1
|
Sládeková L, Li H, DesMarais VM, Beck AP, Guzik H, Vyhlídalová B, Gu H, Mani S, Dvořák Z. Unlocking the potential: FKK6 as a microbial mimicry-based therapy for chronic inflammation-associated colorectal cancer in a murine model. J Pharmacol Exp Ther 2025; 392:100059. [PMID: 40023602 DOI: 10.1016/j.jpet.2024.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 03/04/2025] Open
Abstract
Chronic intestinal inflammation significantly contributes to the development of colorectal cancer and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics Felix Kopp Kortagere 6 (FKK6), which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane and DSS. FKK6 (2 mg/kg) displayed substantial antitumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, and cyclin D) in the colon. In addition, we carried out a chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro. In conclusion, anticancer effects of FKK6 in azoxymethane/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry proposes that chemical mimics of microbial metabolites that serve to protect hosts against aberrant inflammation in the gut could serve as a new paradigm for the development of drugs targeting inflammatory bowel disease if, like the parent metabolite, is devoid of toxicity but more potent against the microbial metabolite receptor. We identified a chemical mimic of Felix Kopp Kortagere 6, and we propose that Felix Kopp Kortagere 6 is devoid of toxicity yet significantly reduces tumor formation in an azoxymethane-dextran sodium sulfate model of murine colitis-induced colon cancer.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Vera M DesMarais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York; Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Zdenek Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Sung JJ, Shaw JR, Rezende JD, Dharmaraj S, Cottingham AL, Weldemariam MM, Jones JW, Kane MA, Pearson RM. Lipid Nanoparticles from L. meyenii Walp Mitigate Sepsis through Multimodal Protein Corona Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623417. [PMID: 39605639 PMCID: PMC11601351 DOI: 10.1101/2024.11.13.623417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Plant-derived nanoparticles (PDNP) are nano-sized particles isolated from various edible plants that contain bioactive components involved in regulating cellular immune responses against pathogenic intrusion and inflammation. Purpose This study describes a novel PDNP derived from Lepidium meyenii Walp (maca) that efficiently captures pro-inflammatory cytokines and acute phase proteins in its protein corona to enhance survival in two representative lethal models of sepsis. Methods Lipid nanoparticles were isolated from maca (MDNP) and triacylglycerols and phytoceramides were identified as major constituents using lipidomics. The physicochemical properties of MDNPs were determined, anti-inflammatory effects of MDNP were evaluated using in vitro models and in vivo using endotoxemia and cecal ligation and puncture (CLP) polymicrobial sepsis models. Proteomic analysis of MDNP in healthy or LPS-induced inflammatory plasma was used to determine the composition and inflammatory pathways modulated due to the MDNP protein corona. Results In vitro studies showed that MDNP were non-toxic, reduced macrophage activation, and effectively sequestered pro-inflammatory cytokines to mitigate NF- κ B activity under lipopolysaccharide (LPS) stimulation. In a pre-established LPS-induced endotoxemia model, MDNP-treated mice showed significantly reduced systemic pro-inflammatory cytokines and enhanced survival. Untargeted proteomics and pathway analysis of the MDNP protein corona identified an enrichment in acute phase proteins in MDNP-LPS plasma coronas. MDNP treatment also significantly improved survival in the CLP sepsis model in the absence of antibiotics. Conclusion This work identified MDNP as an efficient, plant-derived lipid NP that broadly sequesters and neutralizes a compilation of inflammatory mediators in their coronas, offering multimodal therapeutic potential for treating inflammatory diseases.
Collapse
|
3
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
4
|
Sládeková L, Li H, DesMarais VM, Beck AP, Guzik H, Vyhlídalová B, Gu H, Mani S, Dvořák Z. Unlocking the Potential: FKK6 as a Microbial Mimicry-Based Therapy for Chronic Inflammation-Associated Colorectal Cancer in a Murine Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605845. [PMID: 39211241 PMCID: PMC11360961 DOI: 10.1101/2024.07.30.605845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chronic intestinal inflammation significantly contributes to the development of colorectal cancer (CRC) and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics FKK6, which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). FKK6 (2 mg/kg) displayed substantial anti-tumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, cyclin D) in the colon. In addition, we carried out the chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro . In conclusion, anticancer effects of FKK6 in AOM/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC.
Collapse
|
5
|
Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci 2024; 47:e2300669. [PMID: 38651549 DOI: 10.1002/jssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dianbing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Research Center of Biomacromolecules, China Academy of Sciences, National Laboratory of Biomacromolecules, Beijing, China
| | - Chengyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
7
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
8
|
Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med 2023; 18:138. [PMID: 37875983 PMCID: PMC10594701 DOI: 10.1186/s13020-023-00839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.
Collapse
Affiliation(s)
- Yaoxia Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Jianyang Chinese Medicine Hospital, Chengdu, 641400, China
| | - Xiangqi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Jinjie Lei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yangmiao Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
9
|
Stiefel J, Zimmer J, Schloßhauer JL, Vosen A, Kilz S, Balakin S. Just Keep Rolling?-An Encompassing Review towards Accelerated Vaccine Product Life Cycles. Vaccines (Basel) 2023; 11:1287. [PMID: 37631855 PMCID: PMC10459022 DOI: 10.3390/vaccines11081287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
In light of the recent pandemic, several COVID-19 vaccines were developed, tested and approved in a very short time, a process that otherwise takes many years. Above all, these efforts have also unmistakably revealed the capacity limits and potential for improvement in vaccine production. This review aims to emphasize recent approaches for the targeted rapid adaptation and production of vaccines from an interdisciplinary, multifaceted perspective. Using research from the literature, stakeholder analysis and a value proposition canvas, we reviewed technological innovations on the pharmacological level, formulation, validation and resilient vaccine production to supply bottlenecks and logistic networks. We identified four main drivers to accelerate the vaccine product life cycle: computerized candidate screening, modular production, digitized quality management and a resilient business model with corresponding transparent supply chains. In summary, the results presented here can serve as a guide and implementation tool for flexible, scalable vaccine production to swiftly respond to pandemic situations in the future.
Collapse
Affiliation(s)
- Janis Stiefel
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Jan Zimmer
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Jeffrey L. Schloßhauer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Agnes Vosen
- Fraunhofer Center for International Management and Knowledge Economy IMW, Neumarkt 20, 04109 Leipzig, Germany
| | - Sarah Kilz
- Fraunhofer Center for International Management and Knowledge Economy IMW, Neumarkt 20, 04109 Leipzig, Germany
| | - Sascha Balakin
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Bio- and Nanotechnology, Maria-Reiche-Straße 2, 01109 Dresden, Germany
- Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| |
Collapse
|
10
|
Long D, Alghoul Z, Sung J, Yang C, Merlin D. Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice. Expert Opin Drug Deliv 2023; 20:1443-1462. [PMID: 37379034 PMCID: PMC10810011 DOI: 10.1080/17425247.2023.2231345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Colitis-associated cancer (CAC) treatment lacks effective small-molecule drugs and efficient targeted delivery systems. Here, we loaded M13 (an anti-cancer drug candidate) to colon-targeting ginger-derived nanoliposomes (NL) and investigated if orally administered M13-NL could enhance the anticancer effects of M13 in CAC mouse models. METHODS The biopharmaceutical properties of M13 were assessed by physicochemical characterizations. The in vitro immunotoxicity of M13 was assessed against PBMCs using FACS and the mutagenic potential of M13 was evaluated by the Ames assay. The in vitro efficacy of M13 was tested in 2D- and 3D-cultured cancerous intestinal cells. AOM/DSS-induced CAC mice were used to evaluate the therapeutic effects of free M13 or M13-NL on CAC in vivo. RESULTS M13 has beneficial physiochemical properties, including high stability, and no apparent immunotoxicity or mutagenic potential in vitro. M13 is effective against the growth of 2D- and 3D-cultured cancerous intestinal cells in vitro. The in vivo safety and efficacy of M13 were significantly improved by using NL for drug delivery (p < 0.001). Oral administration of M13-NL exhibited excellent therapeutic effects in AOM/DSS-induced CAC mice. CONCLUSION M13-NL is a promising oral drug formulation for CAC treatment.
Collapse
Affiliation(s)
- Dingpei Long
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
11
|
Alghoul Z, Sung J, Wu K, Alpini G, Glaser S, Yang C, Merlin D. Preparation and Characterization of IL-22 mRNA-loaded Lipid Nanoparticles. Bio Protoc 2023; 13:e4647. [PMID: 37056242 PMCID: PMC10086544 DOI: 10.21769/bioprotoc.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 02/26/2023] [Indexed: 04/15/2023] Open
Abstract
Interleukin-22 (IL-22) has been demonstrated as a critical regulator of epithelial homeostasis and repair; it showed an anti-inflammatory effect against ulcerative colitis. Local microinjection of IL-22 cDNA vector has been shown to be effective in treating ulcerative colitis in mouse models. However, microinjection comes with multiple technical challenges for routine colon-targeted drug delivery. In contrast, oral administration can get around these challenges and provide comparable efficacy. We showed in previous studies that oral administration of new lipid nanoparticles (nLNP)-encapsulated IL-22 mRNA targets the colon region and efficiently ameliorates colitis. This protocol describes the details of preparing and characterizing the nLNP-encapsulated IL-22 mRNA using three major lipids that mimic the natural ginger-derived nanoparticles. It provides an nLNP platform that can be used to orally deliver other types of nucleic acids to the colon.
Collapse
Affiliation(s)
- Zahra Alghoul
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Kenji Wu
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46220, USA
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
12
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
13
|
Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P. Effect of Ginger on Inflammatory Diseases. Molecules 2022; 27:7223. [PMID: 36364048 PMCID: PMC9654013 DOI: 10.3390/molecules27217223] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis, Crohn's disease, rheumatoid arthritis, psoriasis, and lupus erythematosus are some of common inflammatory diseases. These affections are highly disabling and share signals such as inflammatory sequences and immune dysregulation. The use of foods with anti-inflammatory properties such as ginger (Zingiber officinale Roscoe) could improve the quality of life of these patients. Ginger is a plant widely used and known by its bioactive compounds. There is enough evidence to prove that ginger possesses multiple biological activities, especially antioxidant and anti-inflammatory capacities. In this review, we summarize the current knowledge about the bioactive compounds of ginger and their role in the inflammatory process and its signaling pathways. We can conclude that the compounds 6-shoagol, zingerone, and 8-shoagol display promising results in human and animal models, reducing some of the main symptoms of some inflammatory diseases such as arthritis. For lupus, 6-gingerol demonstrated a protective attenuating neutrophil extracellular trap release in response to phosphodiesterase inhibition. Ginger decreases NF-kβ in psoriasis, and its short-term administration may be an alternative coadjuvant treatment. Ginger may exert a function of supplementation and protection against cancer. Furthermore, when receiving chemotherapy, ginger may reduce some symptoms of treatment (e.g., nausea).
Collapse
Affiliation(s)
| | - Begoña Cerdá
- Nutrition, Oxidative Stress and Bioavailability Group, Degree in Pharmacy, Faculty of Health Sciences, Catholic University of San Antonio de Murcia, 30107 Murcia, Spain
| | | | | | | | | |
Collapse
|
14
|
Yang C, Alpini G, Glaser S, Merlin D. Lipid nanoparticles for oral delivery of nucleic acids for treating inflammatory bowel disease. Nanomedicine (Lond) 2022; 17:1501-1504. [PMID: 36317587 DOI: 10.2217/nnm-2022-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA.,Research, Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN 46220, USA.,Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA.,Research, Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| |
Collapse
|
15
|
Sung J, Alghoul Z, Long D, Yang C, Merlin D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022; 288:121707. [PMID: 35953326 DOI: 10.1016/j.biomaterials.2022.121707] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 12/29/2022]
Abstract
Oral mRNA delivery is a promising yet understudied approach for treating inflammatory bowel disease (IBD). Inspired by the colon-targeting ability of ginger-derived nanoparticles (GDNPs), we reversely engineered lipid nanoparticles that comprise the three major lipids identified in GDNPs. When mixed at the ratio found in GDNPs, the selected lipids (phosphatidic acid, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol; 5:2:3) self-assembled into new lipid nanoparticles (nLNPs) in phosphate-buffered saline. We encapsulated IL-22-mRNA within the nLNPs, as enhanced IL-22 expression in the colon is known to have potent anti-inflammatory efficacy against ulcerative colitis (UC). The IL-22 mRNA-loaded nLNPs (IL-22/nLNPs) were found to be about 200 nm in diameter and have a zeta potential of -18 mV. Oral delivery of IL-22/nLNPs elevated the protein expression level of IL-22 in the colonic mucosa of mice. In a mouse model of acute colitis, mice fed with IL-22/nLNPs experienced an accelerated healing process, as indicated by the recovery of more body weight and colon length as well as reduction of the histological index, colonic MPO activity, fecal lipocalin concentration, and mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β). Our results suggest that our reversely engineered nLNPs is an excellent mRNA delivery platform for treating ulcerative colitis.
Collapse
Affiliation(s)
- Junsik Sung
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Dingpei Long
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, 30302, USA.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, 30302, USA
| |
Collapse
|
16
|
Yang C, Sung J, Long D, Alghoul Z, Merlin D. Prevention of Ulcerative Colitis by Autologous Metabolite Transfer from Colitogenic Microbiota Treated with Lipid Nanoparticles Encapsulating an Anti-Inflammatory Drug Candidate. Pharmaceutics 2022; 14:pharmaceutics14061233. [PMID: 35745805 PMCID: PMC9228491 DOI: 10.3390/pharmaceutics14061233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Modulating the gut microbiota composition is a potent approach to treat various chronic diseases, including obesity, metabolic syndrome, and ulcerative colitis (UC). However, the current methods, such as fecal microbiota transplantation, carry a risk of serious infections due to the transmission of multi-drug-resistant organisms. Here, we developed an organism-free strategy in which the gut microbiota is modulated ex vivo and microbiota-secreted metabolites are transferred back to the host. Using feces collected from the interleukin-10 (IL-10) knockout mouse model of chronic UC, we found that a drug candidate (M13)-loaded natural-lipid nanoparticle (M13/nLNP) modified the composition of the ex vivo-cultured inflamed gut microbiota and its secreted metabolites. Principal coordinate analysis (PCoA) showed that M13/nLNP shifted the inflamed microbiota composition toward the non-inflamed direction. This compositional modification induced significant changes in the chemical profiles of secreted metabolites, which proved to be anti-inflammatory against in vitro-cultured NF-κβ reporter cells. Further, when these metabolites were orally administered to mice, they established strong protection against the formation of chronic inflammation. Our study demonstrates that ex vivo modulation of microbiota using M13/nLNP effectively reshaped the microbial secreted metabolites and that oral transfer of these metabolites might be an effective and safe therapeutic approach for preventing chronic UC.
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
- Correspondence:
| | - Junsik Sung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
| | - Dingpei Long
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
| | - Zahra Alghoul
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| |
Collapse
|