1
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
2
|
Liao T, Chen X, Qiu F, Zhang X, Wu F, Zhao Z, Xu M, Chen M, Shen JW, Shen Q, Ji J. Regulation of cancer-associated fibroblasts for enhanced cancer immunotherapy using advanced functional nanomedicines: an updated review. J Nanobiotechnology 2025; 23:166. [PMID: 40038745 PMCID: PMC11877876 DOI: 10.1186/s12951-025-03217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that plays a critical role in cancer progression. It comprises various cell types, including immune cells, tumor cells, and stromal cells. Among these, cancer-associated fibroblasts (CAFs) represent a heterogeneous population with diverse origins, phenotypes, and functions. Activated CAFs secrete multiple factors that promote tumor growth, migration, angiogenesis, and contribute to chemoresistance. Additionally, CAFs secrete extracellular matrix (ECM) components, such as collagen, which form a physical barrier that hinders the penetration of chemotherapeutic and immunotherapeutic agents. This ECM also influences immune cell infiltration, impeding their ability to effectively target tumor cells. As a result, modulating the activity of CAFs has emerged as a promising strategy to enhance the efficacy of tumor immunotherapy. Nano-delivery systems, constructed from various nanomaterials with high targeting specificity and biocompatibility, offer a compelling approach to deliver therapeutic agents or immunomodulatory factors directly to CAFs. This modulation can alter CAF function, reduce their tumor-promoting effects, and thereby improve the outcomes of immunotherapy. This review provides an in-depth exploration of the origins, functions, and interactions of CAFs within the TME, particularly in the context of immune suppression. Furthermore, it discusses the potential applications of functional nanocarrifers in modulating CAFs and enhancing the effectiveness of tumor immunotherapy, highlighting the significant progress and potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Tingting Liao
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fengkai Qiu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ming Xu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Jia-Wei Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qiying Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiansong Ji
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China.
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
3
|
Zang J, Yin F, Liu Z, Li F, Zhang Y. Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy. Nanomedicine (Lond) 2025; 20:305-318. [PMID: 39889806 PMCID: PMC11792809 DOI: 10.1080/17435889.2024.2443388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025] Open
Abstract
Colorectal cancer (CRC) is a significant threat to human health. The dynamic equilibrium between probiotics and pathogenic bacteria within the gut microbiota is crucial in mitigating the risk of CRC. An overgrowth of harmful microorganisms in the gastrointestinal tract can result in an excessive accumulation of bacterial toxins and carcinogenic metabolites, thereby disrupting the delicate balance of the microbiota. This disruption may lead to alterations in microbial composition, impairment of mucosal barrier function, potential promotion of abnormal cell proliferation, and ultimately contribute to the progression of CRC. Recently, research has indicated that intestinal presence of Fusobacterium nucleatum (Fn) significantly influences the onset, progression, and metastasis of CRC. Consequently, disrupting the interaction between CRC cells and Fn presents a promising strategy against CRC. Nanomaterials have been extensively utilized in cancer therapy and bacterial infection control, demonstrating substantial potential in treating bacteria-associated tumors. This review begins by elucidating the mechanisms of gut microbiota and the occurrence and progression of CRC, with a particular emphasis on clarifying the intricate relationship between Fn and CRC. Subsequently, we highlight strategies that utilize nanomaterials to disrupt the association between Fn and CRC. Overall, this review offers valuable insight and guidance for leveraging nanomaterials in CRC therapy.
Collapse
Affiliation(s)
- Jing Zang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fengqian Li
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
5
|
Smith LS, Haidari H, Amsalu A, Howarth GS, Bryant SJ, Walia S, Elbourne A, Kopecki Z. Black Phosphorus Nanoflakes: An Emerging Nanomaterial for Clinical Wound Management and Biomedical Applications. Int J Mol Sci 2024; 25:12824. [PMID: 39684534 PMCID: PMC11641609 DOI: 10.3390/ijms252312824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Black phosphorus (BP), a two-dimensional material, has gathered significant attention over the last decade, primarily due to its unique physiochemical properties and potential role in various biomedical applications. This review provides an in-depth overview of the synthesis, nanomaterial properties, interactions, and biomedical uses of BP, with a particular focus on wound management. The structure, synthesis methods, and stability of BP are discussed, highlighting the high degree of nanomaterial biocompatibility and cytotoxicity. The antimicrobial properties of BP, including mechanisms of action and preclinical studies to date, are examined, emphasizing the effectiveness of BP against various clinical pathogens relevant to wound management. Additionally, the versatility of BP in biomedical implementations is highlighted through utilization in drug delivery, imaging, and photothermal therapy, with a focus on scalability and reproducibility with outlined future perspectives. Despite identified challenges for translation in clinical uses, BP nanomaterial has significant potential as a versatile platform in biomedical applications, especially in wound management.
Collapse
Affiliation(s)
- Luke S. Smith
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Anteneh Amsalu
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Saffron J. Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Sumeet Walia
- Centre for Opto-Electronic Materials and Sensors, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia;
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Zlatko Kopecki
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
| |
Collapse
|
6
|
Liu H, Tang L, Yin Y, Cao Y, Fu C, Feng J, Shen Y, Wang W. Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403101. [PMID: 39007186 PMCID: PMC11425291 DOI: 10.1002/advs.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hening Liu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Lu Tang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yue Yin
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Cong Fu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yan Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Wei Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| |
Collapse
|
7
|
He M, Zhang X, Ran X, Zhang Y, Nie X, Xiao B, Lei L, Zhai S, Zhu J, Zhang J, Li R, Liu Z, Zhu Y, Dai Z, He Z, Feng J, Zhang C. Black Phosphorus Nanosheets Protect Neurons by Degrading Aggregative α-syn and Clearing ROS in Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404576. [PMID: 38696266 DOI: 10.1002/adma.202404576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Although evidence indicates that the abnormal accumulation of α-synuclein (α-syn) in dopamine neurons of the substantia nigra is the main pathological feature of Parkinson's disease (PD), no compounds that have both α-syn antiaggregation and α-syn degradation functions have been successful in treating the disease in the clinic. Here, it is shown that black phosphorus nanosheets (BPNSs) interact directly with α-syn fibrils to trigger their disaggregation for PD treatment. Moreover, BPNSs have a specific affinity for α-syn through van der Waals forces. And BPNSs are found to activate autophagy to maintain α-syn homeostasis, improve mitochondrial dysfunction, reduce reactive oxygen species levels, and rescue neuronal death and synaptic loss in PC12 cells. It is also observed that BPNSs penetrate the blood-brain barrier and protect against dopamine neuron loss, alleviating behavioral disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model and hA53T α-syn transgenic mice. Together, the study reveals that BPNSs have the potential as a novel integrated nanomedicine for clinical diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiangming Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xia Ran
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yan Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaoran Nie
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Bo Xiao
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Li Lei
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Suzhen Zhai
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - JinMing Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jingjing Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Rong Li
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zuoji Liu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yuping Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhijun Dai
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhixu He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Feng
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
8
|
Wang L, Chen J, Ma C, Zhang C. Targeted nanotherapy platform mediated tumor-infiltrating CD8 + T cell immune function effects for collaborative anti-tumor photothermal immunotherapy for cervical cancer. NANOSCALE ADVANCES 2024; 6:3052-3063. [PMID: 38868823 PMCID: PMC11166113 DOI: 10.1039/d3na01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024]
Abstract
Photothermal immunotherapy is an innovative approach to cancer treatment. It combines immunomodulators and photothermal agents, both targeted to the tumor site. This therapy harnesses the heat generated by photothermal conversion to damage tumor cells while simultaneously releasing tumor-associated antigens. This process enhances the anti-tumor immune response of tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment (TME). Photothermal immunotherapy is gaining prominence as a new method for cancer treatment. It is a current focal point in research due to its targeted efficacy, minimal systemic side effects, and reduced risk of treatment resistance. This study employed a thin-film dispersion method to fabricate liposomes (LIPO) as composite drug carriers. Indocyanine green (ICG) for clinical use was utilized as a photothermal agent (PTA), and folate (FA) was employed as a targeting agent for the nano-composite material. We encapsulated the immunoadjuvant CpG ODN within the FA@LIPO@ICG nano-system, resulting in the formation of targeted nanoparticles (NPs) for photothermal immunotherapy (FA@LIPO@ICG@CpG), and assessed the drug encapsulation rate. FA@LIPO@ICG@CpG NPs demonstrated excellent water solubility with an average size ranging from 100 to 200 nm. Furthermore, we investigated the photothermal properties of FA@LIPO@ICG@CpG NPs. Under 808 nm laser irradiation, the photothermal conversion efficiency of FA@LIPO@ICG@CpG NPs reached 39.05%. Subsequently, under 808 nm laser excitation, we conducted an analysis of lymphocyte subpopulations and their functional changes in U14 tumor-bearing mice by using flow cytometry. This treatment approach demonstrated remarkable anti-tumor efficacy. Consequently, FA@LIPO@ICG@CpG NPs hold substantial promise as a novel and promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 Xinjiang China
| | - Jianhuan Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 Xinjiang China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 Xinjiang China
| | - Chuanshan Zhang
- Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Urumqi 830054 Xinjiang China
| |
Collapse
|
9
|
Cao Y, Tang L, Fu C, Yin Y, Liu H, Feng J, Gao J, Shu W, Li Z, Zhu Y, Wang W. Black Phosphorus Quantum Dot Loaded Bioinspired Nanoplatform Synergized with aPD-L1 for Multimode Cancer Immunotherapy. NANO LETTERS 2024; 24:6767-6777. [PMID: 38771956 DOI: 10.1021/acs.nanolett.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Efforts to prolong the blood circulation time and bypass immune clearance play vital roles in improving the therapeutic efficacy of nanoparticles (NPs). Herein, a multifunctional nanoplatform (BPP@RTL) that precisely targets tumor cells is fabricated by encapsulating ultrasmall phototherapeutic agent black phosphorus quantum dot (BPQD), chemotherapeutic drug paclitaxel (PTX), and immunomodulator PolyMetformin (PM) in hybrid membrane-camouflaged liposomes. Specifically, the hybrid cell membrane coating derived from the fusion of cancer cell membrane and red blood cell membrane displays excellent tumor targeting efficiency and long blood circulation property due to the innate features of both membranes. After collaboration with aPD-L1-based immune checkpoint blockade therapy, a boosted immunotherapeutic effect is obtained due to elevated dendritic cell maturation and T cell activation. Significantly, laser-irradiated BPP@RTL combined with aPD-L1 effectively eliminates primary tumors and inhibits lung metastasis in 4T1 breast tumor model, offering a promising treatment plan to develop personalized antitumor strategy.
Collapse
Affiliation(s)
- Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
10
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
11
|
Sun L, Han Y, Zhao Y, Cui J, Bi Z, Liao S, Ma Z, Lou F, Xiao C, Feng W, Liu J, Cai B, Li D. Black phosphorus, an advanced versatile nanoparticles of antitumor, antibacterial and bone regeneration for OS therapy. Front Pharmacol 2024; 15:1396975. [PMID: 38725666 PMCID: PMC11079190 DOI: 10.3389/fphar.2024.1396975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yao Zhao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiguo Bi
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Shiyu Liao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Zheru Ma
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wei Feng
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Bo Cai
- Department of Diagnostic Ultrasound of People's Liberation Army 964 Hospital, Changchun, China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| |
Collapse
|
12
|
Wu L, Jiang M, Chu C, Luo T, Hui Y, Zhou W, Geng S, Yu X. Transformation of Black Phosphorus through Lattice Reconstruction for NIR-II-Responsive Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305762. [PMID: 38115673 PMCID: PMC10797469 DOI: 10.1002/advs.202305762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Indexed: 12/21/2023]
Abstract
The photothermal performance of black phosphorus (BP) in the near infrared (NIR)-II bio-window (1000-1500 nm) is low, which limits its biomedical applications. Herein, ultrasmall nickel phosphide quantum dots (Ni2 P QDs) are synthesized with BP quantum dots (BPQDs) as the template by topochemical transformation. The size of Ni2 P QDs is ≈3.5 nm, similar to that of BPQDs, whereas the absorption and photothermal conversion efficiency of Ni2 P QDs at 1064 nm (43.5%) are significantly improved compared with those of BPQDs. To facilitate in vivo applications, an Ni2 P QDs-based liposomal nano-platform (Ni2 P-DOX@Lipo-cRGD) is designed by incorporation of Ni2 P QDs and doxorubicin (DOX) into liposomal bilayers and the interior, respectively. The encapsulated DOX is responsively released from liposomes upon 1064-nm laser irradiation owing to the photothermal effect of Ni2 P QDs, and the drug release rate and amount are controlled by the light intensity and exposure time. In vivo, experiments show that Ni2 P-DOX@Lipo-cRGD has excellent tumor target capability and biocompatibility, as well as complete tumor ablation through the combination of photothermal therapy and chemotherapy. The work provides a new paradigm for the NIR-II transformation of nano-materials and may shed light on the construction of multifunctional nano-platforms for cancer treatment.
Collapse
Affiliation(s)
- Lie Wu
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Mingyang Jiang
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Chenchen Chu
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tingting Luo
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yun Hui
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhua Zhou
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xue‐Feng Yu
- Shenzhen Key Laboratory of Micro/Nano BiosensingShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
13
|
Ghafelehbashi R, Salehi M, Kouhi M, AlizadehNaini A, Sajadi-Javan ZS, Nejatidanesh F. Recent progress in cancer immunotherapy: Application of nano-therapeutic systems. J Drug Deliv Sci Technol 2024; 91:105184. [DOI: 10.1016/j.jddst.2023.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Passaglia E, Sgarbossa A. Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy. Pharmaceutics 2023; 15:2748. [PMID: 38140089 PMCID: PMC10747032 DOI: 10.3390/pharmaceutics15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria.
Collapse
Affiliation(s)
- Elisa Passaglia
- National Research Council-Institute of Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Antonella Sgarbossa
- National Research Council-Nanoscience Institute (CNR-NANO) and NEST-Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
15
|
Zhu G, Sun Y, Shakoor N, Zhao W, Wang Q, Wang Q, Imran A, Li M, Li Y, Jiang Y, Adeel M, Rui Y. Phosphorus-based nanomaterials as a potential phosphate fertilizer for sustainable agricultural development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108172. [PMID: 37956611 DOI: 10.1016/j.plaphy.2023.108172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Phosphorus-based nanomaterials (PNMs) have been reported to have substantial promise for promoting plant growth, improving plant tolerance mechanisms, and increasing resistance to pathogenic organisms. Recent scientific investigation has demonstrated that utilizing PNMs can enhance plant physiological growth, photosynthetic pigments, antioxidant system, metabolism, nutrient absorption, rhizosphere secretion, and soil nutrients activation. Previous research on PNMs mostly concentrated on calcium phosphate, zeolite, and chitosan, with little systematic summarization, demanding a thorough evaluation of PNMs' broader uses. In our current review article, we address the knowledge gap by classifying PNMs according to green synthesis methods and the valence state of phosphorus while elucidating the underlying mechanisms through which these PNMs facilitate plant growth. In addition, we also targeted some strategies to improve the bioavailability of PNMs, offering valuable insights for the future design and safe implementation of PNMs in agricultural practices.
Collapse
Affiliation(s)
- Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Azeem Imran
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; China Agricultural University, Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University, Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
16
|
Moradian S, Badiei A, Mohammadi Ziarani G, Mohajer F, Varma RS, Iravani S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. ENVIRONMENTAL RESEARCH 2023; 237:116910. [PMID: 37597834 DOI: 10.1016/j.envres.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Sahar Moradian
- School of Chemistry, College of Science, University of Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Iran.
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
17
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
18
|
Xu H, Liu J, Li X, Li J, Lin X, Li Z, Dou T, Gao L, Li R, Lai KP. Instrumental and transcriptome analysis reveals the chemotherapeutic effects of doxorubicin-loaded black phosphate nanosheets on abiraterone-resistant prostate cancer. Bioorg Chem 2023; 137:106583. [PMID: 37163810 DOI: 10.1016/j.bioorg.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Prostate cancer is the second most common cause of cancer-related deaths in men and is common in most developed countries. Androgen deprivation therapy (ADT) that uses abiraterone acetate (AA) is an effective second-line treatment for prostate cancer. However, approximately 20-40% of patients develop primary resistance to abiraterone post-treatment. In this study, we aimed to understand the molecular mechanisms underlying the development of abiraterone resistance in prostate cancer cells and the potential use of black phosphorus nanosheets (BPNS) for treating abiraterone-resistant prostate cancer. We first established abiraterone-resistant prostate cancer PC-3 cells and found that these cells have higher migration ability than normal prostate cancer cells. Using comparative transcriptomic and bioinformatics analyses between abiraterone-sensitive PC-3 and abiraterone-resistant PC-3 cells, we highlighted the differentially expressed genes (DEGs) involved in the biological processes related to prostate gland morphogenesis, drug response, immune response, angiogenesis. We further studied the therapeutic effects of BPNS. Our results show that BPNS reduced the proliferation and migration of abiraterone-resistant PC-3 cells. Bioinformatics analysis, including gene ontology, Kyoto encyclopedia of genes and genomes enrichment analysis, and ingenuity pathway analysis (IPA) of the DEGs, suggested that BPNS treatment controlled cancer cell proliferation, metastasis, and oncogenic signaling pathways. Furthermore, the IPA gene network highlighted the involvement of the MMP family, ATF, and notch families in the anti-prostate cancer function of BPNS. Our findings suggest that BPNS may have a chemotherapeutic function in treating abiraterone-resistant prostate cancer.
Collapse
Affiliation(s)
- Haoyang Xu
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China; Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiangkai Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Zhuowei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Tong Dou
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China; Macau University of Science and Technology, Macau SAR, China.
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| |
Collapse
|
19
|
Zuo Y, Xia Y, Lu W, Li Y, Xiao Y, Gao S, Zhou Z, Xu H, Feng X, Li C, Yu Y. A multifunctional black phosphorus nanosheet-based immunomagnetic bio-interface for heterogeneous circulating tumor cell capture and simultaneous self-identification in gastric cancer patients. NANOSCALE 2023; 15:3872-3883. [PMID: 36722904 DOI: 10.1039/d2nr04277k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A single epithelial cell adhesion molecule (EpCAM) for circulating tumor cell (CTCs) isolation has been proved to be low in efficiency as it fails to recognize EpCAM-negative CTCs. Meanwhile, the current immunocytochemical (ICC) identification strategy for the captured cells is tedious and time-consuming. To address these issues, we designed a dual-labeled fluorescent immunomagnetic nanoprobe (BP-Fe3O4-AuNR/Apt), by loading magnetic Fe3O4 nanoparticles and gold nanorods (AuNRs) onto black phosphorus (BP) nanosheets and then linking them with Cy3-labeled EpCAM and Texas red-labeled tyrosine protein kinase 7 (PTK7) aptamers, which created a high-performance bio-interface for efficient, heterogeneous CTC capture and rapid self-identification with high accuracy. As few as 5 CTCs could be captured from 1.0 mL PBS, mixed cell solution and lysed blood. What's more, the presence of BP and AuNRs on this capturing interface also allowed us to preliminarily investigate the potential photothermal therapeutic effect of the probe toward CTC elimination. The applicability of the probe was further demonstrated in gastric cancer patients. By detecting the number of CTCs in the blood of gastric cancer patients, the correlations between the CTC number and the disease stage, as well as distant metastasis were systematically explored.
Collapse
Affiliation(s)
- Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Wenwen Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yue Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhiyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
20
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
21
|
Li HX, Zhao KC, Jiang JJ, Zhu QS. Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications. J Biol Eng 2023; 17:8. [PMID: 36717887 PMCID: PMC9887857 DOI: 10.1186/s13036-023-00328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogels, also known as three-dimensional, flexible, and polymer networks, are composed of natural and/or synthetic polymers with exceptional properties such as hydrophilicity, biocompatibility, biofunctionality, and elasticity. Researchers in biomedicine, biosensing, pharmaceuticals, energy and environment, agriculture, and cosmetics are interested in hydrogels. Hydrogels have limited adaptability for complicated biological information transfer in biomedical applications due to their lack of electrical conductivity and low mechanical strength, despite significant advances in the development and use of hydrogels. The nano-filler-hydrogel hybrid system based on supramolecular interaction between host and guest has emerged as one of the potential solutions to the aforementioned issues. Black phosphorus, as one of the representatives of novel two-dimensional materials, has gained a great deal of interest in recent years owing to its exceptional physical and chemical properties, among other nanoscale fillers. However, a few numbers of publications have elaborated on the scientific development of black phosphorus hybrid hydrogels extensively. In this review, this review thus summarized the benefits of black phosphorus hybrid hydrogels and highlighted the most recent biological uses of black phosphorus hybrid hydrogels. Finally, the difficulties and future possibilities of the development of black phosphorus hybrid hydrogels are reviewed in an effort to serve as a guide for the application and manufacture of black phosphorus -based hydrogels. Recent applications of black phosphorus hybrid hydrogels in biomedicine.
Collapse
Affiliation(s)
- Hao-xuan Li
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Kun-chi Zhao
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Jia-jia Jiang
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Qing-san Zhu
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
22
|
Chen H, Sun R, Zeng T, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise photothermal therapy and chemotherapy by composite scaffolds of gold nanoparticles, BP nanosheets and gelatin immobilized with doxorubicin-loaded thermosensitive liposomes. Biomater Sci 2022; 10:7042-7054. [PMID: 36310532 DOI: 10.1039/d2bm01155g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the synergistic effect of photothermal therapy (PTT) and chemotherapy has been recognized as an effective strategy for cancer treatment. Controlling the PTT temperature and drug release profile is desirable for minimizing the unexpected damage to normal cells. In this study, a smart platform of stepwise PTT and chemotherapy has been developed by using composite porous scaffolds of biodegradable black phosphorus (BP) nanosheets, gold nanorods(AuNRs), doxorubicin (Dox)-encapsulated thermosensitive liposomes and biodegradable polymers. Under near-infrared (NIR) laser irradiation, the composite scaffolds could attain high and low local temperatures before and after BP degradation, respectively. Dox release from the composite scaffolds could be controlled by the temperature change. In vitro cell culture and in vivo animal experiments indicated that a strong synergistic effect of PTT and chemotherapy could be achieved at an early stage of treatment before BP degradation, and a mild hyperthermia effect was shown for chemotherapy in the late stage after BP degradation. Moreover, the composite scaffolds after the complete release of Dox could support the proliferation of mesenchymal stem cells. The composite scaffolds showed a synergistic effect of stepwise PTT and chemotherapy for breast cancer elimination and promoted stem cell activities after killing cancer cells.
Collapse
Affiliation(s)
- Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
23
|
Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. BIOSENSORS 2022; 12:1009. [PMID: 36421127 PMCID: PMC9688887 DOI: 10.3390/bios12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As per global cancer statistics of 2020, female breast cancer is the most commonly diagnosed cancer and also the foremost cause of cancer death in women. Traditional treatments include a number of negative effects, making it necessary to investigate novel smart drug delivery methods and identify new therapeutic approaches. Efforts for developing novel strategies for breast cancer therapy are being devised worldwide by various research groups. Currently, two-dimensional black phosphorus nanosheets (BPNSs) have attracted considerable attention and are best suited for theranostic nanomedicine. Particularly, their characteristics, including drug loading efficacy, biocompatibility, optical, thermal, electrical, and phototherapeutic characteristics, support their growing demand as a potential substitute for graphene-based nanomaterials in biomedical applications. In this review, we have explained different platforms of BP nanomaterials for breast cancer management, their structures, functionalization approaches, and general methods of synthesis. Various characteristics of BP nanomaterials that make them suitable for cancer therapy and diagnosis, such as large surface area, nontoxicity, solubility, biodegradability, and excellent near-infrared (NIR) absorption capability, are discussed in the later sections. Next, we summarize targeting approaches using various strategies for effective therapy with BP nanoplatforms. Then, we describe applications of BP nanomaterials for breast cancer treatment, which include drug delivery, codelivery of drugs, photodynamic therapy, photothermal therapy, combined therapy, gene therapy, immunotherapy, and multidrug resistance reversal strategy. Finally, the present challenges and future aspects of BP nanomaterials are discussed.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
24
|
Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. MICROMACHINES 2022; 13:1773. [PMID: 36296126 PMCID: PMC9606889 DOI: 10.3390/mi13101773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/04/2023]
Abstract
MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed. Herein, recent advances and upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in cancer therapy using MXenes have been discussed to motivate researchers to further investigate this field of science.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14176-14411, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
25
|
Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer. Molecules 2022; 27:molecules27144563. [PMID: 35889436 PMCID: PMC9317578 DOI: 10.3390/molecules27144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm2) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer.
Collapse
|
26
|
Fang Y, Zhang Z, Liu Y, Gao T, Liang S, Chu Q, Guan L, Mu W, Fu S, Yang H, Zhang N, Liu Y. Artificial Assembled Macrophage Co-Deliver Black Phosphorus Quantum Dot and CDK4/6 Inhibitor for Colorectal Cancer Triple-Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20628-20640. [PMID: 35477252 DOI: 10.1021/acsami.2c01305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In recent years, therapeutic strategies based on macrophages have been inspiringly developed, but due to the high intricacy and immunosuppression of the tumor microenvironment, the widespread use of these strategies still faces significant challenges. Herein, an artificial assembled macrophage concept (AB@LM) was presented to imitate the main antitumor abilities of macrophages of tumor targeting, promoting the antitumor immunity, and direct tumor-killing effects. The artificial assembled macrophage (AB@LM) was prepared through an extrusion method, which is to fuse the macrophage membrane with abemaciclib and black phosphorus quantum dot (BPQD)-loaded liposomes. AB@LM showed good stability and tumor targeting ability with the help of macrophage membrane. Furthermore, AB@LM reversed the immunosuppressive tumor microenvironment by inhibiting regulatory T cells (Tregs) and stimulating the maturation of antigen-presenting cells to activate the antitumor immune response through triggering an immunogenic cell death effect. More importantly, in the colorectal tumor model in vivo, a strong cooperative therapeutic effect of photo/chemo/immunotherapy was observed with high tumor inhibition rate (95.3 ± 2.05%). In conclusion, AB@LM exhibits excellent antitumor efficacy by intelligently mimicking the abilities of macrophages. A promising therapeutic strategy for tumor treatment based on imitating macrophages was provided in this study.
Collapse
Affiliation(s)
- Yuxiao Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Zipeng Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Qihui Chu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Li Guan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Huizhen Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
27
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
28
|
Korupalli C, You KL, Getachew G, Rasal AS, Dirersa WB, Zakki Fahmi M, Chang JY. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14020304. [PMID: 35214033 PMCID: PMC8879045 DOI: 10.3390/pharmaceutics14020304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The surface of Ti3C2 MXene nanosheets (TC NSs) was first modified with the antioxidants sodium ascorbate (SA) and dopamine (DA) (DSTC NS) to improve their stability in oxidative and hydration environments and thereby improve their bioapplications. This novel approach not only improved MXene stability by arresting oxidation but also increased the available functional groups for further functionalization with various biomolecules. The DSTC NSs were then sequentially conjugated with enzyme glucose oxidase (GOx) and photosensitizer Ce6 to render the obtained CGDSTC NSs with glucose starvation and photodynamic therapeutic properties and thus attain high efficiency in killing cancer cells through the cooperative effect. The as-synthesized CGDSTC NSs demonstrated tremendous photothermal effect with conversion efficiency of 45.1% and photodynamic (ROS generation) properties upon irradiation with 808 and 671 nm lasers. Furthermore, it was observed that the enzymatic activity of CGDSTC NSs increased upon laser irradiation due to enhanced solution temperature. During in vitro studies, the CGDSTC NSs exhibited cytocompatability to HePG2 and HeLa cells under nonstimulus conditions. However, they elicited more than 90% cell-killing efficiency in the presence of glucose and laser irradiation via the cooperative effect between starvation therapy and phototherapy. These results indicate that CGDSTC NSs could be used as potential therapeutic agents to eradicate cancers with no or few adverse effects. This surface modification approach is also simple and facile to adopt in MXene-based research.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Kai-Long You
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Akash S. Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | | | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
- Correspondence: ; Tel.: +886-2-27303636
| |
Collapse
|
29
|
Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, Yin Y, Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond) 2022; 42:141-163. [PMID: 35001556 PMCID: PMC8822595 DOI: 10.1002/cac2.12255] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Phototherapy and immunotherapy in combination is regarded as the ideal therapeutic modality to treat both primary and metastatic tumors. Immunotherapy uses different immunological approaches to stimulate the immune system to identify tumor cells for targeted elimination. Phototherapy destroys the primary tumors by light irradiation, which induces a series of immune responses through triggering immunogenic cancer cell death. Therefore, when integrating immunotherapy with phototherapy, a novel anti-cancer strategy called photoimmunotherapy (PIT) is emerging. This synergistic treatment modality can not only enhance the effectiveness of both therapies but also overcome their inherent limitations, opening a new era for the current anti-cancer therapy. Recently, the advancement of nanomaterials affords a platform for PIT. From all these nanomaterials, inorganic nanomaterials stand out as ideal mediators in PIT due to their unique physiochemical properties. Inorganic nanomaterials can not only serve as carriers to transport immunomodulatory agents in immunotherapy owing to their excellent drug-loading capacity but also function as photothermal agents or photosensitizers in phototherapy because of their great optical characteristics. In this review, the recent advances of multifunctional inorganic nanomaterial-mediated drug delivery and their contributions to cancer PIT will be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
30
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
31
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
32
|
Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, Wang W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13111888. [PMID: 34834304 PMCID: PMC8621332 DOI: 10.3390/pharmaceutics13111888] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based drug delivery systems have shown tremendous advantages in cancer treatment due to their distinctive properties. For instance, delivery of therapeutics using tumor-tropic cells like neutrophils, lymphocytes and mesenchymal stem cells can achieve specific tumor targeting due to the "Trojan Horse" effect. Other circulatory cells like erythrocytes and platelets can greatly improve the circulation time of nanoparticles due to their innate long circulation property. Adipocytes, especially cancer-associated adipocytes, play key roles in tumor development and metabolism, therefore, adipocytes are regarded as promising bio-derived nanoplatforms for anticancer targeted drug delivery. Nanomaterials are important participants in cell-based drug delivery because of their unique physicochemical characteristics. Therefore, the integration of various nanomaterials with different cell types will endow the constructed delivery systems with many attractive properties due to the merits of both. In this review, a number of strategies based on nanomaterial-involved cell-mediated drug delivery systems for cancer treatment will be summarized. This review discusses how nanomaterials can be a benefit to cell-based therapies and how cell-derived carriers overcome the limitations of nanomaterials, which highlights recent advancements and specific biomedical applications based on nanomaterial-mediated, cell-based drug delivery systems.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (J.C.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.C.); (W.W.)
| |
Collapse
|