1
|
Chen X, Liu J, Bu Y, Wu T, Fan J, Yan H, Lin Q. Dodecyl glycoside intercalated organo-montmorillonite promoted biomimetic alginate/microcrystalline cellulose/nano-hydroxyapatite composite hydrogels for bone tissue engineering. Int J Biol Macromol 2025; 310:143304. [PMID: 40253035 DOI: 10.1016/j.ijbiomac.2025.143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/29/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
To eliminate the brittleness of single ceramic materials and the poor mechanical properties, uncontrollable swelling and low biological activity of biological polysaccharides, thereby forming the tissue engineering scaffold capable of simulating natural bone tissue, alginate/microcrystalline cellulose/hydroxyapatite/organo-montmorillonite (ALG/MCC/HAP/OMMT) composite hydrogels were fabricated by in-situ crosslinking of alginate/microcrystalline cellulose mixed aqueous solution under the action of D-glucono-δ-lactone (GDL), using organo-montmorillonite (OMMT) as the filler and hydroxyapatite (HAP) as reinforcing agent and crosslinking agent. The experimental results indicated that non-ionic dodecyl polyglucoside (APG) intercalated into the interlayer of montmorillonite (MMT) through efficient wet ball milling technology to achieve the miscibility and effective dispersion of OMMT in alginate matrix. The presence of HAP and OMMT not only improved the mechanical properties, thermal stability, controllable swelling and degradability of the fabricated ALG/MCC/HAP/OMMT, but also enhanced their in vitro biomineralization performance. Furthermore, ALG/MCC/HAP/OMMT exhibited high encapsulation efficiency (EE) and loading rate (LR) for bovine serum albumin (BSA), and the BSA loading capacity increased with the increase of OMMT content. Meanwhile, ALG/MCC/HAP/OMMT also displayed good controlled release performance for BSA. Finally, the porous composite hydrogels formed by HAP, MCC and OMMT in alginate matrix presented good cell adhesion, proliferation and differentiation properties under the synergistic effect of their respective characteristics. To note, the implantation experiment in rabbit radius indicated that the ALG/MCC/HAP/OMMT composite hydrogels could effectively promote new bone formation in vivo, which was expected to be applied to clinical research. The ultimate goal of this study is to clarify the regulation rule of OMMT content on the physicochemical properties and structure of ALG/MCC/HAP/OMMT composite hydrogel, protein loading and release, cell compatibility and bone repair in vivo by investigating the interaction between components in composite hydrogel, so as to acquire unique alginate composite hydrogel based bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiayi Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiji Fan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
2
|
Rownaghi M, Keramat-Jahromi M, Golmakani MT, Niakousari M. Cold plasma-induced structural and thermal enhancements in marshmallow root mucilage-gelatin aerogels. Curr Res Food Sci 2025; 10:101027. [PMID: 40161309 PMCID: PMC11951209 DOI: 10.1016/j.crfs.2025.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Aerogels are highly regarded for their low density and large surface area, attracting significant attention due to their diverse applications. This study explored nitrogen cold plasma's impact on the structure and thermal stability of mucilage-gelatin aerogels (MGA). Aerogels were prepared using marshmallow root mucilage and gelatin in a 1:1 ratio and gelatin-only as a blank under different pH conditions (5 and 7). Rheological and texture analyses identified pH 7 as optimal. Aerogels at pH 7 were then exposed to cold plasma for varying durations (0, 3, and 6 min). Thermogravimetric analysis (TGA), differential thermal analysis (DTA), and X-ray diffraction (XRD) showed enhanced thermal stability and structural changes with increased plasma exposure. Fourier-transform Infrared Spectroscopy (FTIR) revealed functional group changes, and contact angle measurements showed that 3 min of plasma treatment increased hydrophilicity (88.37-82.05°), while 6 min enhanced hydrophobicity in 1:1 MGA (93.27°). BET (Brunauer-Emmett-Teller) analyses of the MGA samples revealed changes in surface area (2.9-4.33 m2/g after 3 min of plasma) and BJH (Barrett-Joyner-Halenda) pore volume (0.004-0.02 cm3/g), with a complex trend over time. This study highlights nitrogen cold plasma's potential to enhance mucilage-based biopolymer aerogels, paving the way for advanced materials via optimized treatments.
Collapse
Affiliation(s)
- Marzieh Rownaghi
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahdi Keramat-Jahromi
- Department of Mechanical Engineering of Biosystems, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Choudhury PD, Ikbal AMA, Saha S, Debnath R, Debnath B, Singh LS, Singh WS. Recent Advances in Multifaceted Drug Delivery Using Natural Polysaccharides and Polyacrylamide-based Nanomaterials in Nanoformulation. Curr Top Med Chem 2025; 25:395-408. [PMID: 39473113 DOI: 10.2174/0115680266316522241015143856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 04/25/2025]
Abstract
Rapid growth in nanotechnology, also known as 21st-century technology, is occurring in response to the increasing diversity of diseases. The development of safe and effective drug delivery methods to enhance bioavailability is of paramount importance. Researchers have focused on creating safe, cost-effective, and environmentally friendly nanoparticle construction processes. Natural polysaccharides, a type of multifaceted polymer with a wide range of applications and advantages, are particularly well suited for nanoparticle formulations, as they can mitigate the adverse consequences of synthetic nanoparticle formulations and promote sustainability. This review summarizes various sources of natural-based polysaccharides and polyacrylamide-based nanomaterials in nanoparticle preparation. Additionally, it discusses the use of natural polysaccharides in formulations beyond nanotechnology, highlighting their importance in green synthesis and different preparation methods.
Collapse
Affiliation(s)
- Paromita Dutta Choudhury
- Department of Pharmaceutics, Regional Institute of Pharmaceutical Science and Technology, Abhoynagar, Agartala, 799 005, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar-788011, India
| | - Sourav Saha
- Bharat Pharmaceutical Technology, Department of Pharmaceutical Chemistry, Amtali, Agartala, 799130, India
| | - Rabin Debnath
- ISF College of Pharmacy, MOGA GT Road, NH-95, Ghall Kalan, Punjab, 142001, India
| | - Bikash Debnath
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
| | - Loushambam Samananda Singh
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
| | - Waikhom Somraj Singh
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, 799 022, India
| |
Collapse
|
4
|
Dumas L, de Souza MC, Bonafe EG, Martins AF, Monteiro JP. Optimized Incorporation of Silver Nanoparticles onto Cotton Fabric Using k-Carrageenan Coatings for Enhanced Antimicrobial Properties. ACS APPLIED BIO MATERIALS 2024; 7:6908-6918. [PMID: 39316373 PMCID: PMC11497209 DOI: 10.1021/acsabm.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The incorporation of bactericidal properties into textiles is a widely sought-after aspect, and silver nanoparticles (AgNPs) can be used for this. Here, we evaluate a strategy for incorporating AgNPs into a cotton fabric. For this purpose, a bactericidal textile coating based on a composite of AgNPs and kappa-carrageenan (k-CA) was proposed. The composite was obtained by heating the silver precursor (AgNO3) directly in k-CA solution for green synthesis and in situ AgNPs stabilization. Cotton substrates were added to the heated composite solution for surface impregnation and hydrogel film formation after cooling. Direct synthesis of AgNPs on a fabric was also tested. The results showed that the application of a coating based on k-CA/AgNPs composite can achieve more than twice the silver loading on the fabric surface compared to the textile subjected to direct AgNPs incorporation. Furthermore, silver release tests in water showed that higher Ag+ levels were reached for k-CA/AgNPs-coated cotton. Therefore, inoculation tests with the bacteria Staphylococcus aureus (SA) using the agar diffusion method showed that samples covered with the composite resulted in significantly larger inhibition halos. This indicated that the use of the composite as a coating for cotton fabric improved its bactericidal activity against SA.
Collapse
Affiliation(s)
- Luana Dumas
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Matheus Cardoso de Souza
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Elton Guntendorfer Bonafe
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Alessandro Francisco Martins
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
- Department
of Chemistry, Pittsburgh State University, Pittsburgh, Kansas 66762, United States
| | - Johny Paulo Monteiro
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| |
Collapse
|
5
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
6
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
7
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
8
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
9
|
Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, Miguel SP, Loureiro J, Ribeiro MP, Coutinho P, Pagador JB, Sanchez-Margallo FM. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023; 9:890. [PMID: 37998980 PMCID: PMC10670821 DOI: 10.3390/gels9110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.
Collapse
Affiliation(s)
- David Patrocinio
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Victor Galván-Chacón
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - J. Carlos Gómez-Blanco
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Sonia P. Miguel
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Jorge Loureiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J. Blas Pagador
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
| | - Francisco M. Sanchez-Margallo
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
- Scientific Direction, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| |
Collapse
|
10
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Mardirossian M, Gruppuso M, Guagnini B, Mihalić F, Turco G, Porrelli D. Advantages of agarose on alginate for the preparation of polysaccharide/hydroxyapatite porous bone scaffolds compatible with a proline-rich antimicrobial peptide. Biomed Mater 2023; 18:065018. [PMID: 37827164 DOI: 10.1088/1748-605x/ad02d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The optimized proline-rich antimicrobial peptide B7-005 was loaded on bone scaffolds based on polysaccharides and hydroxyapatite. Alginate was firstly chosen in order to exploit its negative charges, which allowed an efficient B7-005 loading but hindered its release, due to the strong interactions with the positive charged peptide. Hence, alginate was substituted with agarose which allowed to prepare scaffolds with similar structure, porosity, and mechanical performance than the ones prepared with alginate and hydroxyapatite. Moreover, agarose scaffolds could release B7-005 within the first 24 h of immersion in aqueous environment. The peptide did not impaired MG-63 cell adhesion and proliferation in the scaffold, and a positive cell proliferation trend was observed up to two weeks. The released B7-005 was effective against the pathogensE. coli, K. pneumoniae, andA. baumannii, but not againstS. aureusandP. aeruginosa, thus requiring further tuning of the system to improve its antimicrobial activity.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Franka Mihalić
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
12
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
13
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
14
|
Banerjee R, Kumar KJ, Kennedy JF. Structure and drug delivery relationship of acidic polysaccharides: A review. Int J Biol Macromol 2023:125092. [PMID: 37247706 DOI: 10.1016/j.ijbiomac.2023.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Scientists from across the world are being inspired by recent development in polysaccharides and their use in medical administration. Due to their extraordinary physical, chemical, and biological characteristics, polysaccharides are excellent materials for use in medicine. Acidic polysaccharides, which include Pectin, Xanthan gum, Carrageenan, Alginate, and Glycosaminoglycan, are natural polymers with carboxyl groups that are being researched for their potential as drug delivery systems. Most publications do not discuss how the different polysaccharides interact structurally in terms of drug delivery, which limits the scope of their use. The purpose of this review is to inform readers about the structural activity correlations between acidic polysaccharides, their different modification process and effects of combination of various acidic polysaccharides which have been used in drug delivery systems and expanding their potential applications, and bringing new perspectives to the fore.
Collapse
Affiliation(s)
- Riya Banerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - John F Kennedy
- Chembiotech Laboratories, Institute of Research and Development, Tenbury Wells, WR15 8FF, UK
| |
Collapse
|
15
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
16
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023; 308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom, G12 8QQ
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India.
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
17
|
Silva OA, Pellá MG, Sabino RM, Popat KC, Kipper MJ, Rubira AF, Follmann HDM, Silva R, Martins AF. Carboxymethylcellulose hydrogels crosslinked with keratin nanoparticles for efficient prednisolone delivery. Int J Biol Macromol 2023; 241:124497. [PMID: 37080405 DOI: 10.1016/j.ijbiomac.2023.124497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Carboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy. The infrared spectra indicated the formation of ester and amide linkages between crosslinked CMC and KNPs. The elastic modulus of the hydrogel containing 10 wt% KNPs was 2-fold higher than that of the hydrogel containing 50 wt% KNPs. The mechanical properties influenced the hydrogel stability and water uptake. The anti-inflammatory prednisolone (PRED) drug was incorporated into the hydrogels, and the release mechanism was investigated. The hydrogels supported PRED release by drug desorption for approximately 360 h. A sustained release mechanism was achieved. The CMC/KNP and CMC/KNP/PRED hydrogels were cytocompatible toward mammalian cells. The CMC/KNP/PRED set imparted the highest cell viability after 7 days of incubation. This study showed a straightforward procedure to create DDSs (chemically crosslinked) based on polysaccharides and proteins for efficient PRED delivery.
Collapse
Affiliation(s)
- Otavio A Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Michelly G Pellá
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Matt J Kipper
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Adley F Rubira
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Heveline D M Follmann
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Rafael Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Alessandro F Martins
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA.
| |
Collapse
|
18
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
19
|
Jeon H, Oh S, Kum E, Seo S, Park Y, Kim G. Immunomodulatory Effects of an Aqueous Extract of Black Radish on Mouse Macrophages via the TLR2/4-Mediated Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1376. [PMID: 36355548 PMCID: PMC9697478 DOI: 10.3390/ph15111376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 10/14/2023] Open
Abstract
Here, we determined the immunostimulatory effects of black radish (Raphanus sativus ver niger) hot water extract (BRHE) on a mouse macrophage cell line (RAW 264.7) and mouse peritoneal macrophages. We found that BRHE treatment increased cell proliferation, phagocytic activity, nitric oxide (NO) levels, cytokine production, and reactive oxygen species synthesis. Moreover, BRHE increased the expression of the following immunomodulators in RAW 264.7 cells and peritoneal macrophages: pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), iNOS, and COX-2. BRHE treatment significantly up-regulated the phosphorylation of components of the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Akt, and STAT3 signaling pathways. Further, the effects of BRHE on macrophages were significantly diminished after the cells were treated with the TLR2 antagonist C29 or the TLR4 antagonist TAK-242. Therefore, BRHE-induced immunostimulatory phenotypes in mouse macrophages were reversed by multiple inhibitors, such as TLR antagonist, MAPK inhibitor, and Akt inhibitor indicating that BRHE induced macrophage activation through the TLR2/4-MAPK-NFκB-Akt-STAT3 signaling pathway. These results indicate that BRHE may serve as a potential immunomodulatory factor or functional food and provide the scientific basis for the comprehensive utilization and evaluation of black radish in future applications.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Soyeon Oh
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Eunjoo Kum
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Sooyeong Seo
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Youngjun Park
- Jeju Research Institute of Pharmaceutical, College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| |
Collapse
|
20
|
Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Correia S, Gonçalves C, Oliveira JM, Radhouani H, Reis RL. Impact of Kefiran Exopolysaccharide Extraction on Its Applicability for Tissue Engineering and Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081713. [PMID: 36015340 PMCID: PMC9415419 DOI: 10.3390/pharmaceutics14081713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
Kefiran is an exopolysaccharide produced by the microflora of kefir grains used to produce the fermented milk beverage kefir. The health-promoting and physicochemical properties of kefiran led to its exploration for a range of applications, mainly in the food industry and biomedical fields. Aiming to explore its potential for tissue engineering and regenerative medicine (TERM) applications, the kefiran biopolymer obtained through three different extraction methodologies was fully characterized and compared. High-quality kefiran polysaccharides were recovered with suitable yield through different extraction protocols. The methods consisted of heating the kefir grains prior to recovering kefiran by centrifugation and differed mainly in the precipitation steps included before lyophilization. Then, kefiran scaffolds were successfully produced from each extract by cryogelation and freeze-drying. In all extracts, it was possible to identify the molecular structure of the kefiran polysaccharide through 1H-NMR and FTIR spectra. The kefiran from extraction 1 showed the highest molecular weight (~3000 kDa) and the best rheological properties, showing a pseudoplastic behavior; its scaffold presented the highest value of porosity (93.2% ± 2), and wall thickness (85.8 µm ± 16.3). All extracts showed thermal stability, good injectability and desirable viscoelastic properties; the developed scaffolds demonstrated mechanical stability, elastic behavior, and pore size comprised between 98–94 µm. Additionally, all kefiran products proved to be non-cytotoxic over L929 cells. The interesting structural, physicochemical, and biological properties showed by the kefiran extracts and cryogels revealed their biomedical potential and suitability for TERM applications.
Collapse
Affiliation(s)
- Susana Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Hajer Radhouani
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-510-900; Fax: +351-253-510-909
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| |
Collapse
|
22
|
de Brito Soares AL, Maia MT, Gomes SDL, da Silva TF, Vieira RS. Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers (Basel) 2022; 14:polym14101955. [PMID: 35631838 PMCID: PMC9147127 DOI: 10.3390/polym14101955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
This work focuses on the manufacture of core-sheath nanofibers (NFs) based on chitosan (CHT) as sheath and cyclodextrin polymer (PCD) as core and loaded with triclosan (TCL). In parallel, monolithic NFs consisting of blended CHT-PCD and TCL were prepared. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier Transform Infrared spectroscopy (FTIR). SEM displayed the morphology of NFs and the structure of the nanowebs, while TEM evidenced the core-sheath structure of NFs prepared by coaxial electrospinning. The core diameters and sheath thicknesses were found dependent on respective flow rates of both precursor solutions. Nanofibers stability and TCL release in aqueous medium were studied and correlated with the antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the release profiles of TCL and therefore the antibacterial activity were directly related to the type of nanofibers. In the case of monolithic nanofibers, the NFs matrix was composed of polyelectrolyte complex (PEC formed between CHT and PCD) and resulted in a prolonged release of TCL and a sustained antibacterial effect. In the case of core-sheath NFs, the PEC was formed only at the core-sheath interface, leading to less stable NFs and therefore to a faster release of TCL, and to a less extended antibacterial activity compared to monolithic ones.
Collapse
|
24
|
Lunardi CN, Subrinho FL, Freitas Barros MPD, Lima RC, de Queiroz Melo ACM, Barbosa DDM, Negreiros LGD, Rodrigues BS, Neiva MS, Linhares JVR, Dalla Costa GF, Gomes ADJ. BIBLIOMETRIC ANALYSIS: NANOTECHNOLOGY AND COVID-19. Curr Top Med Chem 2022; 22:629-638. [PMID: 35255795 DOI: 10.2174/1568026622666220307125446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic information is critical in order to study it further, but the virus has still not been confined. In addition, even if there is no longer any threat, more knowledge may be gathered from these resources. METHODS The data used in this study was gathered from several scientific areas and the links between them. Due to the fact that the COVID-19 pandemic has not been fully contained and additional information can be gleaned from these references, bibliometric analysis of it is important. RESULTS In total 155 publications on the topic of "COVID-19" and the keyword "nanotechnology" were identified in the Scopus database between 2020 and 2021 in a network visualization map. CONCLUSION As a result, our analysis was conducted at the appropriate time to provide a comprehensive understanding of COVID-19 and nanotechnology and prospective research directions for medicinal chemistry.
Collapse
Affiliation(s)
- Claure Nain Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Fernanda Lima Subrinho
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mirella Paula de Freitas Barros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Raiane Cavalcante Lima
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Ana Clara Magalhaes de Queiroz Melo
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Daniela de Melo Barbosa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Luana Gouveia De Negreiros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Brenda Soares Rodrigues
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mateus Sousa Neiva
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Joao Victor Ribeiro Linhares
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Gabriel Farrapeira Dalla Costa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Anderson de Jesus Gomes
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| |
Collapse
|
25
|
Lin M, Sun J. Antimicrobial peptide–inspired antibacterial polymeric materials for biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Sánchez-Cid P, Rubio-Valle JF, Jiménez-Rosado M, Pérez-Puyana V, Romero A. Effect of Solution Properties in the Development of Cellulose Derivative Nanostructures Processed via Electrospinning. Polymers (Basel) 2022; 14:665. [PMID: 35215578 PMCID: PMC8874405 DOI: 10.3390/polym14040665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, electrospinning has proved to be one of the best methods for obtaining membranes of a micro and nanometric fiber size. This method mainly consists in the spinning of a polymeric or biopolymeric solution in solvents, promoted by the difference in the electric field between the needle and collector, which is finally deposited as a conjunction of randomly oriented fibers. The present work focuses on using cellulose derivatives (namely cellulose acetate and ethylcellulose), based on the revaluation of these byproducts and waste products of biorefinery, to produce nanostructured nanofiber through electrospinning with the objective of establishing a relation between the initial solutions and the nanostructures obtained. In this sense, a complete characterization of the biopolymeric solutions (physicochemical and rheological properties) and the resulting nanostructures (microstructural and thermal properties) was carried out. Therefore, solutions with different concentrations (5, 10, 15, and 20 wt%) of the two cellulose derivatives and different solvents with several proportions between them were used to establish their influence on the properties of the resulting nanostructures. The results show that the solutions with 10 wt% in acetic acid/H2O and 15 wt% in acetone/N,N-dimethylformamide of cellulose acetate and 5 wt% of ethylcellulose in acetone/N,N-dimethylformamide, exhibited the best properties, both in the solution and nanostructure state.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - José Fernando Rubio-Valle
- Pro2TecS—Chemical Process and Product Technology Research Centre, Department Ingeniería Química, ETSI, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain;
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Víctor Pérez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| |
Collapse
|
27
|
Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1772. [PMID: 34964277 DOI: 10.1002/wnan.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Among different kinds of modified release profiles, sustained drug release (SDR) has received the most attention due to its capability to provide a "safe, efficacious, and convenient" drug delivery effect. Electrospun nanofibers have shown their popularity in this interdisciplinary field, as demonstrated by the first reports about SDRs on drug delivery applications of blended nanofibers and core-shell nanofibers. Along with the evolution of electrospinning from a single-fluid blending process to coaxial, tri-axial, side-by-side, and other multi-fluid processes, more multi-chamber nanostructures can be created through a single-step straight forward manner. These multi-chamber nanostructures can act as a powerful platform to support a wide variety of new strategies for the development of novel SDR nanomaterials. Thus, this review describes a combination history of electrospinning and SDR and its further development trend. After a summary of the presently popular multi-chamber core-shell nanostructures, 15 strategies for furnishing SDR profiles are categorized and exemplified. The perspectives of electrospun multi-chamber nanostructures for further promoting SDR are narrated. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Hermosilla J, Pastene-Navarrete E, Acevedo F. Electrospun Fibers Loaded with Natural Bioactive Compounds as a Biomedical System for Skin Burn Treatment. A Review. Pharmaceutics 2021; 13:2054. [PMID: 34959336 PMCID: PMC8707873 DOI: 10.3390/pharmaceutics13122054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Burns are a major threat to public health and the economy due to their costly and laborious treatment and high susceptibility to infection. Efforts have been made recently to investigate natural bioactive compounds with potential use in wound healing. The importance lies in the capacities that these compounds could possess both in infection control by common and resistant microorganisms, as well as in the regeneration of the affected tissues, having in both cases low adverse effects. However, some bioactive molecules are chemically unstable, poorly soluble, and susceptible to oxidative degradation or have low bioavailability. Therefore, developing new technologies for an efficient treatment of wound healing poses a real challenge. In this context, electrospun nanofibers have gained increasing research interest because bioactive molecules can be easily loaded within the nanofiber, resulting in optimal burst control and enhanced drug stability. Additionally, the nanofibers can mimic the extracellular collagen matrix, providing a suitable highly porous structural support for growing cells that facilitate and accelerate skin burns healing. This review gives an overview of the current state of electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment.
Collapse
Affiliation(s)
- Jeyson Hermosilla
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile;
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
- Center of Excellence in Traslational Medicine (CEMT), Faculty of Medicine, and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
29
|
Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS. Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9111666. [PMID: 34829895 PMCID: PMC8615732 DOI: 10.3390/biomedicines9111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Svetlana A. Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
| | - Julia V. Sopova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Mikhail S. Bozhokin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
30
|
Guan ZW, Yu EZ, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021; 26:molecules26226802. [PMID: 34833893 PMCID: PMC8624670 DOI: 10.3390/molecules26226802] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
Collapse
Affiliation(s)
- Zhi-Wei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- School of Life Science, Qi Lu Normal University, Jinan 250200, China
| | - En-Ze Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
31
|
Folentarska A, Łagiewka J, Krystyjan M, Ciesielski W. Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers (Basel) 2021; 13:polym13172925. [PMID: 34502965 PMCID: PMC8433750 DOI: 10.3390/polym13172925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties and intermolecular interactions. At present, there are not many studies on ternary blends composed of natural food polymers: polysaccharides of different electrical charge (anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning what type of interactions between polysaccharide, proteins and lipids exist simultaneously when the components are mixed in different orders. This paper intends to fill this gap. It also presents the application of natural biopolymers in the food and non-food industries.
Collapse
Affiliation(s)
- Agnieszka Folentarska
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Jakub Łagiewka
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland;
| | - Wojciech Ciesielski
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
- Correspondence: or
| |
Collapse
|
32
|
de Oliveira AC, de Lima GR, Klein RS, Souza PR, Vilsinski BH, Garcia FP, Nakamura CV, Martins AF. Thermo-and pH-responsive chitosan/gellan gum hydrogels incorporated with the β-cyclodextrin/curcumin inclusion complex for efficient curcumin delivery. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Thermo- and pH-Responsive Gelatin/Polyphenolic Tannin/Graphene Oxide Hydrogels for Efficient Methylene Blue Delivery. Molecules 2021; 26:molecules26154529. [PMID: 34361681 PMCID: PMC8347097 DOI: 10.3390/molecules26154529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin (GE), amino-functionalized polyphenolic tannin derivative (TN), and graphene oxide (GO) were associated to yield thermo- and pH-responsive hydrogels for the first time. Durable hydrogel assemblies for drug delivery purposes were developed using the photosensitizer methylene blue (MB) as a drug model. The cooling GE/TN blends provide brittle physical assemblies. To overcome this disadvantage, different GO contents (between 0.31% and 1.02% wt/wt) were added to the GE/TN blend at 89.7/10.3 wt/wt. FTIR and RAMAN spectroscopy analyses characterized the materials, indicating GO presence in the hydrogels. Incorporation studies revealed a total MB (0.50 mg/mL) incorporation into the GE/TN-GO hydrogel matrices. Additionally, the proposed systems present a mechanical behavior similar to gel. The GO presence in the hydrogel matrices increased the elastic modulus from 516 to 1650 Pa. SEM revealed that hydrogels containing MB present higher porosity with interconnected pores. Dissolution and swelling degree studies revealed less stability of the GE/TN-GO-MB hydrogels in SGF medium (pH 1.2) than SIF (pH 6.8). The degradation increased in SIF with the GO content, making the polymeric matrices more hydrophilic. MB release studies revealed a process controlled by Fickian diffusion. Our results point out the pH-responsible behavior of mechanically reinforced GE/TN-GO-MB hydrogels for drug delivery systems purposes.
Collapse
|