1
|
Wei L, Zhu W, Dong C, Kim JK, Ma Y, Denning TL, Kang SM, Wang BZ. Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice. Biomaterials 2025; 317:123039. [PMID: 39724768 DOI: 10.1016/j.biomaterials.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination. The adjuvant mRNA encodes a novel fusion cytokine GIFT4 comprising GM-CSF and IL-4. We found that the adjuvanted mRNA LNP vaccine induced high levels of humoral antibodies and systemic T cell responses against heterologous influenza antigens and protected immunized mice against influenza A viral infections. Also, the adjuvanted mRNA LNP vaccine elicited early germinal center reactions in draining lymph nodes and promoted antibody-secreting B cell responses. In addition, we generated another adjuvant mRNA encoding CCL27, which enhanced systemic immune responses. We found the two adjuvant mRNAs both showed effective adjuvanticity in enhancing humoral and cellular responses in mice. Interestingly, intradermal immunizations of GIFT4 or CCL27 mRNA adjuvanted mRNA LNP vaccines induced significant lung tissue-resident T cells. Our findings demonstrate that the cytokine mRNA can be a promising adjuvant flexibly formulated into mRNA LNP vaccines to provoke strong immunity against viral variants.
Collapse
Affiliation(s)
- Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Zhu W, Dong C, Wei L, Kim JK, Wang BZ. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol Ther 2025; 33:485-498. [PMID: 39741410 PMCID: PMC11852689 DOI: 10.1016/j.ymthe.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Enhancing protective immunity in the respiratory tract is crucial to combat influenza infection and transmission. Developing mucosal universal influenza vaccines requires effective delivery platforms to overcome the respiratory mucosal barrier and stimulate appropriate innate immune reactions, thereby bridging adaptive immune responses with minimal necessary inflammation. Meanwhile, the vaccine platforms must be biocompatible. This study employed cell-derived extracellular vesicles (EVs) as a mucosal universal influenza vaccine platform. By conjugating influenza hemagglutinin (HA) onto EV surfaces through HA-receptor interaction, we achieved an upside-down (inverted) influenza HA configuration that exposed the conserved HA stalk region while partially hiding the globular head domain. Intranasal immunization with the resulting EVs induced robust HA stalk- and virus-specific serum antibody and mucosal immune responses in mice, protecting against heterologous virus infection. Notably, EVs derived from the lung epithelial cell line A549 induced superior cross-reactive antibodies and enhanced protection upon intranasal immunization. EVs conjugating multivalent HA elicited broadly cross-reactive antibody and cellular responses against different influenza strains. Our results demonstrated that EVs conjugating multiple inverted HAs represented an effective strategy for developing a mucosal universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Ridelfi M, Pierleoni G, Zucconi Galli Fonseca V, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
4
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
5
|
Wei L, Dong C, Zhu W, Wang BZ. mRNA Vaccine Nanoplatforms and Innate Immunity. Viruses 2024; 16:120. [PMID: 38257820 PMCID: PMC10820759 DOI: 10.3390/v16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (L.W.); (C.D.); (W.Z.)
| |
Collapse
|
6
|
Shi H, Ross TM. Inactivated recombinant influenza vaccine: the promising direction for the next generation of influenza vaccine. Expert Rev Vaccines 2024; 23:409-418. [PMID: 38509022 PMCID: PMC11056089 DOI: 10.1080/14760584.2024.2333338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Vaccination is the most effective method to control the prevalence of seasonal influenza and the most widely used influenza vaccine is the inactivated influenza vaccine (IIV). Each season, the influenza vaccine must be updated to be most effective against current circulating variants. Therefore, developing a universal influenza vaccine (UIV) that can elicit both broad and durable protection is of the utmost importance. AREA COVERED This review summarizes and compares the available influenza vaccines in the market and inactivation methods used for manufacturing IIVs. Then, we discuss the latest progress of the UIV development in the IIV format and the challenges to address for moving these vaccine candidates to clinical trials and commercialization. The literature search was based on the Centers for Disease Control and Prevention (CDC) and the PubMed databases. EXPERT OPINION The unmet need for UIV is the primary aim of developing the next generation of influenza vaccines. The IIV has high antigenicity and a refined manufacturing process compared to most other formats. Developing the UIV in IIV format is a promising direction with advanced biomolecular technologies and next-generation adjuvant. It also inspires the development of universal vaccines for other infectious diseases.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Hotez PJ, Bottazzi ME, Islam NY, Lee J, Pollet J, Poveda C, Strych U, Thimmiraju SR, Uzcategui NL, Versteeg L, Gorelick D. The zebrafish as a potential model for vaccine and adjuvant development. Expert Rev Vaccines 2024; 23:535-545. [PMID: 38664959 DOI: 10.1080/14760584.2024.2345685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
INTRODUCTION Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nelufa Yesmin Islam
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Syamala Rani Thimmiraju
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nestor L Uzcategui
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Gorelick
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Zhu W, Park J, Pho T, Wei L, Dong C, Kim J, Ma Y, Champion JA, Wang BZ. ISCOMs/MPLA-Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross-Protection in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301801. [PMID: 37162451 PMCID: PMC10524461 DOI: 10.1002/smll.202301801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Jaeyoung Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thomas Pho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Boudreau CM, Burke JS, Roederer AL, Gorman MJ, Mundle S, Lingwood D, Delagrave S, Sridhar S, Ross TM, Kleanthous H, Alter G. Pre-existing Fc profiles shape the evolution of neutralizing antibody breadth following influenza vaccination. Cell Rep Med 2023; 4:100975. [PMID: 36921600 PMCID: PMC10040413 DOI: 10.1016/j.xcrm.2023.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/08/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
Under the ever-present threat of a pandemic influenza strain, the evolution of a broadly reactive, neutralizing, functional, humoral immune response may hold the key to protection against both circulating and emerging influenza strains. We apply a systems approach to profile hemagglutinin- and neuraminidase-specific humoral signatures that track with the evolution of broad immunity in a cohort of vaccinated individuals and validate these findings in a second longitudinal cohort. Multivariate analysis reveals the presence of a unique pre-existing Fcγ-receptor-binding antibody profile in individuals that evolved broadly reactive hemagglutination inhibition activity (HAI), marked by the presence of elevated levels of pre-existing FCGR2B-binding antibodies. Moreover, vaccination with FCGR2B-binding antibody-opsonized influenza results in enhanced antibody titers and HAI activity in a murine model. Together, these data suggest that pre-existing FCGR2B binding antibodies are a key correlate of the evolution of broadly protective influenza-specific antibodies, providing insight for the design of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John S Burke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Alexander L Roederer
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sophia Mundle
- Discovery North America, Sanofi-Pasteur, Inc., Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Saranya Sridhar
- Discovery North America, Sanofi-Pasteur, Inc., Cambridge, MA 02139, USA
| | - Ted M Ross
- University of Georgia, Athens, GA 30602, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Ontiveros-Padilla L, Batty CJ, Hendy DA, Pena ES, Roque JA, Stiepel RT, Carlock MA, Simpson SR, Ross TM, Abraham SN, Staats HF, Bachelder EM, Ainslie KM. Development of a broadly active influenza intranasal vaccine adjuvanted with self-assembled particles composed of mastoparan-7 and CpG. Front Immunol 2023; 14:1103765. [PMID: 37033992 PMCID: PMC10081679 DOI: 10.3389/fimmu.2023.1103765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a TLR ligand (CpG). This novel nanoparticle (NP) adjuvant was co-formulated with a computationally optimized broadly reactive antigen (COBRA) for hemagglutinin (HA), which is broadly reactive against influenza strains. M7 was combined at different ratios with CpG and tested for in vitro immune responses and cytotoxicity. We observed significantly higher cytokine production in dendritic cells and MCs with the lowest cytotoxicity at a charge-neutralizing ratio of nitrogen/phosphate = 1 for M7 and CpG. This combination formed spherical NPs approximately 200 nm in diameter with self-assembling capacity. Mice were vaccinated intranasally with COBRA HA and M7-CpG NPs in a prime-boost-boost schedule. Vaccinated mice had significantly higher antigen-specific antibody responses (IgG and IgA) in serum and mucosa compared with controls. Splenocytes from vaccinated mice had significantly increased cytokine production upon antigen recall and the presence of central and effector memory T cells in draining lymph nodes. Finally, co-immunization with NPs and COBRA HA induced influenza H3N2-specific HA inhibition antibody titers across multiple strains and partially protected mice from a challenge against an H3N2 virus. These results illustrate that the M7-CpG NP adjuvant combination can induce a protective immune response with a broadly reactive influenza antigen via mucosal vaccination.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erik S. Pena
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
| | - John A. Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael A. Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sean R. Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ted M. Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Soman N. Abraham
- Departments of Pathology, Molecular Genetics and Microbiology and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Herman F. Staats
- Department of Pathology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccines Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Kristy M. Ainslie,
| |
Collapse
|
12
|
Zhao D, Chen X, Wang L, Zhang J, Lv R, Tan L, Chen Y, Tao R, Li X, Chen Y, He W, He J. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front Microbiol 2023; 14:1111886. [PMID: 36960292 PMCID: PMC10027775 DOI: 10.3389/fmicb.2023.1111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The current influenza vaccines are unable to provide effective protection in many cases, like influenza viruses strain antigenic drift or shift, and the influenza continues to cause significant annual morbidity and mortality. Improving the immune response to influenza vaccination is an unmet need. Traditional Chinese medicine (TCM) and its active ingredients are commonly known to have immunomodulatory properties. We therefore compared influenza vaccination alone or formulated with Astragali Radix (Huangqi in Chinese), and several representative ingredients of TCM, including lentinan (polysaccharide), panax notoginseng saponins (saponin), breviscapine (flavone), andrographolide (terpenoid), and a Chinese herbal compound (kangai) for their potential to enhance immune responses to influenza vaccine in mice. We found that all these TCM-adjuvants were able to increase hemagglutination inhibition (HAI) antibody titers, splenocyte proliferation, splenic T cell differentiation, bone marrow dendritic cell maturity, and both Th1 and Th2 cytokine secretion of influenza vaccine to varying degrees, and that had the characteristics of no excessive inflammatory responses and bidirectional regulation simultaneously. Taken together, our findings show that Astragali Radix exerts a more comprehensive effect on vaccine immunity, on both innate and adaptive immunity. The effects of lentinan and andrographolide on adaptive immunity were more significant, while the effects of breviscapine on innate immunity were stronger, and the other two TCM adjuvants were weaker. As the first report of a comprehensive evaluation of TCM adjuvants in influenza vaccines, the results suggest that TCM and their active ingredients are good candidates for enhancing the immune response of influenza vaccines, and that suitable TCMs can be selected based on the adjuvant requirements of different vaccines.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Licensed liposomal vaccines and adjuvants in the antigen delivery system. BIOTECHNOLOGIA 2022; 103:409-423. [PMID: 36685697 PMCID: PMC9837556 DOI: 10.5114/bta.2022.120709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 08/02/2022] [Indexed: 12/28/2022] Open
Abstract
Liposomes (LSs) are promising nanoparticles with unique properties such as controlled nanosize, large surface area, increased reactivity, and ability to undergo modification. Worldwide, licensed liposomal forms of antibiotics, hormones, antioxidants, cytostatics, ophthalmic drugs, etc., are available on the pharmaceutical market. This review focuses on the adjuvant properties of LSs in the production of vaccines (VACs). LS-VACs have the following advantages: antigens with low immunogenicity can become highly immunogenic; LSs can include both hydrophilic and hydrophobic antigens; LSs allow to achieve a prolonged specific action of antibodies; and LSs reduce the toxicity and pyrogenicity of encapsulated antigens and adjuvants. The immune response is influenced by the composition of the liposomal membrane, physicochemical characteristics of lipids, antigen localization in LSs, interaction of LSs with complement, and a number of proteins, which leads to opsonization. The major requirements for adjuvants are their ability to enhance the immune response, biodegradability, and elimination from the organism, and LSs fully meet these requirements. The effectiveness and safety of LSs as carriers in the antigen delivery system have been proven by the long-term clinical use of licensed vaccines against hepatitis A, influenza, herpes zoster, malaria, and COVID-19.
Collapse
|
14
|
Weng X, Zhao B, Li R, Li Q, Zhang A. Cultivated Artemisia rupestris L. polysaccharide CARP2 as an adjuvant for influenza vaccines to prolong immune responses. Int J Biol Macromol 2022; 224:713-724. [DOI: 10.1016/j.ijbiomac.2022.10.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
15
|
Lee J, Ahn SY, Le CTT, Lee DH, Jung J, Ko EJ. Protective and vaccine dose-sparing efficacy of Poly I:C-functionalized calcium phosphate nanoparticle adjuvants in inactivated influenza vaccination. Int Immunopharmacol 2022; 112:109240. [PMID: 36115278 DOI: 10.1016/j.intimp.2022.109240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Adjuvants are required to increase the immunogenicity and efficacy of vaccination and enable vaccine dose sparing. Polyinosinic-polycytidylic acid (Poly I:C), a toll-like receptor 3 agonist, is a promising adjuvant candidate that can induce cell-mediated immune responses; however, it remains unlicensed owing to its low stability and toxicity. Calcium phosphate (CaP), a biocompatible and biodegradable nanoparticle, is widely used in biomedicine for stable and targeted drug delivery. In this study, we developed Poly I:C-functionalized CaP (Poly-CaP) and evaluated its vaccine adjuvant efficacy in vitro and in vivo. A half dose of Poly-CaP nanoparticles showed similar efficacy to a full dose of soluble Poly I:C in stimulating bone marrow-derived dendritic cells and macrophages to secrete proinflammatory cytokines and express their activation markers. Immunization with a half dose of inactivated influenza vaccine in the presence of Poly I:C or Poly-CaP adjuvants induced sufficient antigen-specific humoral responses after boost immunization. Immunization with Poly I:C, CaP, or Poly-CaP-adjuvanted with a half dose of influenza vaccine showed comparable protective efficacy against lethal virus infection, with lower weight loss and virus titer than a full dose of influenza vaccine. The Poly-CaP adjuvant was effective in stimulating antigen-specific CD4+ T cell proliferation in the lungs. Collectively, our results showed that the Poly-CaP adjuvant enhanced antigen-specific cell-mediated immunity and humoral immune responses with vaccine dose-sparing effects, suggesting its potential as a novel vaccine adjuvant candidate.
Collapse
Affiliation(s)
- Jueun Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - So Yeon Ahn
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chau Thuy Tien Le
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong-Ha Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jaehan Jung
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Eun-Ju Ko
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
16
|
Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing) 2022; 3:e167. [PMID: 36033422 PMCID: PMC9409637 DOI: 10.1002/mco2.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.
Collapse
Affiliation(s)
- Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
| | - Jiangyao Duan
- Department of Life SciencesImperial College LondonLondonUK
| | - Na Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yuxin Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xing Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
17
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
18
|
Song Y, Zhu W, Wang Y, Deng L, Ma Y, Dong C, Gonzalez GX, Kim J, Wei L, Kang SM, Wang BZ. Layered protein nanoparticles containing influenza B HA stalk induced sustained cross-protection against viruses spanning both viral lineages. Biomaterials 2022; 287:121664. [PMID: 35810540 PMCID: PMC9822777 DOI: 10.1016/j.biomaterials.2022.121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
The influenza epidemics pose a significant threat to public health. Of them, type B influenza coincided with several severe flu outbreaks. The efficacy of the current seasonal flu vaccine is limited due to the antigenicity changes of circulating strains. In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates. In vitro studies found that the resulting protein nanoparticles were effectively taken up to activate dendritic cells. Nanoparticle immunization induced broadly reactive immune responses conferring robust and sustained cross-immune protection against influenza B virus strains of both lineages. The results reveal the potential of layered protein nanoparticles incorporated with structure-stabilized constant antigens as a universal influenza vaccine with improved immune protective potency and breadth.
Collapse
Affiliation(s)
- Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; Hunan Provincial Kay Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, China
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Gilbert X Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
19
|
Krasilnikov IV, Ivanov AV, Nikolaeva AM, Belyakova OV, Shevchenko EK, Mikhailova NA, Leneva IA, Zverev VV. Preclinical study of immunogenicity of adjuvanted quadrivalent subunit influenza vaccine. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022; 99:300-308. [DOI: 10.36233/0372-9311-244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background. Preventive vaccination is a vitally important strategic aspect of protection of the population against severe effects of influenza epidemics. The priority attention is given to development of effective tetravalent vaccines containing antigens of two influenza A lineages (H1N1, H3N2) and two influenza B lineages (Victoria and Yamagata) in combination with immunoadjuvants.The aim of the work was to conduct the preclinical study of the immunogenicity and protective efficacy of the innovative tetravalent subunit vaccine containing antigens of influenza A and B viruses as well as a corpuscular adjuvant.Materials and methods. The study was conducted using female BALB/c mice. The tetravalent vaccine and monovalent intermediate vaccines combined with a betulin adjuvant were injected intraperitoneally two times at a 14-day interval. The immunogenic activity was measured by the hemagglutination inhibition assay. The protective activity of the vaccine was assessed by changes in the viral load, body weight and survival rates using the mouse model of fatal influenza A H1N1 virus infection.Results. The mice vaccinated with the adjuvanted quadrivalent subunit influenza vaccine produced antibodies against all four influenza viruses included in the vaccine; the mean antibody titers in the hemagglutination inhibition assay were above 1 : 40. The second-dose vaccination induced a significant increase in levels of antibodies against all four influenza viruses. The dose of the quadrivalent subunit adjuvanted vaccine containing 5 µg of each antigen and 200 µg of the adjuvant provided a 100% survival rate in mice and significantly decreased lung viral titers (more than 3 lg TCID50) in the mouse model of influenza pneumonia.Conclusion. The quadrivalent subunit vaccine with the betulin-based corpuscular adjuvant demonstrates high immunogenicity in laboratory mice and provides protection against fatal pneumonia caused by the influenza A virus subtype H1N1.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Influenza vaccines are the most useful strategy for preventing influenza illness, especially in the setting of the COVID-19 pandemic. For the coming year (2021/2022) all vaccines will be quadrivalent and contain two influenza A strains [(H1N1)pdm09-like and (H3N2)-like viruses] and two influenza B strains (Victoria lineage-like and Yamagata lineage-like viruses). However, the currently licensed have suboptimal efficacy due to the emergence of new strains and vaccine production limitations. In this review, we summarize the current recommendations as well as new advancements in influenza vaccinations. RECENT FINDINGS Recent advances have been aimed at moving away from egg-based vaccines and toward cell culture and recombinant vaccines. This removes egg adaptations that decrease vaccine efficacy, removes the reliance on egg availability and decreases the time necessary to manufacture vaccines. However, even more radical changes are needed if we are to reach the ultimate goal of a universal vaccine capable of providing long-lasting protection against all or at least most influenza strains. We discuss various strategies, including using more stable influenza antigens such as the hemagglutinin stalk and internal proteins as well as new adjuvants, new vaccine formulations, and DNA/RNA-based vaccines that are currently being developed. SUMMARY The currently available vaccines have suboptimal efficacy and do not provide adequate protection against drifted and shifted strains. Thus, the development of a universal influenza vaccine that induces long-lasing immunity and protects against a broad range of strains is crucial.
Collapse
Affiliation(s)
- Nadim Khalil
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Department Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - David I Bernstein
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
22
|
Moritzky SA, Richards KA, Glover MA, Krammer F, Chaves FA, Topham DJ, Branche A, Nayak JL, Sant AJ. The Negative Effect of Preexisting Immunity on Influenza Vaccine Responses Transcends the Impact of Vaccine Formulation Type and Vaccination History. J Infect Dis 2022; 227:381-390. [PMID: 35199825 PMCID: PMC9891420 DOI: 10.1093/infdis/jiac068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects' influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
Collapse
Affiliation(s)
- Savannah A Moritzky
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maryah A Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA,Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela Branche
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrea J Sant
- Correspondence: Andrea J. Sant, PhD, University of Rochester Medical Center, David H. Smith Center for Vaccine Biology and Immunology, 601 Elmwood Avenue, Box 609, Rochester, NY 14642 ()
| |
Collapse
|
23
|
Moore KA, Ostrowsky JT, Kraigsley AM, Mehr AJ, Bresee JS, Friede MH, Gellin BG, Golding JP, Hart PJ, Moen A, Weller CL, Osterholm MT. A Research and Development (R&D) roadmap for influenza vaccines: Looking toward the future. Vaccine 2021; 39:6573-6584. [PMID: 34602302 DOI: 10.1016/j.vaccine.2021.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alison M Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Joseph S Bresee
- The Global Funders Consortium for Universal Influenza Vaccine Development, The Task Force for Global Health, and the US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Ann Moen
- World Health Organization, Geneva, Switzerland
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Kim KH, Lee YT, Park Y, Ko EJ, Jung YJ, Kim YJ, Jo EK, Kang SM. BCG Cell Wall Skeleton As a Vaccine Adjuvant Protects Both Infant and Old-Aged Mice from Influenza Virus Infection. Biomedicines 2021; 9:516. [PMID: 34063125 PMCID: PMC8148143 DOI: 10.3390/biomedicines9050516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023] Open
Abstract
Bacillus Calmette-Guerin (BCG) and the cell wall skeleton (CWS) derived from BCG are known to enhance nonspecific immune activation and anti-cancer immunity; however, their roles as a vaccine adjuvant are largely unknown. Here, we report that BCG-CWS acts as a strong immune adjuvant by promoting the protective immune responses in mouse models with influenza vaccination. The different aged mice immunized with inactivated split vaccine with or without BCG-CWS were challenged with an influenza pandemic virus. When protective immune responses were compared, even a single immunization of adult mice with a BCG-CWS-adjuvanted vaccine showed significantly enhanced humoral immune responses with increased IgG1 and IgG2a isotype antibodies. Importantly, the protective effects by the BCG-CWS adjuvant for influenza vaccination upon humoral and cellular immunogenicity were comparable between infants (6 days and 2 weeks old) and aged (20 months old) mice. Moreover, BCG-CWS dramatically augmented vaccine-mediated protective responses, including decreased viral loads, lung damage, and airway resistance, as well as increased mouse survival, amelioration of weight loss, and proinflammatory cytokine expression in all experimental groups including infant, adults, and old aged mice. We further provided the evidence that the BCG-CWS adjuvant effects were mediated through Toll-like receptors (TLR) 2 and TLR4 signaling pathways. Together, these data suggest that BCG-CWS can be promising as a potential influenza vaccine adjuvant in both young and old aged population through TLR2/4-mediated immune-boosting activities.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
| | - Yoonsuh Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
- Department of Veterinary Medicine, College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam NationalUniversity, Munhwa-ro 266, Jungku, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Munhwa-ro 266, Jungku, Daejeon 35015, Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA; (K.-H.K.); (Y.-T.L.); (Y.P.); (E.-J.K.); (Y.-J.J.); (Y.-J.K.)
| |
Collapse
|