1
|
Hussein MY, Nasr M, Emad V, Maged J, George P, Emad A, Badr AM, El-Naggar ME, Abdo SM, Hussein J. Unveiling the potential anticancer activity of Spirulina maxima extract-nanoemulsion through in vitro and in vivo studies. Sci Rep 2025; 15:912. [PMID: 39762303 PMCID: PMC11704349 DOI: 10.1038/s41598-024-82924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. Recently, there has been growing interest in cyanobacteria. This focus is particularly evident in developing innovative anticancer treatments to reduce reliance on traditional chemotherapy. This study investigates the anticancer potential of the Spirulina maxima extract nanoemulsion (SMNE) technique to improve the delivery, stability, and solubility of the S. maxima extract (SME). SMNE, prepared in three concentrations (SMNEC1, SMNEC2, SMNEC3), was characterized and confirmed to successfully load SME into silica-coated nanoparticles. Cytotoxicity tests on HepG2 and MCF-7 cell lines revealed a significant reduction in cell viability after 48-hour SMNE treatment, with IC50 values of 1488 µg/mL and 1721.936 µg/mL, respectively. SMNE also demonstrated efficacy in inhibiting tumor growth in mice with Ehrlich ascites carcinoma, normalizing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reducing oxidative stress markers such as catalase (CAT) and malondialdehyde (MDA). Histopathological examination showed that SMNEC3-treated groups had almost normal liver architecture. Additionally, SMNE downregulated oncogenic miR-221-3p and miR-222-3p, activating cancer suppression genes p27 and PTEN. The study concludes that SMNE, with its anti-inflammatory and antioxidant properties and ability to modulate key miRNAs, enhances SME delivery and shows promise as an effective cancer treatment.
Collapse
Affiliation(s)
| | - Merna Nasr
- Biotechnology Program, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | - Veronia Emad
- Biotechnology Program, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | - Julie Maged
- Biotechnology Program, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | - Portia George
- Biotechnology Program, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | - Amina Emad
- Biotechnology Program, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza, 12612, Egypt
| | | | - Sayeda M Abdo
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
2
|
Chung SJ, Hadrick K, Nafiujjaman M, Apu EH, Hill ML, Nurunnabi M, Contag CH, Kim T. Targeted Biodegradable Near-Infrared Fluorescent Nanoparticles for Colorectal Cancer Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7861-7870. [PMID: 38574012 PMCID: PMC11653400 DOI: 10.1021/acsabm.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the U.S., and early detection and diagnosis are essential for effective treatment. Current methods are inadequate for rapid detection of early disease, revealing flat lesions, and delineating tumor margins with accuracy and molecular specificity. Fluorescence endoscopy can generate wide field-of-view images enabling detection of CRC lesions and margins; increased signal intensity and improved signal-to-noise ratios can increase both speed and sensitivity of cancer detection. For this purpose, we developed targeted near-infrared (NIR) fluorescent silica nanoparticles (FSNs). We tuned their size to 50-200 nm and conjugated their surface with an antibody to carcinoembryonic antigen (CEA) to prepare CEA-FSNs. The physicochemical properties and biodegradable profiles of CEA-FSN were characterized, and molecular targeting was verified in culture using HT29 (CEA positive) and HCT116 (CEA negative) cells. CEA-FSNs bound to the HT29 cells to a greater extent than to the HCT116 cells, and smaller CEA-FSNs were internalized into HT29 cells more efficiently than larger CEA-FSNs. After intravenous administration of CEA-FSNs, a significantly greater signal was observed from the CEA-positive HT29 than the CEA-negative HCT116 tumors in xenografted mice. In F344-PIRC rats, polyps in the intestine were detected by white-light endoscopy, and NIR fluorescent signals were found in the excised intestinal tissue after topical application of CEA-FSNs. Immunofluorescence imaging of excised tissue sections demonstrated that the particle signals coregistered with signals for both CRC and CEA. These results indicate that CEA-FSNs have potential as a molecular imaging marker for early diagnosis of CRC.
Collapse
Affiliation(s)
- Seock-Jin Chung
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ehsanul Hoque Apu
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meghan L. Hill
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nurunnabi
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Christopher H. Contag
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department
of Biomedical Engineering, Institute for Quantitative Health Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Kao C, Wang SW, Chen PC, Huang CY, Wei YF, Ho CH, Hong YH. Rice Husk Silica Liquid Enhances Autophagy and Reduces Overactive Immune Responses via TLR-7 Signaling in Lupus-Prone Models. Int J Mol Sci 2024; 25:10133. [PMID: 39337618 PMCID: PMC11432151 DOI: 10.3390/ijms251810133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by widespread inflammation and multi-organ damage. Toll-like receptor 7 (TLR-7) and autophagy have been implicated in SLE pathogenesis. Rice husk silica liquid (RHSL) has shown potential for modulating inflammatory responses, but its effects on SLE have not been thoroughly investigated. This study aims to evaluate the impact of RHSL on immune responses and autophagy in cell culture experiments, focusing on its effects on TLR-7 signaling, cytokine production, and autophagy modulation. RAW264.7 cells and human peripheral blood mononuclear cells (PBMCs) from healthy donors and SLE patients were used. Cells were stimulated with LPS or TLR-7 agonists and treated with RHSL. Cell viability was assessed, and cytokine levels (TNF-α and IL-6) were measured by ELISA. Autophagy-related proteins (LC3II, ATG5-ATG12) were analyzed by Western blotting. The effect of autophagy inhibition was studied using 3-methyladenine (3-MA). A concentration of 100 μg/mL RHSL did not affect cell viability but significantly reduced the TNF-α production in TLR-7 agonist-stimulated RAW264.7 cells (compared to TLR-7 alone, 3.41 ± 0.54 vs. 6.72 ± 0.07 folds) and PBMCs (compared to TLR-7 alone, 0.97 ± 0.19 vs. 1.40 ± 0.33 folds). RHSL enhanced autophagy, as evidenced by increased LC3II (4.35 ± 1.08 folds) and ATG5-ATG12 (7.07 ± 1.30 folds) conjugation in both RAW264.7 cells and SLE patient-derived PBMCs. The reduction in TNF-α production by RHSL was attenuated by 3-MA, indicating that autophagy plays a role in this process. RHSL also inhibited the translocation of phosphorylated NF-κB into the nucleus, suggesting a mechanism for its anti-inflammatory effects. RHSL exhibits potential as an immunomodulatory agent in SLE by enhancing autophagy and modulating TLR-7 signaling pathways. These findings suggest that RHSL could offer therapeutic benefits for managing inflammatory responses in SLE and warrant further investigation into its clinical applications.
Collapse
Affiliation(s)
- Chieh Kao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shih-Wei Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Po-Chun Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116059, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yu-Feng Wei
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yong-Han Hong
- Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei 116059, Taiwan
| |
Collapse
|
4
|
Kolawole OM, Khutoryanskiy VV. Potential bladder cancer therapeutic delivery systems: a recent update. Expert Opin Drug Deliv 2024; 21:1311-1329. [PMID: 39178039 DOI: 10.1080/17425247.2024.2396958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
INTRODUCTION Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients. AREAS COVERED This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics. EXPERT OPINION This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.
Collapse
|
5
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
6
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Zhaisanbayeva BA, Mun EA, Ulmanova L, Zhunissova Z, Umbayev B, Olzhayev F, Vorobjev IA, Hortelano G, Khutoryanskiy VV. In vitro and in vivo toxicity of thiolated and PEGylated organosilica nanoparticles. Int J Pharm 2024; 652:123852. [PMID: 38280501 DOI: 10.1016/j.ijpharm.2024.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
This study comprises the comprehensive toxicological assessment of thiolated organosilica nanoparticles (NPs) synthesised from 3-mercaptopropyltrimethoxysilane (MPTS). We investigated the influence of three different types of nanoparticles synthesised from 3-mercaptopropyltrimethoxysilane: the starting thiolated silica (Si-NP-SH) and their derivatives prepared by surface PEGylation with PEG 750 (Si-NP-PEG750) and 5000 Da (Si-NP-PEG5000) on biological subjects from in vitro to in vivo experiments to explore the possible applications of those nanoparticles in biomedical research. As a result of this study, we generated a comprehensive understanding of the toxicological properties of these nanoparticles, including their cytotoxicity in different cell lines, hemolytic properties, in vitro localisation, mucosal irritation properties and biodistribution in BALB/c mice. Our findings indicate that all three types of nanoparticles can be considered safe and have promising prospects for use in biomedical applications. Nanoparticles did not affect the viability of HPF, MCF7, HEK293 and A549 cell lines at low concentrations (up to 100 µg/mL); moreover, they did not cause organ damage to BALB/c mice at concentrations of 10 mg/kg. The outcomes of this study enhance our understanding of the impact of organosilica nanoparticles on health and the environment, which is vital for developing silica nanoparticle-based drug delivery systems and provides opportunities to expand the applications of organosilica nanoparticles.
Collapse
Affiliation(s)
- Balnur A Zhaisanbayeva
- School of Engineering and Digital Science, Nazarbayev University, 010000 Astana, Kazakhstan; School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ellina A Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Leila Ulmanova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Zarina Zhunissova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Gonzalo Hortelano
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | | |
Collapse
|
8
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
9
|
Zorin IM, Fetin PA, Mikusheva NG, Lezov AA, Perevyazko I, Gubarev AS, Podsevalnikova AN, Polushin SG, Tsvetkov NV. Pullulan-Graft-Polyoxazoline: Approaches from Chemistry and Physics. Molecules 2023; 29:26. [PMID: 38202609 PMCID: PMC10780122 DOI: 10.3390/molecules29010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.
Collapse
Affiliation(s)
- Ivan M. Zorin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Petr A. Fetin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Sergey G. Polushin
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| |
Collapse
|
10
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Kudaibergen D, Park HS, Park J, Im GB, Lee JR, Joung YK, Bhang SH, Kim JH. Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Eng Regen Med 2023; 20:177-198. [PMID: 36689072 PMCID: PMC10070585 DOI: 10.1007/s13770-022-00510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, various attempts have been made to apply diverse types of nanoparticles in biotechnology. Silica nanoparticles (SNPs) have been highlighted and studied for their selective accumulation in diseased parts, strong physical and chemical stability, and low cytotoxicity. SNPs, in particular, are very suitable for use in drug delivery and bioimaging, and have been sought as a treatment for ischemic diseases. In addition, mesoporous silica nanoparticles have been confirmed to efficiently deliver various types of drugs owing to their porous structure. Moreover, there have been innovative attempts to treat ischemic diseases using SNPs, which utilize the effects of Si ions on cells to improve cell viability, migration enhancement, and phenotype modulation. Recently, external stimulus-responsive treatments that control the movement of magnetic SNPs using external magnetic fields have been studied. This review addresses several original attempts to treat ischemic diseases using SNPs, including particle synthesis methods, and presents perspectives on future research directions.
Collapse
Affiliation(s)
- Dauletkerey Kudaibergen
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinwook Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju-Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoungbuk-Gu, Seoul, 02792, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoungbuk-Gu, Seoul, 02792, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae-Hyuk Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Fathy MM, Hassan AA, Elsayed AA, Fahmy HM. Controlled release of silica-coated insulin-loaded chitosan nanoparticles as a promising oral administration system. BMC Pharmacol Toxicol 2023; 24:21. [PMID: 36998008 PMCID: PMC10064556 DOI: 10.1186/s40360-023-00662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Oral insulin administration has recently become one of the most exciting research subjects. Different approaches have been carried out to get an effective oral insulin delivery system using nanotechnology. The development of a delivery system that overcomes the difficulties of oral insulin administration, achieving high stability and minimal side effects, is still an urgent need. Therefore, this study is considered one of the efforts to design a new prospective drug delivery nano-composite (silica-coated chitosan-dextran sulfate nanoparticles). METHODS Chitosan-dextran sulfate nanoparticles (CS-DS NPs) were prepared via a complex coacervation method and then coated with silica. Uncoated and silica-coated CS-DS NPs were physically characterized via different techniques. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and atomic force microscopy (AFM) have been used to investigate the chemical elements, size, morphology, and surface properties of the prepared formulations. Differential scanning calorimetry (DSC) to assess the thermal properties of formed nano-formulations. Fourier transform infrared (FT-IR) spectroscopy investigated the silica coat and chitosan interaction. The encapsulation efficiency was evaluated using high-performance liquid chromatography (HPLC) analysis. The insulin release profile of nano-formulations was performed with and without silica coat at two different pHs (5.5,7), nearly simulating the environment of the gastrointestinal tract (GIT). RESULTS The silica-coated CS-DS NPs revealed interesting physicochemical properties exemplified by suitable core particle size obtained by TEM images (145.31 ± 33.15 nm), hydrodynamic diameter (210 ± 21 nm), high stability indicated by their zeta potential value (-32 ± 3.2 mV), and adequate surface roughness assessed by AFM. The encapsulation efficiency of insulin-loaded chitosan nanoparticles (ICN) was (66.5%) higher than that of insulin-chitosan complex nanoparticles (ICCN). The silica-coated ICN demonstrated a controlled insulin release profile at pHs (5.5 and 7) compared with uncoated ICN. CONCLUSION The silica-coated ICN can be an efficient candidate as a desired oral delivery system, overcoming the common obstacles of peptides and proteins delivery and achieving high stability and controlled release for further applications.
Collapse
Affiliation(s)
- Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa A Hassan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Aspinall SR, Khutoryanskiy VV. Surface Modification of Silica Particles with Adhesive Functional Groups or Their Coating with Chitosan to Improve the Retention of Toothpastes in the Mouth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1677-1685. [PMID: 36649661 PMCID: PMC9893808 DOI: 10.1021/acs.langmuir.2c03269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Silica is widely used in the oral care formulations to act as an abrasive and to give the products its distinct physical properties. In this study, silica particles were synthesized using a co-condensation of tetraethyl orthosilicate with a series of functional silane compounds [(3-mercaptopropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, and (3-acryloxypropyl)trimethoxysilane)]. The surface of the particles based on tetraethyl orthosilicate and (3-glycidyloxypropyl)trimethoxysilane was then further modified with 3-aminophenylboronic acid. Commercial Aerosil R972 Pharma silica particles were also coated with chitosan. Additionally, commercially available (3-maleimido)propyl-functionalized silica particles were used in this study. All these functionalized silica particles were incorporated into toothpaste formulations, and their retentive properties were tested on ex vivo sheep tongue mucosa models using fluorescent microscopy-based flow-through techniques. Those surfaces with chitosan, phenylboronic acid, and acryloyl groups were shown to provide a significant improvement in the retention of the oral care formulations during the retention testing. The retention of toothpastes containing silica functionalized with maleimide and thiol groups was also superior compared to that of unmodified silica particles. This study synthesized and tested a range of silica particles and demonstrated that the functionalized silica incorporated into toothpastes can significantly improve the retention of these formulations on oral mucosal surfaces.
Collapse
Affiliation(s)
- Sam R. Aspinall
- Department
of Pharmacy & Research Centre in Topical Drug Delivery and Toxicology, University of Hertfordshire, HatfieldAL10 9AB, Hertfordshire, U.K.
| | | |
Collapse
|
14
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
15
|
Effects of Rice-Husk Silica Liquid in Streptozotocin-Induced Diabetic Mice. Metabolites 2022; 12:metabo12100964. [PMID: 36295866 PMCID: PMC9611213 DOI: 10.3390/metabo12100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus is a complex multifactorial disease characterized by poor glucose tolerance and insulin resistance. Rice-husk silica liquid (RHSL) derived from rice husk has the ability to improve the dysfunction of pancreatic β-cells. This study aimed to confirm the potential protective effects of RHSL in streptozotocin (STZ)-induced diabetic mice. Diabetes was induced in male C57BL/6J mice by intraperitoneal administration of STZ (200 mg/kg BW). RHSL, food-grade silica liquid (FDSL), and rosiglitazone (RSG) were administered to diabetic mice for 12 weeks after successful induction of diabetes. During the experiment, fasting blood glucose, serum insulin, and organ weights were measured. The histopathology of liver tissue was evaluated by H&E staining. Western blotting was performed to assess protein expression levels. The results showed that RHSL significantly reversed the serum insulin levels and improved oral glucose tolerance test (OGTT) results (p < 0.05). In addition, liver sections of STZ-induced diabetic mice after RHSL treatment showed neatly arranged and intact hepatocytes. Furthermore, RHSL was more effective than FDSL in increasing the expression of SIRT1 and decreasing the expression of the PPAR-γ and p-NF-κB proteins. Taken together, this study demonstrated that RHSL ameliorated STZ-induced insulin resistance and liver tissue damage in C57BL/6J mice.
Collapse
|
16
|
Nghiem Thi T, Dao Van H, Cao Hong H, Nguyen Thi Ha H, Nurul Hayati Y, Kawahara S. Preparation and properties of colloidal silica-filled natural rubber grafted with poly(methyl methacrylate). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Evaluating Novel Agarose-Based Buccal Gels Scaffold: Mucoadhesive and Pharmacokinetic Profiling in Healthy Volunteers. Pharmaceutics 2022; 14:pharmaceutics14081592. [PMID: 36015217 PMCID: PMC9413753 DOI: 10.3390/pharmaceutics14081592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023] Open
Abstract
Agarose (AG) forms hydrocolloid in hot water and possesses a noteworthy gel strength. However, no reasonable scientific work on investigating the mucoadhesive character of AG has been reported. Therefore, the current study was designed to develop AG and carbopol (CP) based buccal gel scaffold for simultaneous release of benzocaine (BZN) and tibezonium iodide (TIB). Gels’ scaffold formulations (F1−F12) were prepared with varied concentrations (0.5−1.25% w/v) of AG and CP alone or their blends (AG-CP) using homogenization technique. The prepared formulations were characterized for solid-state, physicochemical, in vitro, ex vivo, and in vivo mucoadhesive studies in healthy volunteers. The results showed that mucoadhesive property of AG was concentration dependent but improved by incorporating CP in the scaffolds. The ex vivo mucoadhesive time reached >36 h when AG was used alone or blended with CP at 1% w/v concentration or above. The optimized formulation (F10) depicted >98% drugs release within 8 h and was also storage stable up to six months. The salivary concentration of BZN and TIB from formulation F10 yielded a Cmax value of 9.97 and 8.69 µg/mL at 2 and 6 h (tmax), respectively. In addition, the FTIR, PXRD, and DSC results confirmed the presence of no unwanted interaction among the ingredients. Importantly, the mucoadhesive study performed on healthy volunteers did not provoke any signs of inflammation, pain, or swelling. Clearly, it was found from the results that AG-CP scaffold provided better mucoadhesive properties in comparison to pure AG or CP. Conclusively, the developed AG based mucoadhesive drug delivery system could be considered a potential alternative for delivering drugs through the mucoadhesive buccal route.
Collapse
|
18
|
Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release 2022; 349:475-485. [PMID: 35839934 DOI: 10.1016/j.jconrel.2022.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
Bismuth-based compounds are considered to be the best candidates for computed tomography (CT) imaging of gastrointestinal (GI) tract due to high X-ray absorption. Here, we report the introduction of polymer-coated bismuth oxychloride (BiOCl) nanosheets for highly efficient CT imaging in healthy mice and animal with colitis. We demonstrate simple, low cost and fast aqueous synthesis protocol which provides gram-quantity yield of chemically stable BiOCl nanosheets. The developed contrast gives 2.55-fold better CT enhancement compared to conventional contrast with negligible in vivo toxicity. As a major finding we report a regioselective CT imaging of GI tract by using nanoparticles coated with differentially charged polymers. Coating of nanoparticles with a positively charged polymer leads to their fast accumulation in small intestine, while the coating with negatively charged polymers stimulates prolonged stomach retention. We propose that this effect may be explained by a pH-controlled aggregation of nanoparticles in stomach. This feature may become the basis for advancement in clinical diagnosis of entire GI tract.
Collapse
|
19
|
Smela D, Chang CJ, Hromadko L, Macak J, Bilkova Z, Taniguchi A. SiO 2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells. Molecules 2022; 27:4456. [PMID: 35889328 PMCID: PMC9320682 DOI: 10.3390/molecules27144456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
The immunoreactivity or/and stress response can be induced by nanomaterials' different properties, such as size, shape, etc. These effects are, however, not yet fully understood. This study aimed to clarify the effects of SiO2 nanofibers (SiO2NFs) on the cellular responses of THP-1-derived macrophage-like cells. The effects of SiO2NFs with different lengths on reactive oxygen species (ROS) and pro-inflammatory cytokines TNF-α and IL-1β in THP-1 cells were evaluated. From the two tested lengths, it was only the L-SiO2NFs with a length ≈ 44 ± 22 µm that could induce ROS. Compared to this, only S-SiO2NFs with a length ≈ 14 ± 17 µm could enhance TNF-α and IL-1β expression. Our results suggested that L-SiO2NFs disassembled by THP-1 cells produced ROS and that the inflammatory reaction was induced by the uptake of S-SiO2NFs by THP-1 cells. The F-actin staining results indicated that SiO2NFs induced cell motility and phagocytosis. There was no difference in cytotoxicity between L- and S-SiO2NFs. However, our results suggested that the lengths of SiO2NFs induced different cellular responses.
Collapse
Affiliation(s)
- Denisa Smela
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| | - Chia-Jung Chang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic; (L.H.); (J.M.)
- Central European Institute of Technology, Brno University of Technology, Zerotinovo nam. 617/9, 601 77 Brno, Czech Republic
| | - Jan Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic; (L.H.); (J.M.)
- Central European Institute of Technology, Brno University of Technology, Zerotinovo nam. 617/9, 601 77 Brno, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | - Akiyoshi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (C.-J.C.); (A.T.)
| |
Collapse
|
20
|
Kerry RG, Mohapatra P, Jena AB, Panigrahi B, Pradhan KC, Khatua BR, Mahari S, Pal S, Perikala V, Kisan B, Lugos MD, Mondru AK, Sahoo SK, Mandal D, Majhi S, Patra JK. Biosynthesis of Rutin Trihydrate Loaded Silica Nanoparticles and Investigation of Its Antioxidant, Antidiabetic and Cytotoxic Potentials. J Inorg Organomet Polym Mater 2022; 32:2065-2081. [DOI: 10.1007/s10904-022-02269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 12/15/2022]
|
21
|
Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14061137. [PMID: 35745710 PMCID: PMC9227760 DOI: 10.3390/pharmaceutics14061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Silver diamine fluoride (SDF) is an outstanding dental material for arresting and preventing caries, but some drawbacks, such as high flowability due to low viscosity and cytotoxicity to the pulp, have been reported. To overcome these problems, copper-doped bioactive glass nanoparticles (CuBGns) were combined with SDF. After synthesis, CuBGns were examined by physical analysis and added in SDF at different weight/volume% (SDF@CuBGn). After assessing physical properties (viscosity and flowability) of SDF@CuBGn, physicochemical properties (morphology before and after simulated body fluid (SBF) immersion and ion release) of SDF@CuBGn-applied hydroxyapatite (HA) discs were evaluated. Biological properties were further evaluated by cytotoxicity test to pulp stem cells and antibacterial effect on cariogenic organisms (Streptococcus mutans and Staphylococcus aureus). Combining CuBGns in SDF increased the viscosity up to 3 times while lowering the flowability. More CuBGns and functional elements in SDF (Ag and F) were deposited on the HA substrate, even after SBF immersion test for 14 days, and they showed higher Cu, Ca, and Si release without changing F and Ag release. Cell viability test suggested lower cytotoxicity in SDF@CuBGn-applied HA, while CuBGns in SDF boosted antibacterial effect against S. aureus, ~27% in diameter of agar diffusion test. In conclusion, the addition of CuBGn to SDF enhances viscosity, Ag and F deposition, and antibacterial effects while reducing cell toxicity, highlighting the role of bioactive CuBGns for regulating physical and biological effects of dental materials.
Collapse
|
22
|
Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters. NANOMATERIALS 2022; 12:nano12111823. [PMID: 35683677 PMCID: PMC9182127 DOI: 10.3390/nano12111823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.
Collapse
|
23
|
Maranescu B, Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int J Mol Sci 2022; 23:4458. [PMID: 35457275 PMCID: PMC9026733 DOI: 10.3390/ijms23084458] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
In the last decade, metal organic frameworks (MOFs) have shown great prospective as new drug delivery systems (DDSs) due to their unique properties: these materials exhibit fascinating architectures, surfaces, composition, and a rich chemistry of these compounds. The DSSs allow the release of the active pharmaceutical ingredient to accomplish a desired therapeutic response. Over the past few decades, there has been exponential growth of many new classes of coordination polymers, and MOFs have gained popularity over other identified systems due to their higher biocompatibility and versatile loading capabilities. This review presents and assesses the most recent research, findings, and challenges associated with the use of MOFs as DDSs. Among the most commonly used MOFs for investigated-purpose MOFs, coordination polymers and metal complexes based on synthetic and natural polymers, are well known. Specific attention is given to the stimuli- and multistimuli-responsive MOFs-based DDSs. Of great interest in the COVID-19 pandemic is the use of MOFs for combination therapy and multimodal systems.
Collapse
Affiliation(s)
- Bianca Maranescu
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania
| | - Aurelia Visa
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
| |
Collapse
|
24
|
Zaghloul N, El Hoffy NM, Mahmoud AA, Elkasabgy NA. Cyclodextrin Stabilized Freeze-Dried Silica/Chitosan Nanoparticles for Improved Terconazole Ocular Bioavailability. Pharmaceutics 2022; 14:pharmaceutics14030470. [PMID: 35335847 PMCID: PMC8955295 DOI: 10.3390/pharmaceutics14030470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023] Open
Abstract
This research assesses the beneficial effects of loading terconazole, a poorly water-soluble antifungal drug in silica/chitosan nanoparticles (SCNs) for ocular delivery. Nanoparticles were fabricated by the simple mixing of tetraethyl ortho silicate (TEOS) and chitosan HCl as sources of silica and nitrogen, respectively, along with alcoholic drug solution in different concentrations. Freeze-dried nanoparticles were fabricated using cyclodextrins as cryoprotectants. SCNs were assessed for their particle size, PDI, yield, drug loading and in vitro release studies. A 23.31 full factorial experimental design was constructed to optimize the prepared SCNs. DSC, XRD, FTIR, in addition to morphological scanning were performed on the optimized nanoparticles followed by an investigation of their pharmacokinetic parameters after topical ocular application in male Albino rabbits. The results reveal that increasing the water content in the preparations causes an increase in the yield and size of nanoparticles. On the other hand, increasing the TEOS content in the preparations, caused a decrease in the yield and size of nanoparticles. The optimized formulation possessed excellent mucoadhesive properties with potential safety concerning the investigated rabbit eye tissues. The higher Cmax and AUC0–24 values coupled with a longer tmax value compared to the drug suspension in the rabbits’ eyes indicated the potential of SCNs as promising ocular carriers for poorly water-soluble drugs, such as terconazole.
Collapse
Affiliation(s)
- Nada Zaghloul
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Azza A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt; (N.Z.); (N.M.E.H.); (A.A.M.)
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence: or ; Tel.: +20-1141404144
| |
Collapse
|
25
|
Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11010108. [PMID: 35052985 PMCID: PMC8773333 DOI: 10.3390/antibiotics11010108] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.
Collapse
|
26
|
Perera WPTD, Dissanayake DMRK, Unagolla JM, De Silva RT, Bathige SDNK, Pahalagedara LR. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv 2022; 12:1718-1727. [PMID: 35425191 PMCID: PMC8978970 DOI: 10.1039/d1ra07847j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
One of the most serious issues faced by the healthcare sector is the development of multidrug resistance among various pathogens. It is such that developing new and more capable drugs takes far too long to counter such resistance. In order to overcome these concerns, this study focused on improving upon the coaxial electrospraying process by producing cloxacillin loaded albumin polycaprolactone (PCL) with a ZnO coating for sustained and activity enhanced drug delivery. Albumin-grafted, polycaprolactone-coated, zinc oxide-loaded cloxacillin (APCL-CLOX-ZnO) nanoparticles with a diameter of 85-110 nm were obtained via a coaxial electrospray technique. The encapsulation efficiency of cloxacillin of ZnO-CLOX was found to be approximately 60%. The loading efficiencies of ZnO-CLOX and APCL-CLOX-ZnO were found to be 40% and 28% respectively. Albumin was employed in order to impart immune evasion properties to the formulation. Drug-loaded ZnO NPs were analyzed using SEM, TEM, FT-IR and TGA. This novel formulation was shown to possess sustained release characteristics owing to the PCL and albumin coatings, relative to uncoated counterparts. ZnO-CLOX and APCL-CLOX-ZnO exhibited 72% and 52% cloxacillin release within 24 h. APCL-CLOX-ZnO exhibited potent antimicrobial activity against S. epidermidis, B. cereus and P. aeruginosa and some activity against E. coli with inhibition zones 32 ± 1.4, 34 ± 0.3, 32 ± 0.6 and 11 ± 0.4 mm, respectively. Cytotoxicity studies against murine preosteoblast cells revealed that the albumin-PCL coating served to drastically reduce initial toxicity against healthy mammalian cells. In vitro lung deposition study showed 70% of APCL-CLOX-ZnO particles can reach up to the alveoli level. Therefore, this novel coaxial nanoformulation may serve as a promising drug delivery platform for the treatment of bacterial infections including respiratory tract complications.
Collapse
Affiliation(s)
- W Pamoda Thavish D Perera
- Academy of the Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - D M Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Department of Pharmacy and Pharmaceutical Sciences, University of Sri Jayewardenepura Gangodawila Nugegoda 10250 Sri Lanka
| | - Janitha M Unagolla
- Department of Bioengineering, College of Engineering, University of Toledo Toledo OH 43607 USA
| | - Rangika T De Silva
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Sanjaya D N K Bathige
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Lakshitha R Pahalagedara
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| |
Collapse
|
27
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
28
|
A novel versatile flow-donor chamber as biorelevant ex-vivo test assessing oral mucoadhesive formulations. Eur J Pharm Sci 2021; 166:105983. [PMID: 34461276 DOI: 10.1016/j.ejps.2021.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Oral transmucosal drug delivery is a non-invasive administration route for rapid therapeutic onset and greater bioavailability avoiding the first-pass metabolism. Mucoadhesive formulations are advantageous as they may retain the drug at the administration site. Proper equipment to assess mucoadhesive properties and corresponding drug absorption is fundamental for the development of novel drug delivery systems. Here we developed a new flow-through donor chamber for well-established diffusion cells, and we tested the effects on drug and formulation retention in situ of adding mucoadhesive polymers or mesoporous silica particles to a reference formulation. Mesoporous silica particles are of particular interest as they may be used to encapsulate and retain drug molecules. Compared to other ex-vivo methods described in literature for assessing mucoadhesive performance and transmucosal drug delivery, this new donor chamber provides several advantages: i) it reflects physiological conditions better as a realistic saliva flow can be provided over the administration site, ii) it is versatile since it can be mounted on any kind of vertical diffusion cell allowing simultaneous detection of drug retention at the administration site and drug permeation through the tissue, and iii) it enables optical quantification of formulations residence time aided by image processing. This new flow-through donor diffusion cell set-up proved sensitive to differentiate a reference formulation from one where 20 %(w/w) Carbomer was added (to further improve the mucoadhesive properties), with respect to both drug and formulation residence times. We also found that mesoporous silica particles, investigated as particles only and mixed together with the reference formulation, gave very similar drug and formulation retention to what we observed with the mucoadhesive Carbomer. However, after some time (>30 min) it became obvious that the tablet excipients in the reference formulation promote particle retention on the mucosa. This work provides a new simple and versatile biorelevant test for the evaluation of oral mucoadhesive formulations and paves the way for further studies on mesoporous silica particles as valuable excipients for enhancing oral mucoadhesion.
Collapse
|
29
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
30
|
Hoseini ZS, Hajizade A, Razmyar J, Ahmadian G, Arpanaei A. Mesoporous silica nanoparticles-based formulations of a chimeric proteinous vaccine candidate against necrotic enteritis disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112316. [PMID: 34474867 DOI: 10.1016/j.msec.2021.112316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
To develop a nanoparticle-based vaccine against necrotic enteritis, a chimeric antigen (rNA) consisting of the main antigens of Clostridium perfringens, NetB, and Alpha toxin, was prepared. Then, the rNA molecules were loaded onto the functionalized mesoporous silica nanoparticles (MSNPs) using physical adsorption or covalent conjugation methods. The characterization of synthesized nanoparticles was performed by scanning electron microscopy, dynamic light scattering, zeta potential measurement, Fourier transform infrared spectroscopy, and thermogravimetry techniques. The results revealed that the spherical nanoparticles with an average diameter of 90 ± 12 nm and suitable surface chemistries are prepared. MSNPs-based formulations did not show any significant toxicity on the chicken embryo fibroblast cells. The results of the challenge experiments using subcutaneous or oral administration of the as-prepared formulations in the animal model showed that the as-prepared nanosystems, similar to those formulated with a commercial adjuvant (Montanide), present stronger humoral immune responses as compared to that of the free proteins. It was also indicated that the best protection is obtained in groups vaccinated with MSNPs-based nanovaccine, especially those who orally received covalently conjugated nanovaccine candidates. These results recommend that the MSNPs-based formulated chimeric proteinous vaccine candidates can be considered as an effective immunizing system for the oral vaccination of poultry against gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
31
|
Kashapov RR, Kashapova NE, Ziganshina AY, Syakaev VV, Khutoryanskiy VV, Zakharova LY. Interaction of mucin with viologen and acetate derivatives of calix[4]resorcinols. Colloids Surf B Biointerfaces 2021; 208:112089. [PMID: 34500201 DOI: 10.1016/j.colsurfb.2021.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
The mucus layer acts as a selective diffusion barrier that has an important effect on the efficiency of drug delivery systems in the human body. In this regard, currently the drug nanocarriers of various sizes and compositions are being widely developed to study their mucoadhesive properties i.e., the ability to interact with mucin. However, the effective interaction of drug composition with mucin does not guarantee the success due to the fact that there is a further barrier in the form of epithelial cells retained by calcium ions under the mucus layer. In this work, the interaction of mucin (porcine gastric mucin) with calixarenes is considered for the first time. The study of interaction between calixarenes, mucin and calcium ions by a complex of physicochemical methods showed that effective interaction with mucin requires cationic fragments, and binding with calcium is realized due to anionic fragments in the calixarene structure. Therefore, the combination of different chemical groups in the structure of drug nanocarrier plays an important role in successful mucosal drug delivery. Taking into account the wide possibilities of synthetic modification of the macrocyclic platform, calixarenes can find the application in the drug delivery across mucous barriers.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia; Kazan National Research Technological University, 68 Karl Marx Str., 420015, Kazan, Russia.
| | - Nadezda E Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia
| | | | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088, Kazan, Russia; Kazan National Research Technological University, 68 Karl Marx Str., 420015, Kazan, Russia
| |
Collapse
|
32
|
Fan W, Chen XD, Liu LM, Chen N, Zhou XG, Zhang ZH, Liu SL. Concentration-dependent influence of silver nanoparticles on amyloid fibrillation kinetics of hen egg-white lysozyme. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li-ming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-hong Zhang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Chen HY, Chiang YF, Wang KL, Huang TC, Ali M, Shieh TM, Chang HY, Hong YH, Hsia SM. Rice Husk Silica Liquid Protects Pancreatic β Cells from Streptozotocin-Induced Oxidative Damage. Antioxidants (Basel) 2021; 10:antiox10071080. [PMID: 34356312 PMCID: PMC8301121 DOI: 10.3390/antiox10071080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes mellitus is a complex multifactorial disease characterized by insulin resistance and dysfunction of pancreatic β-cells. Rice husk silica liquid (RHSL) is derived from rice husks and has not been explored in diabetes mellitus until now. Previous studies showed that rice husk is enriched with silica, and its silica nanoparticles are higher more biocompatible. To investigate the potential protective role of RHSL on pancreatic β cells, we utilized RIN-m5F pancreatic β cells and explored RHSL effect after streptozotocin (STZ)-stimulation. The recovery effects of RHSL were evaluated using flow cytometry, Western blotting, and immunofluorescence analysis. Results of our study showed that RHSL reversed the cell viability, insulin secretion, reactive oxygen species (ROS) production, and the change of mitochondria membrane potential (ΔΨm) in STZ-treated RIN-m5F cells. Moreover, the expression of phospho-receptor-interacting protein 3 (p-RIP3) and cleaved-poly (ADP-ribose) polymerase (PARP), phospho-mammalian target of rapamycin (p-mTOR), and sequestosome-1 (p62/SQSTM1) were significantly decreased, while the transition of light chain (LC)3-I to LC3-II was markedly increased after RHSL treatment in STZ-induced RIN-m5F cells. Interestingly, using autophagy inhibitors such as 3-methyladenine (3-MA) and chloroquine (CQ) both showed an increase in cleaved-PARP protein level, indicating apoptosis induction. Taken together, this study demonstrated that RHSL induced autophagy and alleviated STZ-induced ROS-mediated apoptosis in RIN-m5F cells.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan
- Correspondence: (Y.-H.H.); (S.-M.H.); Tel.: +886-7-6151100 (ext. 7914) (Y.-H.H.); +886-2-27361661 (ext. 6558) (S.-M.H.)
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: (Y.-H.H.); (S.-M.H.); Tel.: +886-7-6151100 (ext. 7914) (Y.-H.H.); +886-2-27361661 (ext. 6558) (S.-M.H.)
| |
Collapse
|
34
|
Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021; 11:1625. [PMID: 34072849 PMCID: PMC8229472 DOI: 10.3390/ani11061625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been used for diagnosis and therapy in the human medical field, while their application in veterinary medicine and animal production is still relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility of manufacturing new materials at the nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current treatments are becoming progressively more ineffective in resistant bacteria, the development of innovative products based on both nanotechnology and phytotherapy may directly address a major global problem, antimicrobial resistance, while providing a sustainable animal health solution that supports the production of safe and high-quality food products. This review summarizes the challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and essential oils, as candidates for developing novel treatment options for bovine mastitis.
Collapse
Affiliation(s)
- Andra Sabina Neculai-Valeanu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
| | - Adina Mirela Ariton
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Bianca Maria Mădescu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Şteofil Creangă
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| |
Collapse
|
35
|
Vllasaliu D. Non-Invasive Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13050611. [PMID: 33922587 PMCID: PMC8145673 DOI: 10.3390/pharmaceutics13050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Non-invasive drug delivery generally refers to painless drug administration methods involving drug delivery across the biological barriers of the mucosal surfaces or the skin [...].
Collapse
Affiliation(s)
- Driton Vllasaliu
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|