1
|
Zasedateleva T, Schaller S, de Lange ECM, de Witte WEA. Local depletion of large molecule drugs due to target binding in tissue interstitial space. CPT Pharmacometrics Syst Pharmacol 2024; 13:2068-2086. [PMID: 39530200 PMCID: PMC11646940 DOI: 10.1002/psp4.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Drug-target binding determines a drug's pharmacodynamics but can also have a profound impact on a drug's pharmacokinetics, known as target-mediated drug disposition (TMDD). TMDD models describe the influence of drug-target binding and target turnover on unbound drug concentrations and are frequently used for biologics and drugs with nonlinear plasma pharmacokinetics. For drug targets expressed in tissues, the effect of TMDD may not be detected when analyzing plasma concentration curves, but it might still affect tissue concentrations and occupancy. This review aimed to investigate the likeliness of such a scenario by reviewing the literature for a typical range of TMDD parameter values and their impact on local drug concentrations and target occupancy in a whole-body PBPK model with TMDD. Our analysis demonstrated that tissue drug concentrations are impacted and significantly depleted in many physiological scenarios. In contrast, the effect on plasma concentrations is much lower, specifically for smaller organs with lower perfusion. Moreover, in scenarios with fast internalization of the drug-target complex, the distribution of large molecules from plasma to tissue interstitial space emerges as a rate-limiting step for the drug-target interaction. These factors may lead to overpredicting local drug concentrations when considering only plasma pharmacokinetics. A sensitivity analysis revealed the high and not always intuitive impact of drug-specific parameters, including the drug molecule hydrodynamic radius, dissociation constant (Kd), drug-target complex internalization rate constant (kint), and target dissociation rate constant (koff), on the drug's pharmacokinetics. Our analysis demonstrated that tissue TMDD needs to be considered even if plasma pharmacokinetics are linear.
Collapse
Affiliation(s)
| | | | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
2
|
Xie Z, Guo A, Kadakia E. Optimization of Transcardiac Perfusion for More Accurately Evaluating Biodistribution of Large Molecules. Int J Mol Sci 2024; 25:12180. [PMID: 39596245 PMCID: PMC11594646 DOI: 10.3390/ijms252212180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The accurate assessment of drug concentrations in biodistribution studies is crucial for evaluating the efficacy and toxicity of compounds in drug development. As the concentration of biologics in plasma can be higher than in tissue due to their potentially low volume of distribution, transcardiac perfusion is commonly employed to reduce the influence of excess drugs in residual blood. However, there is a lack of consistency in the literature on the conditions and methods of perfusion. To enhance blood removal during transcardiac perfusion, sodium nitrite (NaNO2), a vasodilator, has been widely used with concentrations up to 5% in publications. However, we found that such high NaNO2 could disrupt the BBB during perfusion, which should be avoided in experiments. In this study, we examined the impact of various vasodilators on blood-brain barrier integrity and vascular permeability using the ratio of FITC-Dextran to Texas Red-Dextran (FITC/Texas Red). Additionally, we optimized perfusion conditions-including euthanasia method and perfusion flow rate-based on hemoglobin levels and the FITC/Texas Red ratio in tissues. Despite the superiority of NaNO2 in terms of solubility and cost over other vasodilators, we found that 2% NaNO2 disrupted blood-brain barrier integrity, significantly altering the FITC/Texas Red ratio. In contrast, 100 mM NaNO2 did not significantly affect this ratio. Moreover, under Ketamine/Xylazine (Ket/Xyl) anesthesia, which reduced blood clot formation compared to CO2 euthanasia, 100 mM NaNO2 achieved the lowest hemoglobin levels in the brain. Compared to other vasodilators and the PBS control group, 100 mM NaNO2 decreased the tissue/plasma ratio (Kp,t) but not brain/plasma ratio (Kp,b) of hIgG1 and human transferrin. We have developed a method to efficiently evaluate blood-brain barrier integrity during transcardiac perfusion. The combination of Ket/Xyl anesthesia and 100 mM NaNO2 effectively removes residual blood from tissues without significantly affecting blood vessel permeability.
Collapse
Affiliation(s)
| | | | - Ekta Kadakia
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA; (Z.X.); (A.G.)
| |
Collapse
|
3
|
Do PC, Le VTT. Steered molecular dynamics simulation as a post-process to optimize the iBRAB-designed Fab model. J Comput Aided Mol Des 2024; 38:34. [PMID: 39443337 DOI: 10.1007/s10822-024-00575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Therapeutic monoclonal antibodies are an effective method of treating acute infectious diseases. However, knowing which of the produced antibodies in the vast number of human antibodies can cure the disease requires a long time and advanced technology. The previously introduced iBRAB method relies on studied antibodies to design a broad-spectrum antibody capable of neutralizing antigens of many different Influenza A viral strains. To evaluate the antigen-binding fragment as an applicable drug, the therapeutic antibody profiles providing guidelines collected from clinically staged therapeutic antibodies were used to access different measurements. Although the evaluated values were within an accepted range, the modification in the amino acid sequence is required for better properties. Thus, using the steered molecular dynamics (SMD) simulation to determine the binding capacity of amino acids in the functional region, the profile of interacted amino acids of Fab with the antigen was established for modified reference. As a result, the model was modified with amino acids elimination at positions 96-97 in the heavy chain and 26-27, 91, 96-97, and 102-103 in the light chain, which has better Therapeutic Antibody Profiler evaluations than the original designation. Thus again, SMD simulation is a promising computational approach for post-modification in rational drug design.
Collapse
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Hochiminh City, 700000, Vietnam.
- Vietnam National University - HCMC, Hochiminh City, 700000, Vietnam.
| | - Vy T T Le
- School of Biotechnology, International University, Hochiminh City, 700000, Vietnam
- Vietnam National University - HCMC, Hochiminh City, 700000, Vietnam
| |
Collapse
|
4
|
Dorff T, Horvath LG, Autio K, Bernard-Tessier A, Rettig MB, Machiels JP, Bilen MA, Lolkema MP, Adra N, Rottey S, Greil R, Matsubara N, Tan DSW, Wong A, Uemura H, Lemech C, Meran J, Yu Y, Minocha M, McComb M, Penny HL, Gupta V, Hu X, Jurida G, Kouros-Mehr H, Janát-Amsbury MM, Eggert T, Tran B. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:1488-1500. [PMID: 38300720 PMCID: PMC11395298 DOI: 10.1158/1078-0432.ccr-23-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. RESULTS In all, 133 patients (dose exploration, n = 77; dose expansion, n = 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0-4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0-5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. CONCLUSIONS Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.
Collapse
Affiliation(s)
- Tanya Dorff
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, Australia
| | - Karen Autio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - Matthew B. Rettig
- Departments of Medicine and Urology, University of California, Los Angeles, CA, USA; Department of Medicine, VA Greater Los Angeles, Los Angeles, CA, USA
| | - Jean-Pascal Machiels
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mehmet A. Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands, and Amgen Inc
| | - Nabil Adra
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sylvie Rottey
- Department of Medical Oncology. Drug Research Unit, Ghent University, Ghent, Belgium
| | - Richard Greil
- Paracelsus Medical University Salzburg, Salzburg Cancer Research Institute-CCCIT and Cancer Cluster Salzburg, Austria
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Daniel SW Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Alvin Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Charlotte Lemech
- Scientia Clinical Research, University of New South Wales, Randwick, Australia
| | - Johannes Meran
- Department of Internal Medicine, Hematology, and Internal Oncology, Hospital Barmherzige Brueder, Vienna, Austria
| | - Youfei Yu
- Global Biostatistical Science, Amgen Inc., Thousand Oaks, CA, USA
| | - Mukul Minocha
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, CA, USA
| | - Mason McComb
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Vinita Gupta
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, CA, USA
| | - Xuguang Hu
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, CA, USA
| | - Gabor Jurida
- Safety TA & Combination Products, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Tobias Eggert
- Early Development, Oncology, Amgen Inc., Thousand Oaks, CA, USA
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
5
|
Tang Y, Liao X, Cao Y. A Proximity-Dependent Biosensor System for Visualizing Cell-Cell Interactions Induced by Therapeutic Antibodies. J Pharm Sci 2024; 113:579-586. [PMID: 38103691 PMCID: PMC10922735 DOI: 10.1016/j.xphs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Despite the promise of therapeutic antibodies in engaging the immune system to eliminate malignant cells, many aspects of the complex interplay between immune cells and cancer cells induced by antibody therapy remain incompletely understood. This study aimed to develop a biosensor system that can evaluate direct cell-cell physical contact and interactions between immune effector and target cells induced by therapeutic antibodies in physiologically relevant environments. The system uses two structural complementary luciferase units (SmBit and LgBit) expressed on the respective membranes of effector and target cells. Upon cell-cell contact, the two subunits form active NanoLuc, generating a luminescent signal, allowing for real-time monitoring of cell-cell interactions and quantitatively assessing the pharmacological effects of therapeutic antibodies. We optimized the system to ensure selectivity by adjusting the spacer lengths between two luciferase units to minimize interference from nonspecific intercellular contact. The system was applied to quantitatively monitor cell-cell interactions between NK and target cells induced by rituximab and between T and target cells induced by blinatumomab in a 3D cell culture system. The biosensor system has the potential to characterize antibody pharmacology through a deeper understanding of antibody-mediated cell-cell interactions.
Collapse
Affiliation(s)
- Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC. 27599, United States
| | - XiaoZhi Liao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC. 27599, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC. 27599, United States; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
6
|
Zhang X, Lumen A, Wong H, Connarn J, Dutta S, Upreti VV. A Mechanistic Physiologically-Based Pharmacokinetic Platform Model to Guide Adult and Pediatric Intravenous and Subcutaneous Dosing for Bispecific T Cell Engagers. Clin Pharmacol Ther 2024; 115:457-467. [PMID: 37746860 DOI: 10.1002/cpt.3056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Bispecific T cell engagers (Bi-TCEs) have revolutionized the treatment of oncology indications across both liquid and solid tumors. Bi-TCEs are rapidly evolving from conventional intravenous (i.v.) to more convenient subcutaneous (s.c.) administrations and extending beyond adults to also benefit pediatric patients. Leveraging clinical development experience across three generations of Bi-TCE molecules across both liquid and solid tumor indications from i.v./s.c. dosing in adults and pediatric subjects, we developed a mechanistic-physiologically-based pharmacokinetic (PBPK) platform model for Bi-TCEs. The model utilizes a full PBPK model framework and was successfully validated for PK predictions following i.v. and s.c. dosing across both liquid and solid tumor space in adults for eight Bi-TCEs. After refinement to incorporate physiological ontogeny, the model was successfully validated to predict pediatric PKs in 1 month - < 2 years, 2-11 years, and 12-17 years old subjects following i.v. dosing. Following s.c. dosing in pediatric subjects, the model predicted similar bioavailability, however, a shorter time to maximum concentration (Tmax ) for the three age groups compared with adults. The model was also applied to guide the dosing strategy for first generation of Bi-TCEs for organ impairment, specifically renal impairment, and was able to accurately predict the impact of renal impairment on PK for these relatively small-size Bi-TCEs. This work highlights a novel mechanistic platform model for accurately predicting the PK in adult and pediatric patients across liquid and solid tumor indications from i.v./s.c. dosing and can be used to guide optimal dose and dosing regimen selection and accelerating the clinical development for Bi-TCEs.
Collapse
Affiliation(s)
- Xinwen Zhang
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., South San Francisco, California, USA
| | - Annie Lumen
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., South San Francisco, California, USA
| | - Hansen Wong
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., South San Francisco, California, USA
| | - Jamie Connarn
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., South San Francisco, California, USA
| | - Sandeep Dutta
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., South San Francisco, California, USA
| |
Collapse
|
7
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
8
|
Bittner B, Schmidt J. Advancing Subcutaneous Dosing Regimens for Biotherapeutics: Clinical Strategies for Expedited Market Access. BioDrugs 2024; 38:23-46. [PMID: 37831325 PMCID: PMC10789662 DOI: 10.1007/s40259-023-00626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
In recent years, subcutaneous administration of biotherapeutics has made significant progress. The self-administration market for rheumatoid arthritis has witnessed the introduction of additional follow-on biologics, while the first subcutaneous dosing options for monoclonal antibodies have become available for multiple sclerosis. Oncology has also seen advancements with the authorization of high-volume subcutaneous formulations, facilitated by the development of high-concentration formulations and innovative delivery systems. Regulatory and Health Technology Assessment bodies increasingly consider preference data in filing dossiers, particularly in evaluating novel drug delivery methods. The adoption of a pharmacokinetic-based clinical bridging approach has become standard for transitioning from intravenous to subcutaneous administration. Non-inferiority studies with pharmacokinetics as the only primary endpoint have started deviating from traditional randomization schemes, favoring the subcutaneous route and comparing with historical intravenous data. While nonclinical and computational models made progress in predicting safety and immunogenicity for subcutaneously dosed antibodies, clinical trial evidence remains essential due to inter-individual variations and the impact of formulation parameters on anti-drug antibody formation. Ongoing technological advancements and the expanding knowledge base on pharmacokinetic-pharmacodynamic correlation across specialty areas are expected to further accelerate clinical development of subcutaneous biologics.
Collapse
Affiliation(s)
- Beate Bittner
- Global Product Strategy, Product Optimization, F. Hoffmann-La Roche, Grenzacher Strasse 124, 4070, Basel, Switzerland.
| | - Johannes Schmidt
- Global Product Strategy, Product Optimization, F. Hoffmann-La Roche, Grenzacher Strasse 124, 4070, Basel, Switzerland
| |
Collapse
|
9
|
Li A, Swanson M, Sullivan N, Homan Y, Nahas D, Mukhopadhyay S, Li HH, Cao Y, Xu W, Tang H, Vora KA, Chen Z. Phage-derived anti-idiotype and anti-YTE antibodies in development of MK-1654 pharmacokinetic and immune response assays. Bioanalysis 2023; 15:1049-1067. [PMID: 37515532 DOI: 10.4155/bio-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
Background: MK-1654 is a fully human monoclonal antibody with YTE mutations currently in phase III clinical trials for prophylactic use in protecting infants from human respiratory syncytial virus infection. Materials & methods: We generated anti-idiotype (anti-ID) and anti-YTE antibodies against MK-1654 by panning with MorphoSys HuCal phage libraries, and used the antibodies in the development of MK-1654 pharmacokinetic (PK) and immune response (IR) assays. Results: Detection of MK-1654 in nonhuman primate and human nasal wash samples showed combined use of anti-ID and anti-YTE antibodies can deliver desired sensitivity and accuracy in PK studies. IR studies showed anti-ID can serve as suitable positive control in neutralizing antibody assays. Conclusion: Phage-derived anti-IDs and anti-YTEs are suitable for PK and IR assays.
Collapse
Affiliation(s)
- April Li
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Michael Swanson
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
- Current address: Janssen Pharmaceutical, Ambler, PA 19002, USA
| | - Nicole Sullivan
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Ying Homan
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Debbie Nahas
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Shreya Mukhopadhyay
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Hualin Helen Li
- Analytical Research and Development, Merck and Co., Inc., West Point, PA 19486, USA
| | - Yu Cao
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Weifeng Xu
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Huaping Tang
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
- Current address: GSK Pharmaceutical, Collegeville, PA 19426, USA
| | - Kalpit A Vora
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
10
|
Niu J, Wang W, Ouellet D. Mechanism-based pharmacokinetic and pharmacodynamic modeling for bispecific antibodies: challenges and opportunities. Expert Rev Clin Pharmacol 2023; 16:977-990. [PMID: 37743720 DOI: 10.1080/17512433.2023.2257136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Unlike conventional antibodies, bispecific antibodies (bsAbs) are engineered antibody- or antibody fragment-based molecules that can simultaneously recognize two different epitopes or antigens. Over the past decade, there has been an explosion of bsAbs being developed across therapeutic areas. Development of bsAbs presents unique challenges and mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling has served as a powerful tool to optimize their development and realize their clinical utility. AREAS COVERED In this review, the guiding principles and case examples of how fit-for-purpose, mechanism-based PK/PD models have been applied to answer questions commonly encountered in bsAb development are presented. Such models characterize the key pharmacological elements of bsAbs, and they can be utilized for model-informed drug development. We also include the discussion of challenges, knowledge gaps and future direction for such models. EXPERT OPINION Mechanistic PK/PD modeling is a powerful tool to support the development of bsAbs. These models can be extrapolated to predict treatment outcomes based on mechanisms of action (MoA) and clinical observations to form positive learn-and-confirm cycles during drug development, due to their abilities to differentiate system- and drug-specific parameters. Meanwhile, the models should keep being adapted according to novel drug design and MoA, providing continuous opportunities for model-informed drug development.
Collapse
Affiliation(s)
- Jin Niu
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Daniele Ouellet
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| |
Collapse
|
11
|
Gabrielsson J, Hjorth S. Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance. Pharmacol Rev 2023; 75:416-462. [PMID: 36627211 DOI: 10.1124/pharmrev.121.000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Even though significant efforts have been spent in recent years to understand and define the determinants of in vivo potency and clearance, important pieces of information are still lacking. By introducing target turnover into the reasoning, we open up to further the understanding of central factors important to the optimization of translational dose-concentration-response predictions. We describe (i) new (open model) expressions of the in vivo potency and efficacy parameters, which embody target turnover, binding, and complex kinetics, also capturing full, partial, and inverse agonism and antagonism; (ii) a detailed examination of open models to show what potency and efficacy parameters have in common and how they differ; and (iii) a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease state, hormonal and nutritional state, and day-night cycle. The new open model expression, which integrates system and drug properties, shows the following. Fractional turnover rates rather than the absolute target or ligand-target complex expression determine necessary drug exposure via in vivo potency. Absolute ligand-target expression determines the need of a drug, based on the transduction ρ and in vivo efficacy parameters. The free enzyme concentration determines clearance and maximum metabolic rate. The fractional turnover rate determines time to equilibrium between substrate, free enzyme, and complex.The properties of substrate, target, and the complex demonstrate nonsaturable metabolic behavior at equilibrium. Nonlinear processes, previously referred to as capacity- and time-dependent kinetics, may occasionally have been disequilibria. Finally, the open model may pinpoint why some subjects differ in their demand of drug. SIGNIFICANCE STATEMENT: Understanding the target turnover is a central tenet in many translational dose-concentration-response predictions. New open model expressions of in vivo potency, efficacy parameter, and clearance are derived and anchored onto a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease, hormonal and nutritional state, day-night cycle, and more. Target turnover concepts will therefore significantly impact fundamental aspects of pharmacodynamics and pharmacokinetics, thereby also the basics of drug discovery, development, and optimization of clinical dosing.
Collapse
Affiliation(s)
- Johan Gabrielsson
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| | - Stephan Hjorth
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| |
Collapse
|
12
|
Van De Vyver AJ, Walz AC, Heins MS, Abdolzade-Bavil A, Kraft TE, Waldhauer I, Otteneder MB. Investigating brain uptake of a non-targeting monoclonal antibody after intravenous and intracerebroventricular administration. Front Pharmacol 2022; 13:958543. [PMID: 36105215 PMCID: PMC9465605 DOI: 10.3389/fphar.2022.958543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies play an important role in the treatment of various diseases. However, the development of these drugs against neurological disorders where the drug target is located in the brain is challenging and requires a good understanding of the local drug concentration in the brain. In this original research, we investigated the systemic and local pharmacokinetics in the brain of healthy rats after either intravenous (IV) or intracerebroventricular (ICV) administration of EGFRvIII-T-Cell bispecific (TCB), a bispecific monoclonal antibody. We established an experimental protocol that allows serial sampling in serum, cerebrospinal fluid (CSF) and interstitial fluid (ISF) of the prefrontal cortex in freely moving rats. For detection of drug concentration in ISF, a push-pull microdialysis technique with large pore membranes was applied. Brain uptake into CSF and ISF was characterized and quantified with a reduced brain physiologically-based pharmacokinetic model. The model allowed us to interpret the pharmacokinetic processes of brain uptake after different routes of administration. The proposed model capturing the pharmacokinetics in serum, CSF and ISF of the prefrontal cortex suggests a barrier function between the CSF and ISF that impedes free antibody transfer. This finding suggests that ICV administration may not be better suited to reach higher local drug exposure as compared to IV administration. The model enabled us to quantify the relative contribution of the blood-brain barrier (BBB) and Blood-CSF-Barrier to the uptake into the interstitial fluid of the brain. In addition, we compared the brain uptake of three monoclonal antibodies after IV dosing. In summary, the presented approach can be applied to profile compounds based on their relative uptake in the brain and provides quantitative insights into which pathways are contributing to the net exposure in the brain.
Collapse
Affiliation(s)
- Arthur J. Van De Vyver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
- *Correspondence: Antje-Christine Walz,
| | | | - Afsaneh Abdolzade-Bavil
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Thomas E. Kraft
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Michael B. Otteneder
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
13
|
Chen C, Feng Y, Li H, Lin H, Jing S, Li H, Wang C, Chen J, Sun J. Pharmacokinetics and Main Metabolites of Anwulignan in Mice. Front Pharmacol 2022; 13:929177. [PMID: 35865951 PMCID: PMC9294735 DOI: 10.3389/fphar.2022.929177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Anwulignan is a representative component of Chinese traditional medicine Schisandra sphenanthera, with strong pharmacological activities. However, there are few reports on its pharmacokinetics and metabolites in the body. In this study, a metabolomic method based on UHPLC-Q-Orbitrap-MS was used to study the pharmacokinetics of anwulignan in the blood, organs, urine, and feces samples of mice after the intragastric administration of anwulignan (10 mg/kg). The pharmacokinetic parameters were calculated, and the distribution characteristics and main metabolites of anwulignan in the body of mice were analyzed. The results showed that the retention time of anwulignan in the body of mice was longer (t1/2 = 7.1 h), and anwulignan was widely distributed in the body (Vz/F = 32.81 L/kg), especially in the liver. The order of anwulignan concentration in the tissues of mice from high to low was the liver > heart > brain > kidney > lung > spleen. Anwulignan was mainly excreted through the digestive tract in the form of its prototype and metabolites, indicating that it might experience an enterohepatic circulation. A total of seven metabolites were identified, and the demethylation, hydroxylation, dehydroxylation, and demethoxylation were considered to be the main metabolic ways of anwulignan in the body of mice.
Collapse
|
14
|
Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022; 13:856961. [PMID: 35281913 PMCID: PMC8912916 DOI: 10.3389/fphar.2022.856961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The number of therapeutic antibodies in development pipelines is increasing rapidly. Despite superior success rates relative to small molecules, therapeutic antibodies still face many unique development challenges. There is often a translational gap from their high target affinity and specificity to the therapeutic effects. Tissue microenvironment and physiology critically influence antibody-target interactions contributing to apparent affinity alterations and dynamic target engagement. The full potential of therapeutic antibodies will be further realized by contextualizing antibody-target interactions under physiological conditions. Here we review how local physiology such as physical stress, biological fluid, and membrane characteristics could influence antibody-target association, dissociation, and apparent affinity. These physiological factors in the early development of therapeutic antibodies are valuable toward rational antibody engineering, preclinical candidate selection, and lead optimization.
Collapse
Affiliation(s)
- Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Single-Dose P2 X4R Single-Chain Fragment Variable Antibody Permanently Reverses Chronic Pain in Male Mice. Int J Mol Sci 2021; 22:ijms222413612. [PMID: 34948407 PMCID: PMC8706307 DOI: 10.3390/ijms222413612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.
Collapse
|