1
|
Oshizaka T, Kodera S, Kawakubo R, Takeuchi I, Mori K, Sugibayashi K. Enhanced Drug Skin Permeation by Azone-Mimicking Ionic Liquids: Effects of Fatty Acids Forming Ionic Liquids. Pharmaceutics 2024; 17:41. [PMID: 39861689 PMCID: PMC11768391 DOI: 10.3390/pharmaceutics17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone. Methods: Excised porcine skin was pretreated with each IL-Azone to assess the in vitro skin permeability of antipyrine (ANP) as a model penetrant. In addition, 1,3-butanediol was selected for the skin permeation test to confirm whether the effect of IL-Azone was due to fatty acids and if this effect differed depending on the concentration of IL-Azone applied. Results: The results obtained showed that C12 IL-Azone exerted the highest skin-penetration-enhancing effect, which was higher than Azone. On the other hand, many of the IL-Azones tested had a lower skin-penetration-enhancing effect. Conclusions: These results suggest the potential of C12 IL-Azone as a strong and useful penetration enhancer.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Shunsuke Kodera
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
| | - Rika Kawakubo
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kenji Mori
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Graduate School of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan; (S.K.); (R.K.); (I.T.); (K.M.)
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
2
|
Rothe R, Xu Y, Wodtke J, Brandt F, Meister S, Laube M, Lollini PL, Zhang Y, Pietzsch J, Hauser S. Programmable Release of Chemotherapeutics from Ferrocene-Based Injectable Hydrogels Slows Melanoma Growth. Adv Healthc Mater 2024; 13:e2400265. [PMID: 39007274 DOI: 10.1002/adhm.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel-based injectable drug delivery systems provide temporally and spatially controlled drug release with reduced adverse effects on healthy tissues. Therefore, they represent a promising therapeutic option for unresectable solid tumor entities. In this study, a peptide-starPEG/hyaluronic acid-based physical hydrogel is modified with ferrocene to provide a programmable drug release orchestrated by matrix-drug interaction and local reactive oxygen species (ROS). The injectable ROS-responsive hydrogel (hiROSponse) exhibits adequate biocompatibility and biodegradability, which are important for clinical applications. HiROSponse is loaded with the two cytostatic drugs (hiROSponsedox/ptx) doxorubicin (dox) and paclitaxel (ptx). Dox is a hydrophilic compound and its release is mainly controlled by Fickian diffusion, while the hydrophobic interactions between ptx and ferrocene can control its release and thus be regulated by the oxidation of ferrocene to the more hydrophilic state of ferrocenium. In a syngeneic malignant melanoma-bearing mouse model, hiROSponsedox/ptx slows tumor growth without causing adverse side effects and doubles the relative survival probability. Programmable release is further demonstrated in a tumor model with a low physiological ROS level, where dox release, low dose local irradiation, and the resulting ROS-triggered ptx release lead to tumor growth inhibition and increased survival.
Collapse
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Pier-Luigi Lollini
- Alma Mater Studiorum, University of Bologna, Department of Medical and Surgical Sciences, Viale Filopanti 22, Bologna, 40126, Italy
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
3
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
4
|
Rahbari R, Francis L, Guy OJ, Sharma S, Von Ruhland C, Xia Z. Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin. Pharmaceutics 2023; 16:57. [PMID: 38258069 PMCID: PMC10819469 DOI: 10.3390/pharmaceutics16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.
Collapse
Affiliation(s)
- Raha Rahbari
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Lewis Francis
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Owen J. Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK;
| | - Sanjiv Sharma
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Christopher Von Ruhland
- Electron Microscopy Unit, Central Biotechnology Services, Institute for Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| | - Zhidao Xia
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
5
|
Mazlee MTF, Heidelberg T, Ariffin A, Zain SM. Cation-stimulated drug delivery via lipid assembly comprising macrocyclized disaccharides - A DFT study. Carbohydr Res 2023; 532:108923. [PMID: 37598565 DOI: 10.1016/j.carres.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
In the attempt to create a delivery system for an alkali-cation stimulated drug release, a computational study was conducted, aiming for the evaluation of synthetic access towards glycolipid crown ethers analogs and their potential for coordination-induced changes of packing constraints for molecular assemblies. The results disfavor amide-linkages for the creation of macrocycles around the inter-glycosidic bond of a disaccharide. Conformational changes upon cation coordination of the macrocycle decrease the intersection area for easily accessible macrocycles based on lactose. This leads to shrinking intersection areas upon alkali complexation. Maltose-based analogs, on the other hand, exhibited the targeted increase of the glycolipid intersection area and, hence, may be considered as a promising resource.
Collapse
Affiliation(s)
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Azhar Ariffin
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sharifuddin Md Zain
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
7
|
Safdar R, Nawaz M, Mushtaq A, Khanh Tran T, Aziz Omar A. A Bibliometric Analysis for Estimating the Global Research Trends Related to Applications of Ionic Liquids in Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Marimuthu T, Sidat Z, Kumar P, Choonara YE. An Imidazolium-Based Ionic Liquid as a Model to Study Plasticization Effects on Cationic Polymethacrylate Films. Polymers (Basel) 2023; 15:polym15051239. [PMID: 36904480 PMCID: PMC10006978 DOI: 10.3390/polym15051239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Ionic liquids (ILs) have been touted as effective and environmentally friendly agents, which has driven their application in the biomedical field. The study compares the effectiveness of an IL agent, 1-hexyl-3-methyl imidazolium chloride ([HMIM]Cl), to current industry standards for plasticizing a methacrylate polymer. Industrial standards glycerol, dioctyl phthalate (DOP) and the combination of [HMIM]Cl with a standard plasticizer was also evaluated. Plasticized samples were evaluated for stress-strain, long-term degradation, thermophysical characterizations, and molecular vibrational changes within the structure, and molecular mechanics simulations were performed. Physico-mechanical studies showed that [HMIM]Cl was a comparatively good plasticizer than current standards reaching effectiveness at 20-30% w/w, whereas plasticizing of standards such as glycerol was still inferior to [HMIM]Cl even at concentrations up to 50% w/w. Degradation studies show HMIM-polymer combinations remained plasticized for longer than other test samples, >14 days, compared to glycerol <5 days, while remaining more pliable. The combination of [HMIM]Cl-DOP was effective at concentrations >30% w/w, demonstrating remarkable plasticizing capability and long-term stability. ILs used as singular agents or in tandem with other standards provided equivalent or better plasticizing activity than the comparative free standards.
Collapse
|
9
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
10
|
Hu Z, Wang J, Han S, Jiang S, Hu J, Reheman A. Study on the sustained release properties of drug-loaded nanomicelles with amphiphilic poly(amino acid)s. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Siyu Han
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Shizhi Jiang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
| |
Collapse
|
11
|
Caimi AT, Ramirez C, Perez AP, Romero EL, Morilla MJ. In vitro anti-melanoma activity of imiquimod in ultradeformable nanovesicles. Drug Dev Ind Pharm 2022; 48:657-666. [PMID: 36445155 DOI: 10.1080/03639045.2022.2153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The wide spectrum of antitumoral mechanisms of imiquimod (IMQ), made it a good candidate for topical therapy of melanoma. However, physicochemical properties make IMQ formulation a difficult task. Solubility and skin penetration of IMQ are increased when loaded into ultradeformable nanovesicles. OBJECTIVE Survey the in vitro anti-melanoma activity of IMQ loaded into two types of ultradeformable nanovesicles: archaeosomes (UDA-IMQ) (containing sn-2,3 ether-linked phytanyl saturated archaeolipids extracted from Halorubrum tebenquichense) and liposomes lacking archaeolipids (UDL-IMQ). METHODS We prepared and structurally characterized UDA-IMQ and UDL-IMQ. Cytotoxicity was determined on human melanoma cells (SK-Mel-28) and keratinocytes (HaCaT cells) by MTT assay and LDH release. The cellular uptake was determined by flow cytometry. Apoptosis/necrosis induction was determined by fluorescence microscopy after double staining with YO-PRO-1® and propidium iodide. RESULTS Neither IMQ nor IMQ-nanovesicles reduced the viability of HaCaT cells; but UDL-IMQ (371 nm, -24 mV ζ potential, 31 µg IMQ/mg lipids) and UDA-IMQ (216 nm, -32 mV ζ potential, 61 µg IMQ/mg lipids) showed time and concentration-dependent cytotoxicity on SK-Mel-28 that resulted between 4 and 33 folds higher than free IMQ, respectively. While both UDA-IMQ and UDL-IMQ retained 60% of IMQ against dilution, UDA-IMQ uptaken by SK-Mel-28 cells was nine-fold higher than UDL-IMQ. UDL-IMQ induced early apoptosis, but UDA-IMQ induced both apoptosis and necrosis on SK-Mel-28 cells. CONCLUSIONS UDA-IMQ was innocuous to keratinocytes but was highly uptaken and induced apoptosis and necrosis on melanoma cells, being a candidate for future investigations as adjuvant topical anti-melanoma therapy.
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Cecilia Ramirez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ana Paula Perez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
12
|
Wu Y, Wang M, Li Y, Xia H, Cheng Y, Liu C, Xia Y, Wang Y, Yue Y, Cheng X, Xie Z. The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics 2022; 14:pharmaceutics14101993. [PMID: 36297429 PMCID: PMC9607308 DOI: 10.3390/pharmaceutics14101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/19/2022] Open
Abstract
Docetaxel (DTX)-based formulation development is still confronted with significant challenges, due to its refractory solubility and side effects on normal tissues. Inspired by the application of the transdermal drug delivery model to topical treatment, we developed a biocompatible and slow-release DTX-containing emulsion via self-assembly prepared by a high-speed electric stirring method and optimized the formulation. The results of accelerated the emulsion stability experiment showed that the emulsion prepared at 10,000 rpm/min had a stability of 89.15 ± 2.05%. The ADME, skin irritation, skin toxicity and molecular interaction between DTX and excipients were predicted via Discovery Studio 2016 software. In addition, DTX addition in oil or water phases of the emulsion showed different release rates in vitro and ex vivo. The DTX release ex vivo of the DTX/O-containing emulsion and the DTX/W-containing emulsion were 45.07 ± 5.41% and 96.48 ± 4.54%, respectively. In vitro antioxidant assays and anti-lipid peroxidation models revealed the antioxidant potential of DTX. However, DTX-containing emulsions could maintain and even enhance the antioxidant effect, both scavenging free radicals in vitro and inhibiting the process of lipid peroxidation.
Collapse
Affiliation(s)
- Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230601, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|
13
|
Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022; 349:744-755. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Cyclosporine is an immunomodulatory drug commonly used for the treatment of mild-to-severe dry eye syndrome as well as intermediate and posterior segment diseases as uveitis. The ocular administration is however hampered by its relatively high molecular weight and poor permeability across biological barriers. The aim of this work was to identify a micellar formulation with the ability to solubilize a considerable amount of cyclosporine and promote its transport across ocular barriers. Non-ionic amphiphilic polymers used for micelles preparation were tocopherol polyethylene glycol 1000 succinate (TPGS) and Solutol® HS15. Furthermore, the addition of alpha-linolenic acid was assessed. A second aim was to evaluate micelles fate in the ocular tissues (cornea and sclera) to shed light on penetration mechanisms. This was possible by extracting and quantifying both drug and polymer in the tissues, by studying TPGS hydrolysis in a bio-relevant environment and by following micelles penetration with two-photon microscopy. Furthermore, TPGS role as permeation enhancer on the cornea, with possible irreversible modifications of tissue permeability, was analyzed. Results showed that TPGS micelles (approx. 13 nm in size), loaded with 5 mg/ml of cyclosporine, promoted drug retention in both the cornea and the sclera. Data demonstrated that micelles behavior strictly depends on the tissue: micelles disruption occurs in contact with the cornea, while intact micelles diffuse in the interfibrillar pores of the sclera and form a reservoir that can sustain over time drug delivery to the deeper tissues. Finally, cornea quickly restore the barrier properties after TPGS removal from the tissue, demonstrating its potential good tolerability for ocular application.
Collapse
Affiliation(s)
- Martina Ghezzi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Delledonne
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Padula
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
14
|
Ali MK, Moshikur RM, Goto M, Moniruzzaman M. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery. Pharm Res 2022; 39:2335-2351. [PMID: 35773446 DOI: 10.1007/s11095-022-03322-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
15
|
Navti PD, Pandey A, Nikam AN, Padya BS, Kalthur G, Koteshwara KB, Mutalik S. Ionic Liquids Assisted Topical Drug Delivery for Permeation Enhancement: Formulation Strategies, Biomedical Applications, and Toxicological Perspective. AAPS PharmSciTech 2022; 23:161. [PMID: 35676441 DOI: 10.1208/s12249-022-02313-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 01/31/2023] Open
Abstract
Topical drug delivery provides several benefits over other conventional routes by providing localizing therapeutic effects and also avoids the gastrointestinal tract circumventing the first-pass metabolism and enzymatic drug degradation. Being painless, the topical route also prevents the difficulties linked with the parenteral route. However, there are limitations to the current topical systems which necessitate the need for further research to find functional excipients to overcome these limitations. This review deals in depth with the ionic liquids concerning their physicochemical properties and applicability as well as their role in the arena of topical drug delivery in permeation enhancement, bioavailability enhancement of the drugs by solvation, and drug moiety modification. The review gives a detailed insight into the recent literature on ionic liquid-based topical formulations like ionic liquid-based emulsions, active pharmaceutical ingredient-ionic liquids, ionic liquid-based bacterial cellulose membranes, topical small interfering RNA (siRNA) delivery, and ionogels as a possible solutions for overcoming the challenges associated with the topical route. This review also takes into account the toxicological aspects and biomedical applications of ionic liquids.
Collapse
Affiliation(s)
- Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Kunnatur B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India.
| |
Collapse
|
16
|
Mero A, Guglielmero L, D'Andrea F, Pomelli CS, Guazzelli L, Koutsoumpos S, Tsonos G, Stavrakas I, Moutzouris K, Mezzetta A. Influence of the cation partner on levulinate ionic liquids properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Faísca F, Correia V, Petrovski Ž, Branco LC, Rebelo-de-Andrade H, Santos MM. Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2. Pharmaceutics 2022; 14:pharmaceutics14040877. [PMID: 35456711 PMCID: PMC9031298 DOI: 10.3390/pharmaceutics14040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.
Collapse
Affiliation(s)
- Francisco Faísca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Helena Rebelo-de-Andrade
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| |
Collapse
|
18
|
|
19
|
Measurement of evaporation entropy, evaporation enthalpy, and Gibbs free energy for the [C4Dmim]Gly and [C4Dmim]Ala. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Júlio A, Costa JG, Pereira-Leite C, Santos de Almeida T. TransfersomILs: From Ionic Liquids to a New Class of Nanovesicular Systems. NANOMATERIALS 2021; 12:nano12010007. [PMID: 35009956 PMCID: PMC8747046 DOI: 10.3390/nano12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
Ionic liquids (ILs) have increasingly been studied as key materials to upgrade the performance of many pharmaceutical formulations. In controlled delivery systems, ILs have improved multiple physicochemical properties, showing the relevance of continuing to study their incorporation into these formulations. Transfersomes are biocompatible nanovesicular systems, quite useful in controlled delivery. They have promising characteristics, such as elasticity and deformability, making them suitable for cutaneous delivery. Nonetheless, their overall properties and performance may still be improved. Herein, new TransfersomILs systems to load rutin were developed and the physicochemical properties of the formulations were assessed. These systems were prepared based on an optimized formulation obtained from a Box-Behnken factorial design (BBD). The impact of imidazole-based ILs, cholinium-based ILs, and their combinations on the cell viability of HaCaT cells and on the solubility of rutin was initially assessed. The newly developed TransfersomILs containing rutin presented a smaller size and, in general, a higher association efficiency, loading capacity, and total amount of drug release compared to the formulation without IL. The ILs also promoted the colloidal stability of the vesicles, upgrading storage stability. Thus, ILs were a bridge to develop new TransfersomILs systems with an overall improved performance.
Collapse
Affiliation(s)
- Ana Júlio
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - João Guilherme Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
| | - Catarina Pereira-Leite
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tânia Santos de Almeida
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +35-12-1751-5500
| |
Collapse
|
21
|
Kumer A, Khan MW. Synthesis, characterization, antimicrobial activity and computational exploration of ortho toludinium carboxylate ionic liquids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Recent advances in surface-active ionic liquid-assisted self-assembly systems for drug delivery. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
|
24
|
Guglielmero L, Mero A, Mezzetta A, Tofani G, D'Andrea F, Pomelli C, Guazzelli L. Novel access to ionic liquids based on trivalent metal–EDTA complexes and their thermal and electrochemical characterization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Improvement of Imiquimod Solubilization and Skin Retention via TPGS Micelles: Exploiting the Co-Solubilizing Effect of Oleic Acid. Pharmaceutics 2021; 13:pharmaceutics13091476. [PMID: 34575553 PMCID: PMC8469695 DOI: 10.3390/pharmaceutics13091476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42- and 25-folds higher than the one of the commercial creams.
Collapse
|
26
|
Mezzetta A, Guglielmero L, Mero A, Tofani G, D’Andrea F, Pomelli CS, Guazzelli L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021; 26:4211. [PMID: 34299487 PMCID: PMC8303995 DOI: 10.3390/molecules26144211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- DESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Giorgio Tofani
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| |
Collapse
|
27
|
Ausín D, Parajó JJ, Trenzado JL, Varela LM, Cabeza O, Segade L. Influence of Small Quantities of Water on the Physical Properties of Alkylammonium Nitrate Ionic Liquids. Int J Mol Sci 2021; 22:7334. [PMID: 34298957 PMCID: PMC8306069 DOI: 10.3390/ijms22147334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents a comprehensive study of two alkylammonium nitrate ionic liquids. As part of this family of materials, mainly ethylammonium nitrate (EAN) and also propylammonium nitrate (PAN) have attracted a great deal of attention during the last decades due to their potential applications in many fields. Although there have been numerous publications focused on the measurement of their physical properties, a great dispersion can be observed in the results obtained for the same magnitude. One of the critical points to be taken into account in their physical characterization is their water content. Thus, the main objective of this work was to determine the degree of influence of the presence of small quantities of water in EAN and PAN on the measurement of density, viscosity, electrical conductivity, refractive index and surface tension. For this purpose, the first three properties were determined in samples of EAN and PAN with water contents below 30,000 ppm in a wide range of temperatures, between 5 and 95 °C, while the last two were obtained at 25 °C. As a result of this study, it has been concluded that the presence of water is critical in those physical properties that involve mass or charge transport processes, resulting in the finding that the absolute value of the average percentage change in both viscosity and electrical conductivity is above 40%. Meanwhile, refractive index (≤0.3%), density (≤0.5%) and surface tension (≤2%) present much less significant changes.
Collapse
Affiliation(s)
- David Ausín
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| | - Juan J. Parajó
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas y Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; (J.J.P.); (L.M.V.)
- Departamento de Química e Bioquímica, CIQUP-Centro de Investigaçao em Química da Universidade do Porto, Universidade do Porto, P-4169-007 Porto, Portugal
| | - José L. Trenzado
- Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas Gran Canaria, Spain;
| | - Luis M. Varela
- Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas y Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; (J.J.P.); (L.M.V.)
| | - Oscar Cabeza
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| | - Luisa Segade
- Departamento de Física, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain; (D.A.); (O.C.)
| |
Collapse
|
28
|
Evaporation thermodynamics of the tetraoctylphosphonium bis(trifluoromethansulfonyl)imide([P8888]NTf2) and tetraoctylphosphonium nonafluorobutane-1-sulfonate ([P8888]NFBS) ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Varshney D, Qiu SY, Graf TP, McHugh KJ. Employing Drug Delivery Strategies to Overcome Challenges Using TLR7/8 Agonists for Cancer Immunotherapy. AAPS JOURNAL 2021; 23:90. [PMID: 34181117 DOI: 10.1208/s12248-021-00620-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are a potential target for cancer immunotherapy due to their role in the activation of the innate immune system. More specifically, TLR7 and TLR8, two structurally similar pattern recognition receptors that trigger interferon and cytokine responses, have proven to be therapeutically relevant targets for cancer in numerous preclinical and clinical studies. When triggered by an agonist, such as imiquimod or resiquimod, the TLR7/8 activation pathway induces cellular and humoral immune responses that can kill cancer cells with high specificity. Unfortunately, TLR7/8 agonists also present a number of issues that must be overcome prior to broad clinical implementation, such as poor drug solubility and systemic toxic effects. To overcome the key limitations of TLR7/8 agonists as a cancer therapy, biomaterial-based drug delivery systems have been developed. These delivery devices are highly diverse in their design and include systems that can be directly administered to the tumor, passively accumulated in relevant cancerous and lymph tissues, triggered by environmental stimuli, or actively targeted to specific physiological areas and cellular populations. In addition to improved delivery systems, recent studies have also demonstrated the potential benefits of TLR7/8 agonist co-delivery with other types of therapies, particularly checkpoint inhibitors, cancer vaccines, and chemotherapeutics, which can yield impressive anti-cancer effects. In this review, we discuss recent advances in the development of TLR7/8 agonist delivery systems and provide perspective on promising future directions.
Collapse
Affiliation(s)
- Dhruv Varshney
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Sherry Yue Qiu
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Tyler P Graf
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| |
Collapse
|
30
|
Bennardo L, Bennardo F, Giudice A, Passante M, Dastoli S, Morrone P, Provenzano E, Patruno C, Nisticò SP. Local Chemotherapy as an Adjuvant Treatment in Unresectable Squamous Cell Carcinoma: What Do We Know So Far? ACTA ACUST UNITED AC 2021; 28:2317-2325. [PMID: 34201867 PMCID: PMC8293038 DOI: 10.3390/curroncol28040213] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Background: Squamous cell carcinoma (SCC) is one of the most common cancers involving skin and oral mucosa. Although this condition's gold-standard treatment is the surgical removal of the lesions, the physician must propose alternative treatments in some cases due to the patient's ineligibility for surgery. Among the available alternative therapies, local chemotherapy may represent an initial treatment in combination with radiotherapy or systemic chemotherapy due to the low frequency of side-effects and the lack of necessity for expensive devices. Methods: In this paper, we review all available literature in various databases (PubMed, Scopus-Embase, Web of Science), proposing local chemotherapy as a treatment for cutaneous and oral SCC. Exclusion criteria included ocular lesions (where topical treatments are common), non-English language, and non-human studies. Results: We included 14 studies in this review. The majority were case reports and case series describing the treatment of non-resectable localized SCC with either imiquimod or 5-fluorouracil. We also analyzed small studies proposing combination treatments. Almost all studies reported an excellent clinical outcome, with a low risk of relapses in time. Conclusions: Resection of the lesion remains the gold-standard treatment for SCC. When this approach is not feasible, local chemotherapy may represent a treatment alternative, and it may also be associated with radiotherapy or systemic chemotherapy.
Collapse
Affiliation(s)
- Luigi Bennardo
- Unit of Dermatology, Mariano Santo Hospital, 87100 Cosenza, Italy; (P.M.); (E.P.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
- Correspondence: ; Tel.: +39-096-1364-7195
| | - Francesco Bennardo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| | - Amerigo Giudice
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| | - Maria Passante
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| | - Stefano Dastoli
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| | - Pietro Morrone
- Unit of Dermatology, Mariano Santo Hospital, 87100 Cosenza, Italy; (P.M.); (E.P.)
| | - Eugenio Provenzano
- Unit of Dermatology, Mariano Santo Hospital, 87100 Cosenza, Italy; (P.M.); (E.P.)
| | - Cataldo Patruno
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| | - Steven Paul Nisticò
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (A.G.); (M.P.); (S.D.); (C.P.); (S.P.N.)
| |
Collapse
|
31
|
Szelwicka A, Erfurt K, Jurczyk S, Boncel S, Chrobok A. Outperformance in Acrylation: Supported D-Glucose-Based Ionic Liquid Phase on MWCNTs for Immobilized Lipase B from Candida antarctica as Catalytic System. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3090. [PMID: 34200059 PMCID: PMC8200216 DOI: 10.3390/ma14113090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
This study presents a highly efficient method of a synthesis of n-butyl acrylate via esterification of acrylic acid and n-butanol in the presence of supported ionic liquid phase (SILP) biocatalyst consisting of the lipase B from Candida antarctica (CALB) and multi-walled carbon nanotubes (MWCNTs) modified by D-glucose-based ionic liquids. Favorable reaction conditions (acrylic acid: n-butanol molar ratio 1:2, cyclohexane as a solvent, biocatalyst 0.150 g per 1 mmol of acrylic acid, temperature 25 °C) allowed the achievement of a 99% yield of n-butyl acrylate in 24 h. Screening of various ionic liquids showed that the most promising result was obtained if N-(6-deoxy-1-O-methoxy-α-D-glucopyranosyl)-N,N,N-trimethylammonium bis-(trifluoromethylsulfonyl)imide ([N(CH3)3GlcOCH3][N(Tf)2]) was selected in order to modify the outer surface of MWCNTs. The final SILP biocatalyst-CNTs-[N(CH3)3GlcOCH3][N(Tf)2]-CALB contained 1.8 wt.% of IL and 4.2 wt.% of CALB. Application of the SILP biocatalyst led to the enhanced activity of CALB in comparison with the biocatalyst prepared via physical adsorption of CALB onto MWCNTs (CNTs-CALB), as well as with commercially available Novozyme 435. Thus, the crucial role of IL in the stabilization of biocatalysts was clearly demonstrated. In addition, a significant stability of the developed biocatalytic system was confirmed (three runs with a yield of ester over 90%).
Collapse
Affiliation(s)
- Anna Szelwicka
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.S.); (K.E.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.S.); (K.E.)
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Lukasiewicz Research Network, Sklodowskiej-Curie 55, 87-100 Torun, Poland;
| | - Slawomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.S.); (K.E.)
| |
Collapse
|
32
|
Topical 5% Imiquimod Sequential to Surgery for HPV-Related Squamous Cell Carcinoma of the Lip. ACTA ACUST UNITED AC 2021; 57:medicina57060563. [PMID: 34199380 PMCID: PMC8227566 DOI: 10.3390/medicina57060563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Background: Squamous cell carcinoma (SCC) is one of the most common neoplasms affecting the oral cavity and the face. Its more differentiated forms may be associated with human papilloma virus (HPV) infection. Case report: In this paper, we report the case of an 86-year-old patient with a well-differentiated SCC of the lower lip associated with HPV treated with surgery with a non-complete histological resolution. Imiquimod 5% cream was applied on the surgical scar once a day for two weeks and then once a week. Two years after SCC removal, no relapse has occurred. Conclusions: Topical imiquimod may be a safe and effective treatment after surgery in SCC of the oral area to reduce the risk of relapses.
Collapse
|
33
|
Zhao Z, Tanner EEL, Kim J, Ibsen K, Gao Y, Mitragotri S. Ionic Liquid-Enabled Topical Delivery of Immunomodulators. ACS Biomater Sci Eng 2021; 7:2783-2790. [PMID: 33983704 DOI: 10.1021/acsbiomaterials.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin is one of the most immunologically active organs of the body due to the presence of diverse immune cells and its active involvement in the innate and adaptive immunity. Because of its unique location and immunological role, skin offers an excellent site for the introduction of immunomodulators to synergize with the active immune microenviroment for the desired outcome. However, delivery of immunomodulators to the skin remains a significant challenge due to the skin's barrier properties. Here, we report an ionic liquid (IL)-based strategy to formulate and deliver immunomodulators to the skin. Using imiquimod (IMQ) and triamcinolone acetonide (TCA) as the respective model immunoactive and immunosuppressive drugs, we demonstrated that ILs significantly enhanced the solubility of immunomodulators. In addition, ILs enabled the formulation of the immunomodulators into stable, topically applicable forms. Our ex vivo skin penetration studies revealed that the IL formulations outperformed respective commercial topical comparators and delivered significantly more immunomodulators to deep skin layers. The lead IMQ formulation exhibited >10-fold better efficacy in delivering IMQ to the deep skin layers as compared to the commercial 5% IMQ cream. Lead TCA formulations achieved a dose level in deep skin layers that is comparable to that by clinically used intralesional injections. Our data collectively suggest that the IL-based strategy can be a simple and effective platform for delivery of immunomodulators to the skin.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Eden E L Tanner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kelly Ibsen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Zullo V, Iuliano A, Guazzelli L. Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules 2021; 26:2052. [PMID: 33916695 PMCID: PMC8038380 DOI: 10.3390/molecules26072052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates represent a promising option in transitioning from oil-based chemical resources to renewable ones, with the goal of developing chemistries for a sustainable future. Cellulose, hemicellulose, and largely available monosaccharides already provide useful chemical building blocks, so-called platform chemicals, such as levulinic acid and hydroxymethyl furfural, as well as solvents like cyrene or gamma-valerolactone. Therefore, there is great anticipation for novel applications involving materials and chemicals derived from sugars. In the field of ionic liquids (ILs), sugar-based ILs have been overlooked for a long time, mainly on account of their multistep demanding preparation. However, exploring new strategies for accessing sugar-based ILs, their study, and their exploitation, are attracting increasing interest. This is due to the growing concerns about the negative (eco)toxicity profile of most ILs in conjunction with their non-sustainable nature. In the present review, a literature survey concerning the development of sugar-based ILs since 2011 is presented. Their preparation strategies and thermal behavior analyses, sorted by sugar type, make up the first two sections with the intention to provide the reader with a useful guide. A final overview of the potential applications of sugar-based ILs and their future perspectives complement the present analysis.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
35
|
Insight into the Liquid–Liquid Extraction System AuCl4−/HCl/A327H+Cl− Ionic Liquid/Toluene. Processes (Basel) 2021. [DOI: 10.3390/pr9040608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ionic liquid A327H+Cl− is generated by reaction of the tertiary amine A327 (industrial mixture of tri-octyl and tri-decyl amines) and hydrochloric acid solutions. In this study, the extraction of Au(III) by A327H+Cl− ionic liquid under various variables, including metal and ionic liquid concentrations, was investigated. Results indicate that A327H+AuCl4− is formed by an exothermic (ΔH° = −3 kJ/mol) reaction in the organic solution. Aqueous ionic strength influences the formation constant values, and the specific interaction theory (SIT) was used to estimate the interaction coefficient between AuCl4− and H+. Gold (III) was stripped using thiocyanate media, and from the strip solutions, gold was precipitated as gold nanoparticles.
Collapse
|
36
|
Structural, Thermal, and Storage Stability of Rapana Thomasiana Hemocyanin in the Presence of Cholinium-Amino Acid-Based Ionic Liquids. Molecules 2021; 26:molecules26061714. [PMID: 33808584 PMCID: PMC8003507 DOI: 10.3390/molecules26061714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel biocompatible compounds that stabilize proteins in solution are in demand for biomedical and/or biotechnological applications. Here, we evaluated the effect of six ionic liquids, containing mono- or dicholinium [Chol]1or2 cation and anions of charged amino acids such as lysine [Lys], arginine [Arg], aspartic acid [Asp], or glutamic acid [Glu], on the structure, thermal, and storage stability of the Rapana thomasiana hemocyanin (RtH). RtH is a protein with huge biomedicinal potential due to its therapeutic, drug carrier, and adjuvant properties. Overall, the ionic liquids (ILs) induce changes in the secondary structure of RtH. However, the structure near the Cu-active site seems unaltered and the oxygen-binding capacity of the protein is preserved. The ILs showed weak antibacterial activity when tested against three Gram-negative and three Gram-positive bacterial strains. On the contrary, [Chol][Arg] and [Chol][Lys] exhibited high anti-biofilm activity against E. coli 25213 and S. aureus 29213 strains. In addition, the two ILs were able to protect RtH from chemical and microbiological degradation. Maintained or enhanced thermal stability of RtH was observed in the presence of all ILs tested, except for RtH-[Chol]2[Glu].
Collapse
|
37
|
Kiyonga AN, Hong G, Kim HS, Suh YG, Jung K. Facile and Rapid Isolation of Oxypeucedanin Hydrate and Byakangelicin from Angelica dahurica by Using [Bmim]Tf 2N Ionic Liquid. Molecules 2021; 26:830. [PMID: 33562719 PMCID: PMC7915976 DOI: 10.3390/molecules26040830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids (ILs) have sparked much interest as alternative solvents for plant materials as they provide distinctive properties. Therefore, in this study, the capacity of ILs to extract oxypeucedanin hydrate and byakangelicin from the roots of Angelica dahurica (A. dahurica) was investigated. The back-extraction method was examined to recover target components from the IL solution as well. Herein, [Bmim]Tf2N demonstrated outstanding performance for extracting oxypeucedanin hydrate and byakangelicin. Moreover, factors including solvent/solid ratio, extraction temperature and time were investigated and optimized using a statistical approach. Under optimum extraction conditions (solvent/solid ratio 8:1, temperature 60 °C and time 180 min), the yields of oxypeucedanin hydrate and byakangelicin were 98.06% and 99.52%, respectively. In addition, 0.01 N HCl showed the most significant ability to back-extract target components from the [Bmim]Tf2N solution. The total content of both oxypeucedanin hydrate (36.99%) and byakangelicin (45.12%) in the final product exceeded 80%. Based on the data, the proposed approach demonstrated satisfactory extraction ability, recovery and enrichment of target compounds in record time. Therefore, the developed approach is assumed essential to considerably reduce drawbacks encountered during the separation of oxypeucedanin hydrate and byakangelicin from the roots of A. dahurica.
Collapse
Affiliation(s)
| | | | | | | | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (G.H.); (H.S.K.); (Y.-G.S.)
| |
Collapse
|
38
|
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics 2021; 13:pharmaceutics13020192. [PMID: 33535607 PMCID: PMC7912864 DOI: 10.3390/pharmaceutics13020192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/22/2022] Open
Abstract
A combination of in situ gelling systems and a loaded drug self-assembling nanomicellar carrier was chosen in this study as a new potential Ocular Drug Delivery System (ODDS) for Cyclosporine-A (CyA), a poorly water-soluble drug. Two non-ionic surfactants (d-α-tocopherol polyethylene glycol succinate, VitE-TPGS and polyoxyl 40 hydrogenated castor oil, RH-40) were used to produce the nanomicelles. The physical-chemical characterization of the nanomicelles in terms of CyA entrapment (EE%) and loading efficiency (LE%), cloud point (CP), regeneration time (RT), size and polydispersity index (PI) allowed us to select the best combination of surfactant mixture, which showed appropriate stability, high CyA-EE (99.07%), very small and homogeneous dimensions and favored the solubilization of an amount of CyA (0.144% w/w) comparable to that contained in marketed emulsion Ikervis®. The selected nanomicellar formulation incorporated into optimized ion-sensitive polymeric dispersions of gellan gum (GG-LA: 0.10, 0.15 and 0.20% w/w) able to trigger the sol-gel transition after instillation was characterized from technological (osmolality, pH, gelling capacity, rheological behavior, wettability, TEM and storage stability at 4 and 20 °C) and biopharmaceutical points of view. This new combined approach allowed us to obtain clear aqueous dispersions that were easy to instill and able to form a viscous gel when in contact with the tear fluid, improving CyA ocular bioavailability. Furthermore, this new ODDS prevented CyA transcorneal permeation, exhibited low cytotoxicity and prolonged the CyA resident time in the precorneal area compared to Ikervis®.
Collapse
Affiliation(s)
- Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
- Correspondence:
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| |
Collapse
|