1
|
Ding Z, Chen Y, Huang G, Liao R, Zhang H, Zhou S, Liu X. Global, regional, and national burden of neuroblastoma and peripheral nervous system tumours in individuals aged over 60 from 1990 to 2021: a trend analysis of global burden of disease study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:78. [PMID: 40098211 PMCID: PMC11916991 DOI: 10.1186/s41043-025-00810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Elderly individuals diagnosed with neuroblastoma and peripheral nervous system tumours often have a poor prognosis. However, there is currently a lack of comprehensive analysis on these conditions in older adults. This study aims to determine the global epidemiological trends of neuroblastoma and peripheral nervous system tumours (in individuals aged 60 and above). METHODS We obtained cross-sectional data from the 2021 Global Burden of Disease, Injuries, and Risk Factors Study (GBD) ( https://vizhub.healthdata.org/gbd-results/ ). We assessed the burden of neuroblastoma and peripheral nervous system tumours in the elderly from 1990 to 2021 using indicators such as prevalence and incidence. These indicators were classified by global, national, and regional levels, further stratified by Socio-Demographic Index (SDI), age, and gender. The results are organized by SDI, age, and gender categories. RESULTS From 1990 to 2021, the global age-standardised prevalence and incidence rates of neuroblastoma and peripheral nervous system tumours among the elderly increased from 0.06 (95% UI 0.05, 0.08) and 0.12 (95% UI 0.09, 0.15) per 100,000 to 0.11 (95% UI 0.09, 0.13) and 0.22 (95% UI 0.17, 0.26) per 100,000, respectively. Age-standardised mortality and DALY rates also rose. Central Europe had the highest age-standardised prevalence and incidence rates in 2021, while Eastern Europe had the highest DALY rate. East Asia reported the highest number of total cases and experienced the fastest growth, with significant increases in prevalence, incidence, mortality, and DALY rates. Gender disparities were evident, with elderly men showing higher rates than women, and greater EAPC values indicating a higher increase in disease burden over time. The highest age-specific rates were found in the 90-94 age group, while the 70-74 age group had the highest DALY burden. CONCLUSION The continuous rise in the incidence of neuroblastoma and peripheral nervous system tumours among the elderly highlights a pressing the necessity for focused public health measures and improved treatment approaches. Addressing the regional, gender, and age-related disparities requires a comprehensive approach that integrates medical advancements, social support, and public health policies. Future research should explore potential risk factors and innovative therapies to mitigate this growing global health challenge.
Collapse
Affiliation(s)
- Zihan Ding
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Yun Chen
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Genbo Huang
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Rongbo Liao
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Houting Zhang
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Shifa Zhou
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - XuKai Liu
- Department of Neurosurgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan Province, 412000, People's Republic of China.
| |
Collapse
|
2
|
Park SWS, Fransson S, Sundquist F, Nilsson JN, Grybäck P, Wessman S, Strömgren J, Djos A, Fagman H, Sjögren H, Georgantzi K, Herold N, Kogner P, Granberg D, Gaze MN, Martinsson T, Karlsson K, Stenman JJE. Heterogeneous SSTR2 target expression and a novel KIAA1549:: BRAF fusion clone in a progressive metastatic lesion following 177Lutetium-DOTATATE molecular radiotherapy in neuroblastoma: a case report. Front Oncol 2024; 14:1408729. [PMID: 39324010 PMCID: PMC11422106 DOI: 10.3389/fonc.2024.1408729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease. Upon enrollment, the patient received two rounds of the radiolabeled somatostatin analogue lutetium-177 octreotate (177Lu-DOTATATE), which was well tolerated. A dosimetry analysis revealed a heterogeneous uptake across tumor lesions, resulting in a significant absorbed dose of 54 Gy in the primary tumor, but only 2 Gy at one of the metastatic sites in the distal femur. While the initial treatment response showed disease stabilization, the distal femoral metastasis continued to progress, leading to the eventual death of the patient. A tissue analysis of the biopsies collected throughout the course of the disease revealed heterogeneous drug target expression of somatostatin receptor 2 (SSTR2) across and within tumor lesions. Furthermore, genomic profiling revealed a novel KIAA1549::BRAF fusion oncogene amplification in the distal femoral metastasis at recurrence that might be related with resistance to radiation, possibly through the downregulation of SSTR2. This case report demonstrates a mixed response to molecular radiotherapy (MRT) with 177Lu-DOTATATE. The observed variation in SSTR2 expression between tumor lesions suggests that heterogeneous target expression may have been the reason for treatment failure in this patient's case. Further investigation within the LuDO-N trial will give a more comprehensive understanding of the correlation between SSTR2 expression levels and treatment outcomes, which will be important to advance treatment strategies based on MRT for children with high-risk NB.
Collapse
Affiliation(s)
- Se Whee Sammy Park
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Sundquist
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Strömgren
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tommy Martinsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasper Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob J E Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Nokchan N, Suthapot P, Choochuen P, Khongcharoen N, Hongeng S, Anurathapan U, Surachat K, Sangkhathat S, Thai Pediatric Cancer Atlas Tpca Consortium. Whole-Exome Sequencing Reveals Novel Candidate Driver Mutations and Potential Druggable Mutations in Patients with High-Risk Neuroblastoma. J Pers Med 2024; 14:950. [PMID: 39338204 PMCID: PMC11433071 DOI: 10.3390/jpm14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroblastoma is the most prevalent solid tumor in early childhood, with a 5-year overall survival rate of 40-60% in high-risk cases. Therefore, the identification of novel biomarkers for the diagnosis, prognosis, and therapy of neuroblastoma is crucial for improving the clinical outcomes of these patients. In this study, we conducted the whole-exome sequencing of 48 freshly frozen tumor samples obtained from the Biobank. Somatic variants were identified and selected using a bioinformatics analysis pipeline. The mutational signatures were determined using the Mutalisk online tool. Cancer driver genes and druggable mutations were predicted using the Cancer Genome Interpreter. The most common mutational signature was single base substitution 5. MUC4, MUC16, and FLG were identified as the most frequently mutated genes. Using the Cancer Genome Interpreter, we identified five recurrent cancer driver mutations spanning MUC16, MUC4, ALK, and CTNND1, with the latter being novel and containing a missense mutation, R439C. We also identified 11 putative actionable mutations including NF1 Q1798*, Q2616*, and S636X, ALK F1174L and R1275Q, SETD2 P10L and Q1829E, BRCA1 R612S, NOTCH1 D1670V, ATR S1372L, and FGFR1 N577K. Our findings provide a comprehensive overview of the novel information relevant to the underlying molecular pathogenesis and therapeutic targets of neuroblastoma.
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praewa Suthapot
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthapon Khongcharoen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
4
|
Ek T, Ibrahim RR, Vogt H, Georgantzi K, Träger C, Gaarder J, Djos A, Rahmqvist I, Mellström E, Pujol-Calderón F, Vannas C, Hansson L, Fagman H, Treis D, Fransson S, Österlund T, Chuang TP, Verhoeven BM, Ståhlberg A, Palmer RH, Hallberg B, Martinsson T, Kogner P, Dalin M. Long-Lasting Response to Lorlatinib in Patients with ALK-Driven Relapsed or Refractory Neuroblastoma Monitored with Circulating Tumor DNA Analysis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2553-2564. [PMID: 39177282 PMCID: PMC11440348 DOI: 10.1158/2767-9764.crc-24-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Patients with anaplastic lymphoma kinase (ALK)-driven neuroblastoma may respond to tyrosine kinase inhibitors, but resistance to treatment occurs and methods currently used for detection of residual disease have limited sensitivity. Here, we present a national unselected cohort of five patients with relapsed or refractory ALK-driven neuroblastoma treated with lorlatinib as monotherapy and test the potential of targeted circulating tumor DNA (ctDNA) analysis as a guide for treatment decisions in these patients. We developed a sequencing panel for ultrasensitive detection of ALK mutations associated with neuroblastoma or resistance to tyrosine kinase inhibitors and used it for ctDNA analysis in 83 plasma samples collected longitudinally from the four patients who harbored somatic ALK mutations. All four patients with ALK p.R1275Q experienced major responses and were alive 35 to 61 months after starting lorlatinib. A fifth patient with ALK p.F1174L initially had a partial response but relapsed after 10 months of treatment. In all cases, ctDNA was detected at the start of lorlatinib single-agent treatment and declined gradually, correlating with clinical responses. In the two patients exhibiting relapse, ctDNA increased 9 and 3 months, respectively, before clinical detection of disease progression. In one patient harboring HRAS p.Q61L in the relapsed tumor, retrospective ctDNA analysis showed that the mutation appeared de novo after 8 months of lorlatinib treatment. We conclude that some patients with relapsed or refractory high-risk neuroblastoma show durable responses to lorlatinib as monotherapy, and targeted ctDNA analysis is effective for evaluation of treatment and early detection of relapse in ALK-driven neuroblastoma. SIGNIFICANCE We present five patients with ALK-driven relapsed or refractory neuroblastoma treated with lorlatinib as monotherapy. All patients responded to treatment, and four of them were alive after 3 to 5 years of follow-up. We performed longitudinal ctDNA analysis with ultra-deep sequencing of the ALK tyrosine kinase domain. We conclude that ctDNA analysis may guide treatment decisions in ALK-driven neuroblastoma, also when the disease is undetectable using standard clinical methods.
Collapse
Affiliation(s)
- Torben Ek
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Raghda R. Ibrahim
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Hartmut Vogt
- Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Linköping University, Linköping, Sweden.
| | - Kleopatra Georgantzi
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Catarina Träger
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pediatric Hematology and Oncology, Academic Children’s Hospital, Uppsala, Sweden.
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden.
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ida Rahmqvist
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Elisabeth Mellström
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Fani Pujol-Calderón
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Christoffer Vannas
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Diana Treis
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Ståhlberg
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Dalin
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Chen C, Sun Z, Wang Z, Shin S, Berrios A, Mellors JW, Dimitrov DS, Li W. Identification of a Fully Human Antibody VH Domain Targeting Anaplastic Lymphoma Kinase (ALK) with Applications in ALK-Positive Solid Tumor Immunotherapy. Antibodies (Basel) 2024; 13:39. [PMID: 38804307 PMCID: PMC11130946 DOI: 10.3390/antib13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length antibody including deeper tumor penetration, cost-effective production and fast washout from normal tissues. In this study, we identified a human immunoglobulin heavy chain variable domain (VH domain) (VH20) from an in-house phage library. VH20 exhibits good developability and high specificity with no off-target binding to ~6000 human membrane proteins. VH20 efficiently bound to the glycine-rich region of ALK with an EC50 of 0.4 nM and a KD of 6.54 nM. Both VH20-based bispecific T cell engager (TCE) and chimeric antigen receptor T cells (CAR Ts) exhibited potent cytolytic activity to ALK-expressing tumor cells in an ALK-dependent manner. VH20 CAR Ts specifically secreted proinflammatory cytokines including IL-2, TNFα and IFNγ after incubation with ALK-positive cells. To our knowledge, this is the first reported human single-domain antibody against ALK. Our in vitro characterization data indicate that VH20 could be a promising ALK-targeting sdAb with potential applications in ALK-expressing tumors, including neuroblastoma (NBL) and non-small cell lung cancer.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Seungmin Shin
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Abigail Berrios
- Department of Biological Sciences, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA;
| | - John W. Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA; (C.C.); (Z.S.); (S.S.); (J.W.M.)
| |
Collapse
|
6
|
Li S, Liu J, Wang G, Feng L, Yang X, Kan Y, Wang W, Yang J. Predictive value of 2-deoxy-2-fluorine-18-fluoro-D-glucose positron emission tomography/computed tomography parameters for MYCN amplification in high-risk neuroblastoma. Eur J Radiol 2024; 170:111243. [PMID: 38043380 DOI: 10.1016/j.ejrad.2023.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES To investigate the predictive value of 2-deoxy-2-fluorine-18-fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) parameters for MYCN amplification in high-risk neuroblastoma (HR-NB). MATERIALS AND METHODS A retrospective analysis was performed by reviewing 68 HR-NB patients who underwent MYCN testing and 18F-FDG PET/CT imaging at our hospital between January 2018 and December 2019. Based on the results of MYCN testing, patients were categorized into either the MYCN-amplified (MNA) or MYCN non-amplified (MYCN-NA) group. The 18F-FDG PET/CT parameters, including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), peak standardized uptake value (SUVpeak), tumor metabolic volume (MTV), total lesion glycolysis (TLG), coefficient of variation (COV), and areas under the curve of cumulative SUV-volume histogram index (AUC-CSH index) were evaluated. Independent predictors were identified through univariate and multivariate logistic regression analyses, and their diagnostic performance was evaluated using the receiver-operating characteristic (ROC) curve. RESULTS Univariate logistic regression analysis revealed that SUVpeak was significantly associated with MYCN amplification. Multivariate logistic regression analysis showed that SUVpeak was an independent predictor of MYCN amplification in HR-NB [Odds ratio (OR) = 0.673, 95 % confidence interval (95 % CI): 0.494-0.917, P = 0.012]. ROC curve analysis demonstrated that the predictive model including SUVpeak had higher diagnostic performance [area under the curve (AUC): 0.790, 95 % CI: 0.677-0.881, sensitivity: 0.861, specificity: 0.591, positive predictive value (PPV): 0.820, negative predictive value (NPV): 0.722] compared to using SUVpeak alone (AUC: 0.640, 95 % CI: 0.514-0.752, sensitivity: 0.630, specificity: 0.682, PPV: 0.806, NPV: 0.469). CONCLUSION SUVpeak can predict the MYCN amplification in HR-NB patients. The predictive model constructed by combining SUVpeak and age can distinguish MYCN status in HR-NB non-invasively with superior efficacy compared to using SUVpeak alone.
Collapse
Affiliation(s)
- Siqi Li
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China
| | - Jun Liu
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China
| | - Guanyun Wang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China
| | - Lijuan Feng
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China.
| | - Xu Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China
| | - Ying Kan
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China.
| | - Wei Wang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
7
|
Phan TDA, Nguyen TQ, To NT, Thanh TL, Ngo DQ. Immunohistochemical expression of anaplastic lymphoma kinase in neuroblastoma and its relations with some clinical and histopathological features. J Pathol Transl Med 2024; 58:29-34. [PMID: 38229432 DOI: 10.4132/jptm.2023.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) mutations have been identified as a prominent cause of some familial and sporadic neuroblastoma (NB). ALK expression in NB and its relationship with clinical and histopathological features remains controversial. This study investigated ALK expression and its potential relations with these features in NB. METHODS Ninety cases of NB at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam from 01/01/2018 to 12/31/2021, were immunohistochemically stained with ALK (D5F3) antibody. The ALK expression and its relations with some clinical and histopathological features were investigated. RESULTS The rate of ALK expression in NB was 91.1%. High ALK expression (over 50% of tumor cells were positive with moderate-strong intensity) accounted for 65.6%, and low ALK expression accounted for 34.4%. All the MYCN-amplified NB patients had ALK immunohistochemistry positivity, most cases had high ALK protein expression. The undifferentiated subtype of NB had a lower ALK-positive rate than the poorly differentiated and differentiated subtype. The percentages of ALK positivity were significantly higher in more differentiated histological types of NB (p = .024). There was no relation between ALK expression and: age group, sex, primary tumor location, tumor stage, MYCN status, clinical risk, Mitotic-Karyorrhectic Index, prognostic group, necrosis, and calcification. CONCLUSIONS ALK was highly expressed in NB. ALK expression was not related to several clinical and histopathological features. More studies are needed to elucidate the association between ALK expression and ALK gene status and to investigate disease progression, especially the oncogenesis of ALK-positive NB.
Collapse
Affiliation(s)
- Thu Dang Anh Phan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Quyen Nguyen
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nhi Thuy To
- Department of Oncology-Hematology, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Thien Ly Thanh
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dat Quoc Ngo
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Balasundaram A, C Doss GP. Comparative Atomistic Insights on Apo and ATP-I1171N/S/T in Nonsmall-Cell Lung Cancer. ACS OMEGA 2023; 8:43856-43872. [PMID: 38027370 PMCID: PMC10666221 DOI: 10.1021/acsomega.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements occur in about 5% of nonsmall cell lung cancer (NSCLC) patients. Despite being first recognized as EML4-ALK, fusions with several additional genes have been identified, all of which cause constitutive activation of the ALK kinase and subsequently lead to tumor development. ALK inhibitors first-line crizotinib, second-line ceritinib, and alectinib are effective against NSCLC patients with these rearrangements. Patients progressing on crizotinib had various mutations in the ALK kinase domain. ALK fusion proteins are activated by oligomerization through the fusion partner, which leads to the autophosphorylation of the kinase's domain and consequent downstream activation. The proposed computational study focuses on understanding the activation mechanism of ALK and ATP binding of wild-type (WT) and I1171N/S/T mutations. We analyzed the conformational change of ALK I1171N/S/T mutations and ATP binding using molecular docking and molecular dynamics simulation approaches. According to principal component analysis and free energy landscape, it is clear that I1171N/S/T mutations in Apo and ATP showed different energy minima/unstable structures compared to WT-Apo. The results revealed that I1171N/S/T mutations and ATP binding significantly supported a change toward an active-state conformation, whereas WT-Apo remained inactive. We demonstrated that I1171N/S/T mutations are persistent in an active state and independent of ATP. The I1171S/T mutations showed greater intermolecular H-bonds with ATP than WT-ATP. The molecular mechanics Poisson-Boltzmann surface area analysis revealed that the I1171N/S/T mutation binding energy was similar to that of WT-ATP. This study shows that I1171N/S/T can form stable bonds with ATP and may contribute to a constitutively active kinase. Based on the Y1278-C1097 H-bond and E1167-K1150 salt bridge interaction, I1171N strongly promotes the constitutively active kinase independent of ATP. This structural mechanism study will aid in understanding the oncogenic activity of ALK and the basis for improving the ALK inhibitors.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Ceci A, Conte R, Didio A, Landi A, Ruggieri L, Giannuzzi V, Bonifazi F. Target therapy for high-risk neuroblastoma treatment: integration of regulatory and scientific tools is needed. Front Med (Lausanne) 2023; 10:1113460. [PMID: 37521350 PMCID: PMC10377668 DOI: 10.3389/fmed.2023.1113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Several new active substances (ASs) targeting neuroblastoma (NBL) are under study. We aim to describe the developmental and regulatory status of a sample of ASs targeting NBL to underline the existing regulatory gaps in product development and to discuss possible improvements. Methods The developmental and regulatory statuses of the identified ASs targeting NBL were investigated by searching for preclinical studies, clinical trials (CTs), marketing authorizations, pediatric investigation plans (PIPs), waivers, orphan designations, and other regulatory procedures. Results A total of 188 ASs were identified. Of these, 55 were considered 'not under development' without preclinical or clinical studies. Preclinical studies were found for 115 ASs, of which 54 were associated with a medicinal product. A total of 283 CTs (as monotherapy or in combination) were identified for 70 ASs. Of these, 52% were at phases 1, 1/2, and 2 aimed at PK/PD/dosing activity. The remaining ones also included efficacy. Phase 3 studies were limited. Studies were completed for 14 ASs and suspended for 11. The highest rate of ASs involved in CTs was observed in the RAS-MAPK-MEK and VEGF groups. A total of 37 ASs were granted with a PIP, of which 14 involved NBL, 41 ASs with a waiver, and 18 ASs with both PIPs and waivers, with the PIP covering pediatric indications different from the adult ones. In almost all the PIPs, preclinical studies were required, together with early-phase CTs often including efficacy evaluation. Two PIPs were terminated because of negative study results, and eight PIPs are in progress. Variations in the SmPC were made for larotrectinib sulfate/Vitrakvi® and entrectinib/Rozlytrek® with the inclusion of a new indication. For both, the related PIPs are still ongoing. The orphan designation has been largely adopted, while PRIME designation has been less implemented. Discussion Several ASs entered early phase CTs but less than one out of four were included in a regulatory process, and only two were granted a pediatric indication extension. Our results confirm that it is necessary to identify a more efficient, less costly, and time-consuming "pediatric developmental model" integrating predictive preclinical study and innovative clinical study designs. Furthermore, stricter integration between scientific and regulatory efforts should be promoted.
Collapse
Affiliation(s)
- Adriana Ceci
- Research Department, Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Niimura T, Miyata K, Hamano H, Nounin Y, Unten H, Yoshino M, Mitsuboshi S, Aizawa F, Yagi K, Koyama T, Goda M, Kanda Y, Izawa-Ishizawa Y, Zamami Y, Ishizawa K. Cardiovascular Toxicities Associated with Anaplastic Lymphoma Kinase Inhibitors: A Disproportionality Analysis of the WHO Pharmacovigilance Database (VigiBase). Drug Saf 2023; 46:545-552. [PMID: 37106270 DOI: 10.1007/s40264-023-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Recently, cases of cardiovascular toxicities, such as pericarditis, caused by anaplastic lymphoma kinase (ALK) inhibitors have been reported; however, whether these adverse events are common among all ALK inhibitors remains unclear. AIMS This study aimed to clarify the cardiovascular toxicity profile of ALK inhibitors using an adverse event spontaneous report database. METHODS We analyzed data from VigiBase, the WHO global database of individual safety reports, from its inception in 1968 to December 2021. We calculated the reporting odds ratio to evaluate the association between ALK inhibitors (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib) and 21 cardiovascular adverse events. Time to onset of pericarditis from ALK inhibitor administration was analyzed. RESULTS Of the 27,994,584 reports, 19,911 involved treatment with ALK inhibitors. Among the 21 cardiovascular toxicities, only pericarditis signals were detected with all five ALK inhibitors (crizotinib [reporting odds ratios (ROR), 4.7; 95% CI 3.63-6.15], ceritinib [ROR, 12.9; 95% CI 9.37-17.79], alectinib [ROR, 4.8; 95% CI 3.15-7.42], brigatinib [ROR, 3.5; 95% CI 1.33-9.46], and lorlatinib [ROR, 6.4; 95% CI 3.60-11.22]). For torsade de pointes/QT prolongation, signals were detected with crizotinib (ROR, 5.0; 95% CI 3.72-6.77) and ceritinib (ROR, 4.2; 95% CI 2.17-8.05), whereas for hypertension, they were identified only with brigatinib (ROR, 3.9; 95% CI 2.88-5.20), and for heart failure, they were detected with alectinib (ROR, 2.2; 95% CI 1.60-2.90), crizotinib (ROR, 2.1; 95% CI 1.72-2.48), and lorlatinib (ROR, 2.0; 95% CI 1.27-3.23). Regarding time-to-onset analysis from drug administration to adverse event reporting, for pericarditis, it ranged from 52.5 days for alectinib to 166.5 days for crizotinib. CONCLUSIONS Systematic evaluation of ALK inhibitor-associated adverse events revealed differences in the cardiotoxicity profiles among ALK inhibitors. Understanding the differences in the cardiovascular toxicity profile of each ALK inhibitor will contribute to safe drug therapy when switching between ALK inhibitors.
Collapse
Affiliation(s)
- Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan.
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hirofumi Hamano
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Yuuki Nounin
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroto Unten
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Masaki Yoshino
- Department of Pharmacy, Niigata Prefectural Cancer Center Hospital, Niigata, Japan
| | | | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Toshihiro Koyama
- Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of General Medicine, Taoka Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
11
|
Sunga CGG, Higgins MS, Ricciotti RW, Liu YJ, Cranmer LD. Inflammatory myofibroblastic tumor of the mesentery with a SQSTM1::ALK fusion responding to alectinib. Cancer Rep (Hoboken) 2023; 6:e1792. [PMID: 36754839 PMCID: PMC10026288 DOI: 10.1002/cnr2.1792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Inflammatory myofibroblastic tumor (IMT) is an ultra-rare soft tissue neoplasm associated with fusion proteins encompassing the anaplastic lymphoma kinase (ALK) protein fused to a variety of partner proteins. Data regarding response to ALK-targeting agents based on fusion partner is limited. CASE A 30-year-old female sought emergency care after onset of abdominal and lower back pain in 2019. Computed tomography (CT) demonstrated a cystic, mesenteric mass within the pelvis measuring up to 8.9 cm. Complete laparoscopic excision of the mass from the mesentery of the right colon and terminal ileum was performed. Pathologic assessment revealed IMT with a fusion between sequestosome 1 and ALK (SQSTM1::ALK), described in only two other cases of IMT. Four months after surgery, CT revealed multi-focal, unresectable disease recurrence. She was referred to the University of Washington/Fred Hutchinson Cancer Center and placed on therapy with alectinib, after which she experienced a partial response. Three years after IMT recurrence, disease remains under control. CONCLUSION This is the third reported case of IMT associated with the novel SQSTM1::ALK fusion protein, and the second treated with alectinib. Treatment with the ALK inhibitor alectinib appears to be active in this setting.
Collapse
Affiliation(s)
- Cass G G Sunga
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael S Higgins
- PeaceHealth Department of General and Colorectal Surgery, Bellingham, Washington, USA
| | - Robert W Ricciotti
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lee D Cranmer
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
12
|
Pastorino F, Capasso M, Brignole C, Lasorsa VA, Bensa V, Perri P, Cantalupo S, Giglio S, Provenzi M, Rabusin M, Pota E, Cellini M, Tondo A, De Ioris MA, Sementa AR, Garaventa A, Ponzoni M, Amoroso L. Therapeutic Targeting of ALK in Neuroblastoma: Experience of Italian Precision Medicine in Pediatric Oncology. Cancers (Basel) 2023; 15:cancers15030560. [PMID: 36765519 PMCID: PMC9913103 DOI: 10.3390/cancers15030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Patients with relapsed/refractory disease have a poor prognosis, and additional therapeutic options are needed. Mutations and amplifications in the ALK (Anaplastic Lymphoma Kinase) gene constitute a key target for treatment. Our goal, within the Italian project of PeRsonalizEdMEdicine (PREME), was to evaluate the genomic status of patients with relapsed/refractory NB and to implement targeted therapies in those with targetable mutations. From November 2018 to November 2021, we performed Whole Exome Sequencing or Targeted Gene Panel Sequencing in relapsed/refractory NB patients in order to identify druggable variants. Activating mutations of ALK were identified in 8(28.57%) of 28 relapsed/refractory NB patients. The mutation p.F1174L was found in six patients, whereas p.R1275Q was found in one and the unknown mutation p.S104R in another. Three patients died before treatment could be started, while five patients received crizotinib: two in monotherapy (one with p.F1174L and the other with p.S104R) and three (with p.F1174L variant) in combination with chemotherapy. All treated patients showed a clinical improvement, and one had complete remission after two cycles of combined treatment. The most common treatment-related toxicities were hematological. ALK inhibitors may play an important role in the treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Fabio Pastorino
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Chiara Brignole
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Vito A. Lasorsa
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Veronica Bensa
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Perri
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Serena Giglio
- UO Pediatria-Neonatologia/Nido PO A. Ajello ASP Trapani, 91100 Trapani, Italy
| | - Massimo Provenzi
- Pediatric Oncology, Ospedale Papa Giovanni XXIII, Piazza Organizzazione Mondiale Sanità 1, 24127 Bergamo, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Elvira Pota
- UOSD di Ematologia ed Oncologia Pediatrica, Università Degli Studi Della Campania “Luigi Vanvitelli,” Piazza Luigi Miraglia 2, 80138 Napoli, Italy
| | - Monica Cellini
- Division of Paediatric Hemato-Oncology, University Hospital Azienda Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy
| | - Annalisa Tondo
- Department of Hematology-Oncology, Anna Meyer Children’s Hospital, VialePieraccini 24, 50139 Firenze, Italy
| | - Maria A. De Ioris
- Department of Paediatric Haematology/Oncology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela R. Sementa
- Dipartimento di Patologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alberto Garaventa
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Mirco Ponzoni
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363539; Fax: +39-0103779820
| | - Loredana Amoroso
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
13
|
Hopes on immunotherapy targeting B7-H3 in neuroblastoma. Transl Oncol 2022; 27:101580. [PMID: 36327699 PMCID: PMC9636568 DOI: 10.1016/j.tranon.2022.101580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma is one of the most aggressive cancer forms in children, with highly heterogenous clinical manifestations ranging from spontaneous regression to high metastatic capacity. High-risk neuroblastoma has the highest mortality rates of all pediatric cancers, highlighting the urgent need for effective novel therapeutic interventions. B7-H3 immune checkpoint protein is highly expressed in neuroblastoma, and it is involved in oncogenic signaling, tumor cell plasticity, and drug resistance. Immunotherapies based on immune checkpoint inhibition have improved patient survival in several human cancers, and recent reports provide preclinical evidence on the benefits of targeting B7-H3 in neuroblastoma, with emphasis on novel CAR T/NK-cell approaches. Here, we summarize the current status of neuroblastoma targeted therapies, with a focus on B7-H3 as a promising novel immunoregulatory therapeutic target for high-risk neuroblastoma.
Collapse
|
14
|
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149:276149. [DOI: 10.1242/dev.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.
Collapse
Affiliation(s)
- Sandra Guadalupe Gonzalez Malagon
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus 1 , 45115 Ioannina , Greece
- School of Health Sciences and Institute of Biosciences, University Research Centre, University of Ioannina 2 Department of Biological Applications and Technology , , 45110 Ioannina , Greece
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London 3 , London SE1 9RT , UK
| |
Collapse
|
15
|
Chilamakuri R, Rouse DC, Yu Y, Kabir AS, Muth A, Yang J, Lipton JM, Agarwal S. BX-795 inhibits neuroblastoma growth and enhances sensitivity towards chemotherapy. Transl Oncol 2021; 15:101272. [PMID: 34823094 PMCID: PMC8626612 DOI: 10.1016/j.tranon.2021.101272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
AKT overexpression correlates with poor prognosis in neuroblastoma patients. BX-795 inhibits PDK1 and abrogates the AKT signaling pathway activation. BX-795 demonstrates strong efficacy in neuroblastoma spheroid tumor model. Combination with BX-795 synergistically enhances doxorubicin antitumor activity. BX-795 synergistically sensitized ALK mutated neuroblastoma cell lines to crizotinib.
High-risk neuroblastoma (NB) represents a major clinical challenge in pediatric oncology due to relapse of metastatic, drug-resistant disease, and treatment-related toxicities. An analysis of 1235 primary NB patient dataset revealed significant increase in AKT1 and AKT2 gene expression with cancer stage progression. Additionally, Both AKT1 and AKT2 expression inversely correlate with poor overall survival of NB patients. AKT1 and AKT2 genes code for AKT that drive a major oncogenic cell signaling pathway known in many cancers, including NB. To inhibit AKT pathway, we repurposed an antiviral inhibitor BX-795 that inhibits PDK1, an upstream activator of AKT. BX-795 potently inhibits NB cell proliferation and colony growth in a dose-dependent manner. BX-795 significantly enhances apoptosis and blocks cell cycle progression at mitosis phase in NB. Additionally, BX-795 potently inhibits tumor formation and growth in a NB spheroid tumor model. We further tested dual therapeutic approaches by combining BX-795 with either doxorubicin or crizotinib and found synergistic and significant inhibition of NB growth, in contrast to either drug alone. Overall, our data demonstrate that BX-795 inhibits AKT pathway to inhibit NB growth, and combining BX-795 with current therapies is an effective and clinically tractable therapeutic approach for NB.
Collapse
Affiliation(s)
- Rameswari Chilamakuri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Danielle C Rouse
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abbas S Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffery M Lipton
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, USA
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA.
| |
Collapse
|