing hydroalcoholic extract of Cuscuta reflexa (HECR) with phosphatidyl choline increases its bioavailability. As a result, a novel phytosomal delivery system for the HECR-soya lecithin complex was developed (HECR-phytosome). The HECR-phytosome complex was synthesized and characterized as phytovesicles. The formulation was prepared using a variable concentration of soya lecithin (1:1-1:3 percent w/v), a temperature range of (45- 65°C), and sonication time (4-8 min). Optimization of HECR-loaded phytosomal formulations was performed using Design Expert software. A three-factor, three-level Box-Behnken design was used to optimize this HECR delivery system, as dependent variables, vesicular size and entrapment efficiency were evaluated using a Box Behnken factorial design. Further characterization of the optimized formulation included vesicle size, PDI, zeta potential, entrapment efficiency, FTIR, DSC, TEM, and in vitro release. Vesicle sizes ranged from 173.5±6.17 nm to 215.9±6.53 nm, and response rates for entrapment efficiency ranged from 52.9±1.65 to 77.2±1.1%. The uniform structure and spherical shape were demonstrated by transmission electron microscopy. Among the drug release kinetic models, the formulation followed the Higuchi model (R2 = 0.9978), releasing 96.3±3.7% of the polyphenol and flavonoids phytoconstituents from HECR-loaded phytosomes in 12 hours, compared to 49.3±2.5% in the plain extract. In addition, the optimized formulation passes the stability test. Therefore, the results demonstrated that phytosomal nanocarriers have the potential to increase the bioavailability of Cuscuta reflexa extract.
Collapse
Affiliation(s)
- Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy Prince Sattam Bin Abdulaziz University
| |
Collapse
|
45
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Saleh I, Abu‐Dieyeh M. Evaluation of novel
Prosopis juliflora
water soluble leaf ethanolic extract as preservation coating material of cucumber. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science Qatar University Doha Qatar
| | - Mohammed Abu‐Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science Qatar University Doha Qatar
| |
Collapse
|
47
|
Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers (Basel) 2022; 14:polym14030490. [PMID: 35160478 PMCID: PMC8839549 DOI: 10.3390/polym14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper was to formulate microspheres based on biodegradable polymers (chitosan and sodium alginate), using the complex coacervation technique. Subsequently, the prepared microspheres were loaded with quercetin (QUE), a pharmacological active ingredient insoluble in water and unstable to light, temperature and air. After preparation, the loaded microspheres underwent several studies for physical chemical characterization (performed by scanning electron microscopy-SEM, laser 3D scanning, and thermal analysis-TA). Furthermore, they were analyzed in order to obtain information regarding swelling index, drug entrapment, and in vitro release capacity. The obtained experimental data demonstrated 86.07% entrapment of QUE into the microspheres, in the case of the one with the highest Ch concentration. Additionally, it was proved that such systems allow the controlled release of the active drug over 24 h at the intestinal level. SEM micrographs proved that the prepared microspheres have a wrinkled surface, with compact structures and a large number of folds. On the basis of the TA analysis, it was concluded that the obtained microspheres were thermally stable, facilitating their usage at normal physiological temperatures as drug delivery systems.
Collapse
|
48
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int J Biol Macromol 2021; 192:1084-1097. [PMID: 34673101 DOI: 10.1016/j.ijbiomac.2021.10.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/15/2022]
Abstract
This study was aimed to encapsulate lemongrass (Cymbopogon commutatus) essential oil (LGEO) into chitosan nanoparticles (CSNPs) and to investigate their physicochemical, morphological, structural, thermal, antimicrobial and in-vitro release properties. CSNPs exhibited spherical morphology with an average hydrodynamic size of 175-235 nm. Increasing EO loading increased the average size of CSNPs from 174 to 293 nm (at CS:EO ratio from 1:0 to 1:1.25). SEM and AFM confirmed the results obtained by hydrodynamic size indicating that EO loading led to formation of large aggregated NPs. The successful physical entrapment of EO within NPs was shown by fourier-transform infrared spectroscopy. X-ray diffractogram of loaded-CSNPs compared to non-loaded CSNPs exhibited a broad high intensity peak at 2θ = 19-25° implying the entrapment of LGEO within CSNPs. Thermogravimetric analysis (TGA) showed that encapsulated EO was decomposed at a temperature of 252 °C compared to a degradation temperature of 126 °C for pure LGEO, indicating a two-fold enhancement in thermal stability of encapsulated CSNPs. Differential scanning calorimetry also proved the physical entrapment of EO into polymeric matrix of chitosan. In-vitro release study showed a time- and pH-dependent release of EO into release media demonstrating a three-stage release behavior with a rapid initial release of EO, followed by a steady state migration of EO from its surrounding envelope at the later stages. Antimicrobial assay showed strong antimicrobial properties of free form of LGEO against the bacteria (both gram positive and gram negative) and fungi species tested. Moreover, loaded-CSNPs exhibited stronger antibacterial and anti-fungal activities than non-loaded CSNPs.
Collapse
Affiliation(s)
- Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran.
| | | | - Babak Ghanbarzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran.
| | - Maryam Mohammadi
- Drug Applied Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N°4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|