1
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Nagaraj S, Narayan S. Protective effect of histatin 5 and amphotericin B conjugated nanostructures in C. albicans challenged Swiss albino mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03997-0. [PMID: 40088334 DOI: 10.1007/s00210-025-03997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
This study explores the development of silica-gold nanostructures conjugated with histatin 5 (H5) and amphotericin B (AmpB) for the management of Candida albicans-induced candidiasis. H5 and AmpB were covalently attached to the silica-gold nanostructures (ASinp-GN) using EDC-NHS chemistry, with fluorescent FITC labeling employed in a parallel experiment to study nanostructure localization. Characterization techniques, including UV-Vis spectroscopy, dynamic light scattering, zeta potential analysis, fluorescence spectroscopy, differential scanning calorimetry, thermogravimetric analysis, high-resolution transmission electron microscopy, atomic force microscopy, and drug release studies, confirmed the successful conjugation and stability of the nanostructures. Biological evaluations using C. albicans demonstrated a minimum inhibitory concentration (MIC50) of 5.42 μM for AmpB in the nanostructures, along with enhanced localization as observed via fluorescence microscopy. The nanostructures effectively inhibited biofilm formation and showed high biocompatibility in hemolysis and MTT assays. In vivo studies using a disseminated candidiasis model in Swiss albino mice revealed significant therapeutic efficacy, evidenced by reduced C. albicans burden, decreased AmpB toxicity, improved heart function, and preserved tissue integrity. These results highlight the role of H5 conjugation in targeted drug delivery, enhancing the therapeutic potential of AmpB while minimizing adverse effects, making it a promising approach for candidiasis management. However, a detailed pharmacokinetic investigation on the use of these nanostructures is warranted before taking this to the clinical side.
Collapse
Affiliation(s)
- Saraswathi Nagaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Fu J, Yu L, Wang Z, Chen H, Zhang S, Zhou H. Advances in controlled release drug delivery systems based on nanomaterials in lung cancer therapy: A review. Medicine (Baltimore) 2025; 104:e41415. [PMID: 39928802 PMCID: PMC11813027 DOI: 10.1097/md.0000000000041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest morbidity and mortality rates. Currently, significant progress has been made in the treatment of lung cancer, which has effectively improved the overall prognosis of patients, but there are still many problems, such as tumor recurrence, drug resistance, and serious complications. With the rapid development of nanotechnology in the field of medicine, it breaks through the inherent limitations of traditional cancer treatments and shows great potential in tumor treatment. To address the drawbacks of traditional therapeutic means, nanodrug delivery systems can release drugs under specific conditions, thus realizing tumor-targeted drug delivery, which improves the antitumor effect of drugs. In this paper, we review the current treatments for lung cancer and further discuss the advantages and common carriers of nanodrug delivery systems. We also summarize the latest research progress of nanotargeted drug delivery systems in the field of lung cancer therapy, discuss the problems faced in their clinical translation, and look forward to future development opportunities and directions.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Chavda VP, Bojarska J. Peptides on patrol: Carrier systems for targeted delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:129-161. [PMID: 40122644 DOI: 10.1016/bs.pmbts.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The peptide is a small unit of protein that exhibits a diverse range of therapeutic applications, including but not limited to respiratory, inflammatory, oncologic, metabolic and neurological disorders. Peptides also play a significant role in signal transduction in cells. This chapter focuses on the delivery of peptides through the utilization of various carrier molecules, including liposomes, micelles, polymeric nanoparticles, and inorganic materials. These carriers facilitate targeted delivery and site-specific delivery of peptides. Different nanocarriers and therapeutic drug molecules also help with the delivery of peptides. Application to various diseases and different routes of delivery are described in this manuscript, along with current limitations and future prospects.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical, University of Lodz, Zeromskiego St., Lodz, Poland
| |
Collapse
|
5
|
Shen Y, Cai R, Wu L, Han K, Yang Y, Mao D. Programmable Intelligent DNA Nanoreactors (iDNRs) for in vivo Tumor Diagnosis and Therapy. ChemMedChem 2025; 20:e202400531. [PMID: 39377119 DOI: 10.1002/cmdc.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
With the rapid advancement of DNA technology, intelligent DNA nanoreactors (iDNRs) have emerged as sophisticated tools that harness the structural versatility and programmability of DNA. Due to their structural and functional programmability, iDNRs play an important and unique role in in vivo tumor diagnosis and therapy. This review provides an overview of the structural design methods for iDNRs based on advanced DNA technology, including enzymatic reaction-mediated and enzyme-free strategies. This review also focuses on how iDNRs achieve intelligence through functional design, as well as the applications of iDNRs for in vivo tumor diagnosis and therapy. In summary, this review summarizes current advances in iDNRs technology, discusses existing challenges, and proposes future directions for expanding their applications, which are expected to provide insights into the development of the field of in vivo tumor diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Ying Shen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rongkai Cai
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Liang Wu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, P. R. China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Dongsheng Mao
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
6
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Gaurav I, Thakur A, Zhang K, Thakur S, Hu X, Xu Z, Kumar G, Jaganathan R, Iyaswamy A, Li M, Zhang G, Yang Z. Peptide-Conjugated Vascular Endothelial Extracellular Vesicles Encapsulating Vinorelbine for Lung Cancer Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1669. [PMID: 39453005 PMCID: PMC11510406 DOI: 10.3390/nano14201669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is one of the major cancer types and poses challenges in its treatment, including lack of specificity and harm to healthy cells. Nanoparticle-based drug delivery systems (NDDSs) show promise in overcoming these challenges. While conventional NDDSs have drawbacks, such as immune response and capture by the reticuloendothelial system (RES), extracellular vesicles (EVs) present a potential solution. EVs, which are naturally released from cells, can evade the RES without surface modification and with minimal toxicity to healthy cells. This makes them a promising candidate for developing a lung-cancer-targeting drug delivery system. EVs isolated from vascular endothelial cells, such as human umbilical endothelial-cell-derived EVs (HUVEC-EVs), have shown anti-angiogenic activity in a lung cancer mouse model; therefore, in this study, HUVEC-EVs were chosen as a carrier for drug delivery. To achieve lung-cancer-specific targeting, HUVEC-EVs were engineered to be decorated with GE11 peptides (GE11-HUVEC-EVs) via a postinsertional technique to target the epidermal growth factor receptor (EGFR) that is overexpressed on the surface of lung cancer cells. The GE11-HUVEC-EVs were loaded with vinorelbine (GE11-HUVEC-EVs-Vin), and then characterized and evaluated in in vitro and in vivo lung cancer models. Further, we examined the binding affinity of ABCB1, encoding P-glycoprotein, which plays a crucial role in chemoresistance via the efflux of the drug. Our results indicate that GE11-HUVEC-EVs-Vin effectively showed tumoricidal effects against cell and mouse models of lung cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
| | - Abhimanyu Thakur
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi 110017, India
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410017, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410017, China
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Ravindran Jaganathan
- Preclinical Department, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh 30450, Malaysia
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
| |
Collapse
|
8
|
Tosto R, Zimbone S, Sabatino G, Di Natale G, Laura Giuffrida M, Flora Tomasello M, Lanzanò L, Campagna T, Covaceuszach S, Vecchio G, Pappalardo G. A Spectroscopic Study on the Amyloid-β Interaction with Clicked Peptide-Porphyrin Conjugates: a Vision Toward the Detection of Aβ Peptides in Aqueous Solution. Chembiochem 2024:e202400431. [PMID: 39382238 DOI: 10.1002/cbic.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial form of dementia mainly affecting people in the elderly, but no effective cure is available. According to the amyloid hypothesis the aggregation of Amyloid-β (Aβ) into oligomeric toxic species is believed to concur with the onset and progression of the disease heavily. By using a click chemistry approach, we conjugated a suitable designed peptide sequence to a metalloporphyrin moiety to obtain three hybrid peptide systems to be studied for their interaction with Amyloid-β peptides. The aim is to get new tools for the diagnosis and therapy in AD. The results described in this study, which were obtained through spectroscopic techniques (UV-Vis, CD, bis-Ans and intrinsic porphyrin Fluorescence), Microfluidics (GCI) and cell biology (MTT, Live cell imaging and flow cytometry), reveal interesting features about the structure-activity relationships connecting these conjugates with the interaction with Aβ, as well as on their potential use as sensing systems. In our opinion the data reported in this paper make the porphyrin-peptide conjugates highly compelling for further exploration as spectroscopic probes to detect Aβ biomarkers in biological fluids.
Collapse
Affiliation(s)
- Rita Tosto
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
- International PhD School of Chemical Sciences, Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Giuseppina Sabatino
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Giuseppe Di Natale
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Marianna Flora Tomasello
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy
| | - Tiziana Campagna
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Strada Statale 14 Km 16.5, 1434149, Basovizza (TS), Italy
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Institute of Crystallography, National Research Council, Via Paolo Gaifami 18, 95126, Catania, Italy
| |
Collapse
|
9
|
De K, Tanbir SKE, Sinha S, Mukhopadhyay S. Lipid-Based Nanocarrier by Targeting with LHRH Peptide: A Promising Approach for Prostate Cancer Radio-Imaging and Therapy. Mol Pharm 2024; 21:4128-4146. [PMID: 38920398 DOI: 10.1021/acs.molpharmaceut.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized. D-P-HLH-coated and anticancer drug doxorubicin (DX)-loaded solid lipid nanoparticles (F-DX-SLN) were formulated by the cold homogenization technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, dynamic light scattering, electron microscopy, entrapment efficiency, and drug-release profile studies. F-DX-SLN allows site-specific DX delivery by reducing the side effects of chemotherapy. Cancer cells could precisely take up F-DX-SLN by targeting specific receptors, boosting the cytotoxicity at the tumor site. The efficacy of F-DX-SLN on PC3/SKBR3 cells by the MTT assay revealed that F-DX-SLN was more cytotoxic than DX and/or DX-SLN. Flow cytometry and confocal microscopic studies further support F-DX-SLNs' increased intracellular absorption capability in targeting LHRH overexpressed cancer cells. F-DX-SLN ensured high apoptotic potential, noticeably larger mitochondrial transmembrane depolarization action, as well as the activation of caspases, a longer half-life, and greater plasma concentration. F-DX-SLN/DX-SLN was radiolabeled with technetium-99m; scintigraphic imaging studies established its tumor selectivity in PC3 tumor-bearing nude mice. The efficacy of the formulations in cancer treatment, in vivo therapeutic efficacy tests, and histopathological studies were also conducted. Results clearly indicate that F-DX-SLN exhibits sustained and superior targeted administration of anticancer drugs, thus opening up the possibility of a drug delivery system with precise control and targeting effects. F-DX-SLN could also provide a nanotheranostic approach with improved efficacy for prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - S K Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| |
Collapse
|
10
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. REVIEW APPROACH Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. KEY RESULTS The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. CONCLUSION This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Liu J, Lin C, Wu M, Wang Y, Chen S, Yang T, Xie C, Kong Y, Wu W, Wang J, Ma X, Teng C. Co-delivery of indomethacin and uricase as a new strategy for inflammatory diseases associated with high uric acid. Drug Deliv Transl Res 2024; 14:1820-1838. [PMID: 38127247 DOI: 10.1007/s13346-023-01487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Uric acid is the final metabolite in humans. High level of uric acid chronically induces urate deposition, aggravates kidney damage, and concomitantly causes an increase in inflammatory factors. Alleviating acute inflammation and decreasing uric acid levels are the key points in the treatment of inflammatory diseases associated with high uric acid. However, a drug delivery system that combines anti-inflammatory and uric acid reduction functions at the same time remains a challenge to be settled. Here, we designed a nanocrystal-based co-delivery platform, IND Nplex, characterized by loading of indomethacin (IND) and uricase. Compared with free IND or uricase, IND Nplex possessed a better anti-inflammatory effect by restraining the release of inflammation-related factors in vitro. In addition, pharmacokinetic and biodistribution studies revealed that IND Nplex significantly prolonged the retention time in vivo and was more concentrated in the kidney. In acute gouty arthritis model rats, IND Nplex markedly relieved ankle joint swelling and mitigated synovial inflammation. In acute kidney injury model rats, IND Nplex indicated better biocompatibility and significant amelioration of renal fibrosis. Moreover, IND Nplex showed the effect of anti-inflammatory and improved renal function via determination of inflammatory factors and biochemical markers in the serum and kidney. In conclusion, these results indicate that IND Nplex exerts anti-inflammatory activity and uric acid-lowering effect and could become a promising candidate for the treatment of uric acid-related diseases.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Wu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Yingjie Wang
- Center for Translational Imaging, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Shenyu Chen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Taiwang Yang
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Chenlu Xie
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Yue Kong
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Wenliang Wu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jiaping Wang
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Xiaonan Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Ma B, Liu D, Wang Z, Zhang D, Jian Y, Zhang K, Zhou T, Gao Y, Fan Y, Ma J, Gao Y, Chen Y, Chen S, Liu J, Li X, Li L. A Top-Down Design Approach for Generating a Peptide PROTAC Drug Targeting Androgen Receptor for Androgenetic Alopecia Therapy. J Med Chem 2024; 67:10336-10349. [PMID: 38836467 DOI: 10.1021/acs.jmedchem.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
While large-scale artificial intelligence (AI) models for protein structure prediction and design are advancing rapidly, the translation of deep learning models for practical macromolecular drug development remains limited. This investigation aims to bridge this gap by combining cutting-edge methodologies to create a novel peptide-based PROTAC drug development paradigm. Using ProteinMPNN and RFdiffusion, we identified binding peptides for androgen receptor (AR) and Von Hippel-Lindau (VHL), followed by computational modeling with Alphafold2-multimer and ZDOCK to predict spatial interrelationships. Experimental validation confirmed the designed peptide's binding ability to AR and VHL. Transdermal microneedle patching technology was seamlessly integrated for the peptide PROTAC drug delivery in androgenic alopecia treatment. In summary, our approach provides a generic method for generating peptide PROTACs and offers a practical application for designing potential therapeutic drugs for androgenetic alopecia. This showcases the potential of interdisciplinary approaches in advancing drug development and personalized medicine.
Collapse
Affiliation(s)
- Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Donghua Liu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Dize Zhang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianyang Zhou
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yibo Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Si Chen
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Yang P, Xu Y, Zhi X, Li R, Wang B, Liu R, Dai Z, Qian L. Photodynamically Tumor Vessel Destruction Amplified Tumor Targeting of Nanoparticles for Efficient Chemotherapy. ACS NANO 2024; 18:12933-12944. [PMID: 38712906 DOI: 10.1021/acsnano.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Efficient tumor-targeted drug delivery is still a challenging and currently unbreakable bottleneck in chemotherapy for tumors. Nanomedicines based on passive or active targeting strategy have not yet achieved convincing chemotherapeutic benefits in the clinic due to the tumor heterogeneity. Inspired by the efficient inflammatory-cell recruitment to acute clots, we constructed a two-component nanosystem, which is composed of an RGD-modified pyropheophorbide-a (Ppa) micelle (PPRM) that mediates the tumor vascular-targeted photodynamic reaction to activate local coagulation and subsequently transmits the coagulation signals to the circulating clot-targeted CREKA peptide-modified camptothecin (CPT)-loaded nanodiscs (CCNDs) for amplifying tumor targeting. PPRM could effectively bind with the tumor vasculature and induce sufficient local thrombus by a photodynamic reaction. Local photodynamic reaction-induced tumor target amplification greatly increased the tumor accumulation of CCND by 4.2 times, thus significantly enhancing the chemotherapeutic efficacy in the 4T1 breast tumor model. In other words, this study provides a powerful platform to amplify tumor-specific drug delivery by taking advantage of the efficient crosstalk between the PPRM-activated coagulation cascade and clot-targeted CCND.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Xin Zhi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Bo Wang
- Cancer Hospital Chinese Academy of Medical Sciences, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
14
|
Chen J, Mei Q, Wang L, Wei Y. DEFB114 protein enhances host resistance to fungal infection through the NOD1/2-ATG16L1-NF-κB signaling pathway. Bioorg Chem 2024; 146:107245. [PMID: 38484587 DOI: 10.1016/j.bioorg.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/13/2024]
Abstract
The overuse of antibiotics has led to the enhanced resistance of many pathogenic bacteria, posing a threat to human health. Therefore, there is a need to develop green and safe alternatives to antibiotics. Beta-defensins play a crucial role in host defense against pathogens and have multifunctional properties, exerting key roles in innate and adaptive immunity, as well as non-immune processes. In this study, a 210 bp long cDNA sequence of yak DEFB114 gene was amplified and successfully expressed in a prokaryotic system. The DEFB114 protein exhibited significant inhibitory effects on the growth of Aspergillus fumigatus in vitro. When co-cultured with yak macrophages, DEFB114 protein enhanced macrophage phagocytic activity and increased nucleic acid fluorescence intensity (P < 0.05). DEFB114 protein also enhanced the activity of yak macrophages stimulated by inactivated Aspergillus fumigatus spores, increased the release of nitric oxide (NO), and promoted the expression of genes such as γ-actin, Lgals, Man2b, and Capg (P < 0.05). In mice experiments, DEFB114 protein promoted resistance against Aspergillus fumigatus infection, by regulating the NOD1/2-ATG16L1-NF-κB pathway to modulate the host immune response and exert its anti-infective effects. In summary, the yak DEFB114 protein could inhibit the growth of Aspergillus fumigatus and enhance the animal's resistance to pathogenic microorganisms, thereby having significant implications in the treatment and prevention of fungal infections.
Collapse
Affiliation(s)
- Jingyun Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - Qundi Mei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, Chengdu 610066, China
| |
Collapse
|
15
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
17
|
Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237:115760. [PMID: 37839264 DOI: 10.1016/j.jpba.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Cisplatin metallodrugs have been widely used in the treatment of multiple cancers over the last years. Nevertheless, its limited effectiveness, development of acquired drug resistances, and toxic effects decrease nowadays their application in clinical settings. Aiming at improving their features, investigations have been oriented towards the coupling of cisplatin to nanocarriers, like liposomes or inorganic nanoparticles. Moreover, these systems can be further developed to allow targeted co-delivery of drugs. In this review, we describe the major nanosystems and the optimal analytical strategies for their assessment. Finally, we describe the main biological effects of these metallodrug conjugates and the available approaches for their study.
Collapse
Affiliation(s)
- Lucia Gutierrez-Romero
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Paula Díez
- Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Maria Montes-Bayón
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| |
Collapse
|
18
|
Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, Jaganathan R, Vasudevan K, Paul J, Thakur A, Li M. Impact and Advances in the Role of Bacterial Extracellular Vesicles in Neurodegenerative Disease and Its Therapeutics. Biomedicines 2023; 11:2056. [PMID: 37509695 PMCID: PMC10377521 DOI: 10.3390/biomedicines11072056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Kejia Lu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | | | - Jeyakumari Paul
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai 600005, India
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
19
|
Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal 2023; 21:144. [PMID: 37328851 PMCID: PMC10273509 DOI: 10.1186/s12964-023-01172-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Ovarian cancer, particularly epithelial ovarian cancer (EOC), is the leading cause of cancer-related mortality among women. Our previous study revealed that high HMGB3 levels are associated with poor prognosis and lymph node metastasis in patients with high-grade serous ovarian carcinoma; however, the role of HMGB3 in EOC proliferation and metastasis remains unknown. METHODS MTT, clonogenic, and EdU assays were used to assess cell proliferation. Transwell assays were performed to detect cell migration and invasion. Signaling pathways involved in HMGB3 function were identified by RNA sequencing (RNA-seq). MAPK/ERK signaling pathway protein levels were evaluated by western blot. RESULTS HMGB3 knockdown inhibited ovarian cancer cell proliferation and metastasis, whereas HMGB3 overexpression facilitated these processes. RNA-seq showed that HMGB3 participates in regulating stem cell pluripotency and the MAPK signaling pathway. We further proved that HMGB3 promotes ovarian cancer stemness, proliferation, and metastasis through activating the MAPK/ERK signaling pathway. In addition, we demonstrated that HMGB3 promotes tumor growth in a xenograft model via MAPK/ERK signaling. CONCLUSIONS HMGB3 promotes ovarian cancer malignant phenotypes and stemness through the MAPK/ERK signaling pathway. Targeting HMGB3 is a promising strategy for ovarian cancer treatment that may improve the prognosis of women with this disease. Video Abstract.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
20
|
Koduru TS, Gupta VN, Veeranna B, Seetharaman S. A Dual Therapy of Nanostructured Lipid Carrier Loaded with Teriflunomide-A Dihydro-Orotate Dehydrogenase Inhibitor and an miR-155-Antagomir in Cuprizone-Induced C57BL/6J Mouse. Pharmaceutics 2023; 15:pharmaceutics15041254. [PMID: 37111739 PMCID: PMC10143733 DOI: 10.3390/pharmaceutics15041254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effective treatment of central nervous system (CNS) disorders such as multiple sclerosis (MS) has been challenging due to the limited ability of therapeutic agents to cross the blood-brain barrier (BBB). In this study, we investigated the potential of nanocarrier systems to deliver miR-155-antagomir-teriflunomide (TEF) dual therapy to the brain via intranasal (IN) administration to manage MS-associated neurodegeneration and demyelination. Our results showed that the combinatorial therapy of miR-155-antagomir and TEF loaded in nanostructured lipid carriers (NLCs) significantly increased brain concentration and improved targeting potential. The novelty of this study lies in the use of a combinatorial therapy approach of miR-155-antagomir and TEF loaded in NLCs. This is a significant finding, as the effective delivery of therapeutic molecules to the CNS has been a challenge in treating neurodegenerative disorders. Additionally, this study sheds light on the potential use of RNA-targeting therapies in personalized medicine, which could revolutionize the way CNS disorders are managed. Furthermore, our findings suggest that nanocarrier-loaded therapeutic agents have great potential for safe and economical delivery in treating CNS disorders. Our study provides novel insights into the effective delivery of therapeutic molecules via the IN route for managing neurodegenerative disorders. In particular, our results demonstrate the potential of delivering miRNA and TEF via the intranasal route using the NLC system. We also demonstrate that the long-term use of RNA-targeting therapies could be a promising tool in personalized medicine. Importantly, using a cuprizone-induced animal model, our study also investigated the effects of TEF-miR155-antagomir-loaded NLCs on demyelination and axonal damage. Following six weeks of treatment, the TEF-miR155-antagomir-loaded NLCs potentially lowered the demyelination and enhanced the bioavailability of the loaded therapeutic molecules. Our study is a paradigm shift in delivering miRNAs and TEF via the intranasal route and highlights the potential of this approach for managing neurodegenerative disorders. In conclusion, our study provides critical insights into the effective delivery of therapeutic molecules via the IN route for managing CNS disorders, and especially MS. Our findings have significant implications for the future development of nanocarrier-based therapies and personalized medicine. Our results provide a strong foundation for further studies and the potential to develop safe and economic therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Trideva Sastri Koduru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Vishal N Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | | |
Collapse
|
21
|
Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z. Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1306. [PMID: 37110891 PMCID: PMC10146377 DOI: 10.3390/nano13081306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The citrus canker pathogen Xanthomonas axonopodis has caused severe damage to citrus crops worldwide, resulting in significant economic losses for the citrus industry. To address this, a green synthesis method was used to develop silver nanoparticles with the leaf extract of Phyllanthus niruri (GS-AgNP-LEPN). This method replaces the need for toxic reagents, as the LEPN acts as a reducing and capping agent. To further enhance their effectiveness, the GS-AgNP-LEPN were encapsulated in extracellular vesicles (EVs), nanovesicles with a diameter of approximately 30-1000 nm naturally released from different sources, including plant and mammalian cells, and found in the apoplastic fluid (APF) of leaves. When compared to a regular antibiotic (ampicillin), the delivery of APF-EV-GS-AgNP-LEPN and GS-AgNP-LEPN to X. axonopodis pv. was shown to have more significant antimicrobial activity. Our analysis showed the presence of phyllanthin and nirurinetin in the LEPN and found evidence that both could be responsible for antimicrobial activity against X. axonopodis pv. Ferredoxin-NADP+ reductase (FAD-FNR) and the effector protein XopAI play a crucial role in the survival and virulence of X. axonopodis pv. Our molecular docking studies showed that nirurinetin could bind to FAD-FNR and XopAI with high binding energies (-10.32 kcal/mol and -6.13 kcal/mol, respectively) as compared to phyllanthin (-6.42 kcal/mol and -2.93 kcal/mol, respectively), which was also supported by the western blot experiment. We conclude that (a) the hybrid of APF-EV and GS-NP could be an effective treatment for citrus canker, and (b) it works via the nirurinetin-dependent inhibition of FAD-FNR and XopAI in X. axonopodis pv.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Qin Long
- Citrus Research Institute, Southwest University, Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rakesh Kumar Sidu
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Rajesh Kumar Sarkar
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
22
|
Zeng S, Xu Z, Liang Q, Thakur A, Liu Y, Zhou S, Yan Y. The prognostic gene CRABP2 affects drug sensitivity by regulating docetaxel-induced apoptosis in breast invasive carcinoma: A pan-cancer analysis. Chem Biol Interact 2023; 373:110372. [PMID: 36736488 DOI: 10.1016/j.cbi.2023.110372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Cellular retinoic acid-binding protein 2 (CRABP2), a specific transporter of retinoic acid, has been shown to have an important biological role in human cancers. However, due to the substantial variability among different tumors, the role of CRABP2 remains uncertain and has not yet been subjected to systematic analysis. Utilizing The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Kaplan-Meier Plotter, Biomarker Exploration of Solid Tumors (BEST), Cancer Cell Line Encyclopedia (CCLE), Receiver Operating Characteristic plotter (ROC plotter), and other online public tools, expression levels of CRABP2 in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV) were found to be significantly greater than those in adjacent normal tissues, suggesting a correlation to poor prognosis. Among the three, CRABP2 expression in BRCA was most closely associated with clinical prognosis. In a study of docetaxel-treated BRCA patients, CRABP2 expression was significantly higher in the drug-resistant group. Colony formation and flow cytometry analysis were used to further investigate the relationship between CRABP2 and docetaxel sensitivity in BRCA cells MDA-MB-231and BT549. The knockdown of CRABP2 expression significantly reduced cell growth and increased sensitivity to the chemotherapeutic agent docetaxel in BRCA cells. Furthermore, CRABP2 knockdown augmented docetaxel-induced apoptosis. Molecular docking using SwissDock tool revealed that CRABP2 had a greater binding affinity to docetaxel than docetaxel-targeted proteins. This research provides an insight into the expression and prognostic potential of CRABP2 in cancers and suggests that CRABP2 may control docetaxel sensitivity in BRCA cells through apoptosis, warranting further investigation.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Pathology, Xiangya Changde Hospital, Changde, 415000, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Illinois, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shangjun Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Kang F, Yan Y, Liu Y, Liang Q, Xu Z, Zhu W, Thakur A. Unraveling the significance of exosomal circRNAs in cancer therapeutic resistance. Front Pharmacol 2023; 14:1093175. [PMID: 36874026 PMCID: PMC9974836 DOI: 10.3389/fphar.2023.1093175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are nanoscale extracellular vesicles secreted by a variety of cells, affecting the physiological and pathological homeostasis. They carry various cargoes including proteins, lipids, DNA, and RNA and have emerged as critical mediators of intercellular communication. During cell-cell communication, they can internalize either by autologous or heterologous recipient cells, which activate different signaling pathways, facilitating malignant progression of cancer. Among different types of cargoes in exosomes, the endogenous non-coding RNAs, such as circular RNAs (or circRNAs), have gained tremendous attention for their high stability and concentration, playing promising functional roles in cancer chemotherapeutic response by regulating the targeted gene expression. In this review, we primarily described the emerging evidence demonstrating the important roles of circular RNAs derived from exosomes in the regulation of cancer-associated signaling pathways that were involved in cancer research and therapeutic interventions. Additionally, the relevant profiles of exosomal circRNAs and their biological implications have been discussed, which is under investigation for their potential effect on the control of cancer therapeutic resistance.
Collapse
Affiliation(s)
- Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics. J Colloid Interface Sci 2023; 630:698-713. [PMID: 36274405 DOI: 10.1016/j.jcis.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
26
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
27
|
Fatimah I, Fadillah G, Purwiandono G, Sahroni I, Purwaningsih D, Riantana H, Avif AN, Sagadevan S. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|