1
|
Aekwattanaphol N, Das SC, Khadka P, Nakpheng T, Ali Khumaini Mudhar Bintang M, Srichana T. Development of a proliposomal pretomanid dry powder inhaler as a novel alternative approach for combating pulmonary tuberculosis. Int J Pharm 2024; 664:124608. [PMID: 39163929 DOI: 10.1016/j.ijpharm.2024.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.
Collapse
Affiliation(s)
- Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Marwitz F, Hädrich G, Redinger N, Besecke KFW, Li F, Aboutara N, Thomsen S, Cohrs M, Neumann PR, Lucas H, Kollan J, Hozsa C, Gieseler RK, Schwudke D, Furch M, Schaible U, Dailey LA. Intranasal Administration of Bedaquiline-Loaded Fucosylated Liposomes Provides Anti-Tubercular Activity while Reducing the Potential for Systemic Side Effects. ACS Infect Dis 2024; 10:3222-3232. [PMID: 39136125 PMCID: PMC11406518 DOI: 10.1021/acsinfecdis.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Liposomal formulations of antibiotics for inhalation offer the potential for the delivery of high drug doses, controlled drug release kinetics in the lung, and an excellent safety profile. In this study, we evaluated the in vivo performance of a liposomal formulation for the poorly soluble, antituberculosis agent, bedaquiline. Bedaquiline was encapsulated within monodisperse liposomes of ∼70 nm at a relatively high drug concentration (∼3.6 mg/mL). Formulations with or without fucose residues, which bind to C-type lectin receptors and mediate a preferential binding to macrophage mannose receptor, were prepared, and efficacy was assessed in an in vivo C3HeB/FeJ mouse model of tuberculosis infection (H37Rv strain). Seven intranasal instillations of 5 mg/kg bedaquiline formulations administered every second day resulted in a significant reduction in lung burden (∼0.4-0.6 Δlog10 CFU), although no differences between fucosylated and nonfucosylated formulations were observed. A pharmacokinetic study in healthy, noninfected Balb/c mice demonstrated that intranasal administration of a single dose of 2.5 mg/kg bedaquiline liposomal formulation (fucosylated) improved the lung bioavailability 6-fold compared to intravenous administration of the same formulation at the same dose. Importantly, intranasal administration reduced systemic concentrations of the primary metabolite, N-desmethyl-bedaquiline (M2), compared with both intravenous and oral administration. This is a clinically relevant finding as the M2 metabolite is associated with a higher risk of QT-prolongation in predisposed patients. The results clearly demonstrate that a bedaquiline liposomal inhalation suspension may show enhanced antitubercular activity in the lung while reducing systemic side effects, thus meriting further nonclinical investigation.
Collapse
Affiliation(s)
- Franziska Marwitz
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Gabriela Hädrich
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Natalja Redinger
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Karen F W Besecke
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
- Cardior Pharmaceuticals GmbH, Hollerithallee 20 ,Hannover 30419, Germany
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| | - Nadine Aboutara
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Simone Thomsen
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
| | - Michaela Cohrs
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460 ,Ghent 9000, Belgium
| | - Paul Robert Neumann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Julia Kollan
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
| | - Robert K Gieseler
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Department of Medicine, University Hospital, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25 ,Bochum 44892, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel 24118, Germany
| | - Marcus Furch
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Certmedica International GmbH, Magnolienweg 17 ,Aschaffenburg 63741, Germany
| | - Ulrich Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| |
Collapse
|
3
|
Balay G, Abdella K, Kebede W, Tadesse M, Bonsa Z, Mekonnen M, Amare M, Abebe G. Resistance to pyrazinamide in Mycobacterium tuberculosis complex isolates from previously treated tuberculosis cases in Southwestern Oromia, Ethiopia. J Clin Tuberc Other Mycobact Dis 2024; 34:100411. [PMID: 38222863 PMCID: PMC10787229 DOI: 10.1016/j.jctube.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Objective Pyrazinamide (PZA) susceptibility testing is important to develop evidence-based algorithms for case management. We aimed to assess the prevalence of PZA-resistance and its impact on treatment outcomes in previously treated tuberculosis (TB) cases in southwestern Oromia, Ethiopia. Methods A Phenotypic Drug Susceptibility Testing (DST) of PZA with BACTEC MGIT 960 was conducted at the Mycobacteriology Research Center of Jimma University (MRC-JU) from June to November 2021 on sixty-six Mycobacterium tuberculosis complex (MTBC) isolates from previously treated TB cases. SPSS software package version 21 was used. The differences in the proportion of PZA resistance between the groups were compared using the chi squared test. Logistic regression was used to identify the association between PZA resistance and treatment outcomes. Results Among 66 MTBC isolates (49 rifampicin-resistant and 17 rifampicin-sensitive) included in this study, 31.8 % were resistant to PZA. The proportion of PZA resistance was almost three times higher in previously treated TB cases with rifampicin resistance than in rifampicin-sensitive patients (38.8 % vs. 11.8 %, p = 0.039). An unfavorable treatment outcome was documented for 23 % (15/65) of the participants. Patients with PZA resistance were almost four times more likely to have an unfavorable treatment outcome than patients with PZA sensitive (aOR 4.2, 95 % CI: 1.13-15.3). Conclusions The prevalence of PZA resistance was high compared to the pooled PZA resistance estimated worldwide. The majority of TB cases with PZA resistance had an unfavorable treatment outcome. PZA susceptibility testing should be included in the multidrug-resistant TB diagnostic algorithm to improve management of these patients.
Collapse
Affiliation(s)
- Getu Balay
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wakjira Kebede
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mulualem Tadesse
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Zegeye Bonsa
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mekidim Mekonnen
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Sharma D, Pooja, Nirban S, Ojha S, Kumar T, Jain N, Mohamad N, Kumar P, Pandey M. Nano vs Resistant Tuberculosis: Taking the Lung Route. AAPS PharmSciTech 2023; 24:252. [PMID: 38049695 DOI: 10.1208/s12249-023-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pooja
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Sunita Nirban
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Smriti Ojha
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Tarun Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Najwa Mohamad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor Darul Ehsan, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
5
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
6
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
7
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
8
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Barrera-Rosales A, Rodríguez-Sanoja R, Hernández-Pando R, Moreno-Mendieta S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023; 11:1988. [PMID: 37630548 PMCID: PMC10459556 DOI: 10.3390/microorganisms11081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
Collapse
Affiliation(s)
- Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México;
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México 14080, México
| | - Silvia Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
10
|
Shen L, Fu S, Chen Y, Li W, Liu S, Li Z, Li J, Li Y, Ran Y, Zhang J, Qiao L, Hao Y. Mannosylated polydopamine nanoparticles alleviate radiation- induced pulmonary fibrosis by targeting M2 macrophages and inhibiting the TGF-β1/Smad3 signaling pathway. Colloids Surf B Biointerfaces 2023; 227:113353. [PMID: 37196463 DOI: 10.1016/j.colsurfb.2023.113353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Radiation-induced pulmonary fibrosis (RIPF), one type of pulmonary interstitial diseases, is frequently observed following radiation therapy for chest cancer or accidental radiation exposure. Current treatments against RIPF frequently fail to target lung effectively and the inhalation therapy is hard to penetrate airway mucus. Therefore, this study synthesized mannosylated polydopamine nanoparticles (MPDA NPs) through one-pot method to treat RIPF. Mannose was devised to target M2 macrophages in the lung through CD 206 receptor. MPDA NPs showed higher efficiency of penetrating mucus, cellular uptake and ROS-scavenging than original polydopamine nanoparticles (PDA NPs) in vitro. In RIPF mice, aerosol administration of MPDA NPs significantly alleviated the inflammatory, collagen deposition and fibrosis. The western blot analysis demonstrated that MPDA NPs inhibited TGF-β1/Smad3 signaling pathway against pulmonary fibrosis. Taken together this study provide a novel M2 macrophages-targeting nanodrugs through aerosol delivery for the prevention and targeted treatment for RIPF.
Collapse
Affiliation(s)
- Li Shen
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Shiyan Fu
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Yonglai Chen
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Wenrun Li
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Suiyi Liu
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Zhi Li
- Medical Service Training Center, Central Theater Command General Hospital, Wuhan 430070, China
| | - Jie Li
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Yong Li
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Yonghong Ran
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Jing Zhang
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Lu Qiao
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China
| | - Yuhui Hao
- College of Preventive Medicine, Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Gaikwad SS, Pathare SR, More MA, Waykhinde NA, Laddha UD, Salunkhe KS, Kshirsagar SJ, Patil SS, Ramteke KH. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies. J Control Release 2023; 355:292-311. [PMID: 36739908 DOI: 10.1016/j.jconrel.2023.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India; Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India.
| | - Snehal R Pathare
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Mayur A More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Nikita A Waykhinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Umesh D Laddha
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J Kshirsagar
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Sakshi S Patil
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Kuldeep H Ramteke
- Department of Pharmaceutics, Shivajirao Pawar College of Pharmacy, Pachegaon, Newasa, Ahmednagar Pin: 413725, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonare, India
| |
Collapse
|
12
|
Ravon F, Menchi E, Lambot C, Al Kattar S, Chraibi S, Remmelink M, Fontaine V, Wauthoz N. In vitro and in vivo local tolerability of a synergistic anti-tuberculosis drug combination intended for pulmonary delivery. J Appl Toxicol 2023; 43:298-311. [PMID: 35997255 DOI: 10.1002/jat.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
A drug combination, vancomycin (VAN) plus tetrahydrolipstatin (THL), has demonstrated an effective synergistic action in vitro against Mycobacterium tuberculosis (Mtb). The poor oral bioavailability of VAN and THL and the predominant tropism of Mtb infection to the lungs make their pulmonary administration very attractive. To evaluate their local tolerability, bronchial cells, alveolar cells and monocytes were exposed to concentrations around and above their minimal inhibitory concentration (MIC). The VAN had no inhibitory activity on the tested human cell lines, even at a concentration 125 times higher than its MIC, whereas the THL, alone or in combination with VAN, presented a cytostatic action. Monolayer epithelium showed no significant irreversible damage at concentrations up to 100 times the combination MIC. BALB/cAnNRj mice exposed to concentration of 50 times the combination MIC delivered endotracheally 3 times a week for 3 weeks showed no clinical signs or significant weight loss. The increase of proinflammatory biomarkers (i.e., IL-1, IL-6, TNF-α and proportion of inflammatory cells) and cytotoxicity in bronchoalveolar lavage fluid (BALF) were non-significant. Lung histopathology did not show significant tissue damage. The VAN/THL combination at doses up to 50 times the combination MIC is found to be thus well tolerated by pulmonary route. This study is a promising result and encouraging further investigations of pulmonary administration of VAN/THL combination as dry powder for anti-tuberculosis treatment.
Collapse
Affiliation(s)
- Faustine Ravon
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Menchi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Coralie Lambot
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sahar Al Kattar
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Selma Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Fontaine
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
13
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
14
|
Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol 2023; 13:1149679. [PMID: 37143744 PMCID: PMC10152471 DOI: 10.3389/fcimb.2023.1149679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- *Correspondence: Jianyong Chen,
| |
Collapse
|
15
|
Zegarra-Urquia CL, Santiago J, Bumgardner JD, Goroncy AK, Vega-Baudrit J, Hernández-Escobar CA, Zaragoza-Contreras EA. Characterization of isoniazid incorporation into chitosan-poly(aspartic acid) nanoparticles. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2145287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Julio Santiago
- Departamento de Química Orgánica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joel D. Bumgardner
- Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA
| | | | - José Vega-Baudrit
- Centro Nacional de Alta Tecnología “Dr. Franklin Chang Díaz”, Laboratorio Nacional de Nanotecnología (LANOTEC), San José, Costa Rica
- POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Claudia A. Hernández-Escobar
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| | - E. Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| |
Collapse
|
16
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
17
|
Zaki RM, Aldawsari MF, Alossaimi MA, Alzaid SF, Devanathadesikan Seshadri V, Almurshedi AS, Aldosari BN, Yusif RM, Sayed OM. Brain Targeting of Quetiapine Fumarate via Intranasal Delivery of Loaded Lipospheres: Fabrication, In-Vitro Evaluation, Optimization, and In-Vivo Assessment. Pharmaceuticals (Basel) 2022; 15:ph15091083. [PMID: 36145303 PMCID: PMC9501298 DOI: 10.3390/ph15091083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
A liposphere system for intranasal delivery of quetiapine fumarate (QTF) was created to assess the potential for enhanced drug delivery. We investigated the effects of particle size, entrapment effectiveness, poly dispersibility index, and pluronic incorporation percentage on these variables. The optimal formula was examined using a TEM, and investigations into DSC, XRD, and FTIR were made. Optimized liposphere formulation in vitro dissolution investigation with a mean diameter of 294.4 ± 18.2 nm revealed about 80% drug release in 6 h. The intranasal injection of QTF-loaded lipospheres showed a shorter Tmax compared to that of intranasal and oral suspension, per the findings of an in vivo tissue distribution investigation in Wistar mice. Lipospheres were able to achieve higher drug transport efficiency (DTE %) and direct nose-to-brain drug transfer (DTP %). A potentially effective method for delivering QTF to specific brain regions is the liposphere system.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
- Correspondence:
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shaikah F. Alzaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rehab Mohammad Yusif
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
| | - Ossama M. Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41612, Egypt
| |
Collapse
|
18
|
Ullah F, Shah KU, Shah SU, Nawaz A, Nawaz T, Khan KA, Alserihi RF, Tayeb HH, Tabrez S, Alfatama M. Synthesis, Characterization and In Vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers (Basel) 2022; 14:polym14173564. [PMID: 36080637 PMCID: PMC9460706 DOI: 10.3390/polym14173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to synthesise montelukast-loaded polymeric nanoparticles via the ionic gelation method using chitosan as a natural polymer and tripolyphosphate as a crosslinking agent. Tween 80, hyaluronic acid and leucine were added to modify the physicochemical properties of nanoparticles, reduce the nanoparticles’ uptake by alveolar macrophages and improve powder aerosolisation, respectively. The nanoparticles ranged from 220 nm to 383 nm with a polydispersity index of ≤0.50. The zeta potential of nanoparticles ranged from 11 mV to 22 mV, with a drug association efficiency of 46–86%. The simple chitosan nanoparticles (F2) were more spherical in comparison to other formulations (F4–F6), while the roughness of hyaluronic acid (F5) and leucine (F6) added formulations was significantly high er than F2 and Tween 80 added formulation (F4). The DSC and FTIR analysis depict that the physical and chemical properties of the drug were preserved. The release of the drugs from nanoparticles was more sustained in the case of F5 and F6 when compared to F2 and F4 due to the additional coating of hyaluronic acid and leucine. The nanoparticles were amorphous and cohesive and prone to exhalation due to their small size. Therefore, nanoparticles were admixed with lactose microspheres to reduce particle agglomeration and improve powder dispersion from a dry powder inhaler (DPI). The DPI formulations achieved a dispersed fraction of 75 to 90%, a mass median aerodynamic diameter (MMAD) of 1–2 µm and a fine particle fraction (FPF) of 28–83% when evaluated using the Anderson cascade impactor from Handihaler®. Overall, the montelukast-loaded nanoparticles physically admixed with lactose microspheres achieved optimum deposition in the deep lung for potential application in asthmatic patients.
Collapse
Affiliation(s)
- Faqir Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| | | | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kamran Ahmad Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Raed F. Alserihi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
- Correspondence: (K.U.S.); (A.N.); (M.A.)
| |
Collapse
|
19
|
Poerio N, Riva C, Olimpieri T, Rossi M, Lorè NI, De Santis F, Henrici De Angelis L, Ciciriello F, D’Andrea MM, Lucidi V, Cirillo DM, Fraziano M. Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiol Spectr 2022; 10:e0254621. [PMID: 35080463 PMCID: PMC8791191 DOI: 10.1128/spectrum.02546-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and β-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.
Collapse
Affiliation(s)
- Noemi Poerio
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Camilla Riva
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Olimpieri
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Marco Rossi
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I. Lorè
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Fabiana Ciciriello
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Marco M. D’Andrea
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Vincenzina Lucidi
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Daniela M. Cirillo
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
20
|
Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022; 229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: Present status and future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Abdeahad H, Salehi M, Yaghoubi A, Aalami AH, Aalami F, Soleimanpour S. Previous pulmonary tuberculosis enhances the risk of lung cancer: systematic reviews and meta-analysis. Infect Dis (Lond) 2021; 54:255-268. [PMID: 34807803 DOI: 10.1080/23744235.2021.2006772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The possible association between history of pulmonary tuberculosis (TB) and lung cancer (LC) has attracted researchers' attention for several decades. This systematic review and meta-analysis aim to assess the association between previous pulmonary TB infection and LC risk. METHODS A Systematic and comprehensive search was performed in the following databases: PubMed, Embase, clinical key, Web of Science and Google Scholar, in articles and abstracts published from 1987 to 2021. Thirty-two articles (involving 50,290 cases and 846,666 controls) met the inconclusive criteria. The Comprehensive Meta-Analysis version 2.2 software was used for this meta-analysis. RESULTS The result of this meta-analysis demonstrates that pre-existing active pulmonary TB increases the risk of LC (RR = 2.170, 95% confidence interval [CI] 1.833-2.569, p < .001, I2 = 91.234%). The results showed that the risk of the history of active pulmonary TB infection in adenocarcinoma was 2.605 (95% CI 1.706-3.979, p < .001, I2 = 55.583%), in small-cell carcinoma was 2.118 (95% CI 1.544-2.905, p < .001, I2 = 0.0%), in squamous-cell carcinoma, was 3.570 (95% CI 2.661 - 4.791, p < .001, I2 = 42.695%) and 2.746 (95% CI 2.300-3.279, p < .001, I2 = 41.686%) for other histological types of LCs. According to these results, a history of active pulmonary TB increases the risk of LC. CONCLUSIONS This study emphasizes the importance of LC screening in pulmonary TB patients even after the infection is treated. With the increased chances of LC in a patient who had a history of active pulmonary TB, there could be a need for a further follow-up period after pulmonary TB recovery.
Collapse
Affiliation(s)
- Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | - Maryam Salehi
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farnoosh Aalami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Tuberculosis Reference Laboratory-Northeast of Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Limocon JRA, Madalag LMC, Reliquias PJB, Tionko JVS, Fermin JL, Kee SL, Tan MJT, Jonco MJLJ, Pomperada MJF. Small but Terrible: Utilizing Chitosan-Based Nanoparticles as Drug Carriers to Treat Tuberculosis in the Philippines. Front Pharmacol 2021; 12:752107. [PMID: 34690783 PMCID: PMC8527166 DOI: 10.3389/fphar.2021.752107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Jamie Ledesma Fermin
- Department of Electronics Engineering, University of St. La Salle, Bacolod, Philippines
| | - Shaira Limson Kee
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines
| | - Myles Joshua Toledo Tan
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines.,Department of Chemical Engineering, University of St. La Salle, Bacolod, Philippines
| | | | | |
Collapse
|
24
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Lung Targeted Lipopolymeric Microspheres of Dexamethasone for the Treatment of ARDS. Pharmaceutics 2021; 13:1347. [PMID: 34575422 PMCID: PMC8471313 DOI: 10.3390/pharmaceutics13091347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 μm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1β, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakur Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Chandramouli Ramnarayanan
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India;
| |
Collapse
|
26
|
Guerrero-Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. mBio 2021; 12:e00973-21. [PMID: 34016711 PMCID: PMC8263002 DOI: 10.1128/mbio.00973-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The global health burden of human tuberculosis (TB) and the widespread antibiotic resistance of its causative agent Mycobacterium tuberculosis warrant new strategies for TB control. The successful use of a bacteriophage cocktail to treat a Mycobacterium abscessus infection suggests that phages could play a role in tuberculosis therapy. To assemble a phage cocktail with optimal therapeutic potential for tuberculosis, we have explored mycobacteriophage diversity to identify phages that demonstrate tuberculocidal activity and determined the phage infection profiles for a diverse set of strains spanning the major lineages of human-adapted strains of the Mycobacterium tuberculosis complex. Using a combination of genome engineering and bacteriophage genetics, we have assembled a five-phage cocktail that minimizes the emergence of phage resistance and cross-resistance to multiple phages, and which efficiently kills the M. tuberculosis strains tested. Furthermore, these phages function without antagonizing antibiotic effectiveness, and infect both isoniazid-resistant and -sensitive strains.IMPORTANCE Tuberculosis kills 1.5 million people each year, and resistance to commonly used antibiotics contributes to treatment failures. The therapeutic potential of bacteriophages against Mycobacterium tuberculosis offers prospects for shortening antibiotic regimens, provides new tools for treating multiple drug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB infections, and protects newly developed antibiotics against rapidly emerging resistance to them. Identifying a suitable suite of phages active against diverse M. tuberculosis isolates circumvents many of the barriers to initiating clinical evaluation of phages as part of the arsenal of antituberculosis therapeutics.
Collapse
Affiliation(s)
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Wang S, Jin S, Shu Q, Wu S. Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy. Pharmaceutics 2021; 13:166. [PMID: 33513793 PMCID: PMC7912621 DOI: 10.3390/pharmaceutics13020166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer is a significant public health concern and social burden due to its high recurrence risk. Intravesical drug instillation is the primary therapy for bladder cancer to prevent recurrence. However, the intravesical drug therapeutic effect is limited by bladder penetrating barriers. The inadequate intravesical treatment might cause the low drug concentration in lesions, resulting in a high recurrence/progression rate of bladder cancer. Many strategies to get drugs across bladder penetrating barriers have been developed to improve intravesical treatment, including physical and chemical methods. This review summarizes the classical and updated literature and presents insights into great therapeutic potential strategies to overcome bladder penetrating barriers for improving the intravesical treatment of bladder cancer.
Collapse
Affiliation(s)
- Shupeng Wang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Shaohua Jin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Qinghai Shu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Song Wu
- School of Medicine, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|