1
|
Salamah M, Sipos B, Schelz Z, Zupkó I, Kiricsi Á, Szalenkó-Tőkés Á, Rovó L, Katona G, Balogh GT, Csóka I. Development, in vitro and ex vivo characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach. Drug Deliv 2025; 32:2460693. [PMID: 39901331 PMCID: PMC11795762 DOI: 10.1080/10717544.2025.2460693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The present study aimed to prepare and optimize lamotrigine-loaded bovine serum albumin nanoparticles (LAM-NP) using the Quality by Design (QbD) approach and to investigate both the in vitro and ex vivo effects of different cross-linking agents glutaraldehyde (GLUT), glucose (GLUC) and 1-(3-dimethylaminutesopropyl)-3-ethylcarbodiimide hydrochloride (EDC) on intranasal applicability. Cross-linked LAM-NP from EDC (NP-EDC-1) showed the lowest Z-average value (163.7 ± 1.9 nm) and drug encapsulation efficacy (EE%) of 97.31 ± 0.17%. The drug release of GLUC cross-linked LAM-NP (NP-GLUC-9), glutaraldehyde cross-linked LAM-NP (NP-GLUT-2), and NP-EDC-1 at blood circulation conditions was higher than the initial LAM. The results of the blood-brain barrier parallel artificial membrane permeability assay (BBB-PAMPA) showed an increase in the permeability of LAM through the BBB with NP-GLUC-9 and an increase in flux with all selected formulations. The ex vivo study showed that LAM diffusion from the selected formulations through the human nasal mucosa was higher than in case of initial LAM. The cytotoxicity study indicated that BSA-NP reduced LAM toxicity, and GLUC 9 mM and EDC 1 mg could be alternative cross-linking agents to avoid GLUT 2% v/v toxicity. Furthermore, permeability through Caco-2 cells showed that nasal epithelial transport/absorption of LAM was improved by using BSA-NPs. The use of BSA-NP may be a promising approach to enhance the solubility, permeability through BBB and decrease the frequency of dosing and adverse effects of LAM.
Collapse
Affiliation(s)
- Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenkó-Tőkés
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Zhang X, Su G, Shao Z, Chan HW, Li S, Chow S, Tsang CK, Chow SF. Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke. Drug Deliv Transl Res 2025; 15:2022-2047. [PMID: 39485637 DOI: 10.1007/s13346-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug. Here, we report the rational development of FIN nano-embedded nasal powders using full factorial design experiments, aiming to provide rapid neuroprotection after ischemic stroke. Flash nanoprecipitation was employed to produce FIN nanosuspensions with the aid of polyvinylpyrrolidone and cholesterol as stabilizers. The optimized nanosuspension (particle size = 134.0 ± 0.6 nm, PDI = 0.179 ± 0.021, physical stability = 72 ± 0 h, and encapsulation efficiency of FIN = 90.67 ± 0.08%) was subsequently spray-dried into a dry powder, which exhibited excellent redispersibility (RdI = 1.09 ± 0.04) and satisfactory drug deposition in the olfactory region using a customized 3D-printed nasal cast (45.4%) and an Alberta Idealized Nasal Inlet model (8.6%) at 15 L/min. The safety of the optimized FIN nano-embedded dry powder was confirmed in cytotoxicity studies with nasal (RPMI 2650 and Calu-3 cells) and brain related cells (SH-SY5Y and PC 12 cells), while the neuroprotective effects were demonstrated by observed behavioral improvements and reduced cerebral infarct size in a middle cerebral artery occlusion mouse stroke model. The neuroprotective effect was further evidenced by increased expression of anti-apoptotic protein BCL-2 and decreased expression of pro-apoptotic proteins CC3 and BAX in brain peri-infarct tissues. Our findings highlight the potential of nasal delivery of FIN nano-embedded dry powder as a rapid neuroprotective treatment strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Si Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Prabakaran A, Rakshit D, Patel I, Susanna KJ, Mishra A, Radhakrishnanand P, Sarma P, Alexander A. Chitosan-coated nanostructured lipid carriers for intranasal delivery of sinapic acid in Aβ 1-42 induced C57BL/6 mice for Alzheimer's disease treatment. Int J Biol Macromol 2025; 305:141136. [PMID: 39965691 DOI: 10.1016/j.ijbiomac.2025.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Sinapic acid (SA) is a plant-derived antioxidant that exhibits neuroprotective activity. However, its poor bioavailability in the brain limits its therapeutic application in treating Alzheimer's disease (AD). Therefore, the present study hypothesizes that coating nanostructured lipid carriers (NLCs) with a biological macromolecule like chitosan (CH-SA-NLCs) could enhance the delivery of SA for AD treatment. The CH-SA-NLCs were spherical with sizes below 200 nm, confirmed by AFM, SEM, and TEM and achieved a sustained drug release of 76.5 % in pH 6.5 simulated nasal fluid over 24 h. Moreover, the histopathology study confirmed the safety of CH-SA-NLCs, validating its suitability for intranasal administration. Not only the in vitro sustained drug release closely correlated with in vivo pharmacokinetics of CH-SA-NLCs (i.n.), demonstrating a 1.7-fold increase in SA's half-life compared to plain SA (i.v.) in plasma but also CH-SA-NLCs (i.n.) achieved a superior AUC0-∞ of 7676.32 ± 2738.55 ng/g*h with a 2.6-fold improved drug targeting efficiency of SA in the brain of BALB/c mice. These improvements resulted in significant neuroprotective effects and decreased oxidative stress and inflammatory levels in Aβ1-42-induced mice. Overall, the study highlights safe and effective intranasal delivery of SA via chitosan-coated nanocarrier as a promising AD treatment strategy.
Collapse
Affiliation(s)
- A Prabakaran
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Inklisan Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - K Jony Susanna
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - Phulen Sarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Guwahati, Assam 781101, India
| | - Amit Alexander
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
4
|
Rai G, Gauba P, Tyagi A, Dang S. Lactoferrin-modified PLGA nanoparticles for pregabalin: development, characterization, in vitro targeting and pharmacodynamic evaluation. Drug Deliv Transl Res 2025:10.1007/s13346-025-01848-2. [PMID: 40198483 DOI: 10.1007/s13346-025-01848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Over the years the intranasal drug delivery route has emerged as an effective strategy for drug delivery in the brain. The present study reports the development of Pregabalin-loaded nanoparticles of Poly lactic-co-glycolic acid, surface modified with lactoferrin for targeting brain cells. Lactoferrin was conjugated using Cyanamide 1-Ethyl-3-3-dimethyl aminopropyl carbodiimide and N-hydroxy Succinimide. The physicochemical properties of the nanoparticles were examined and the results showed a particle size of 152.1 ± 1.3 nm, Polydispersity Index 0.146, and surface charge of -17.9 ± 0.98 mV. In vitro, release data in Phosphate Buffer Saline (pH 7.4) and Simulated Nasal Fluid (pH 5.5) suggested that the nanoparticles showed sustained release of the drug (86.92 ± 1.4%) for 48 h. In vitro, cytotoxicity on (RPMI 2650 and Neuro-2a cells) and histopathological evaluation on goat nasal mucosa showed that the formulation was nontoxic. Results from flow cytometry and confocal microscopy confirmed that the cells readily took up modified nanoparticles compared to plain PLGA nanoparticles. The neuroprotective effect of Lf-PLGA nanoparticles was evaluated in Neuro-2a cells concerning Nitric oxide generation in response to lipopolysaccharide. Pharmacodynamic analysis on mice showed enhanced targeting of the drug and the average time of different phases of convulsion was also reduced.
Collapse
Affiliation(s)
- Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| |
Collapse
|
5
|
Rajbanshi A, Hilton E, Atkinson E, Phillips JB, Vanukuru S, Khutoryanskiy VV, Gibbons A, Falloon S, Dreiss CA, Murnane D, Cook MT. Thermoresponsive engineered emulsions stabilised with branched copolymer surfactants for nasal drug delivery of molecular therapeutics. Int J Pharm 2025; 676:125506. [PMID: 40189166 DOI: 10.1016/j.ijpharm.2025.125506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Novel branched copolymer surfactants (BCS) allow the formation of oil-in-water emulsions that exhibit a temperature-induced liquid-to-gel transition. If the temperature of this transition is between room and body temperature (ca 25 and 37 °C, respectively), then the emulsions form a gel in situ upon contact with the body. A major advantage of this in situ gelation is the potential to manipulate the materials at room temperature in the low viscosity liquid state, then administer them to the body to initiate a switch to a retentive gel state, which could be used to deliver drugs to challenging sites such as the nasal mucosa. There are, however, several important factors which have not been explored for thermoresponsive BCS-stabilised emulsions to progress their use towards this application. Neither the delivery of drugs from the materials, the retention on tissue, nor the impact of co-formulated drugs on the thermoresponsive behaviours, are known. Furthermore, it has not been demonstrated that the materials are compatible with devices to generate sprays of the correct profiles for nasal administration. In this study we investigate the potential of thermoresponsive BCS-stabilised emulsions for the nasal delivery of licensed molecular therapeutics to examine the potential of BCS emulsion systems as a carrier for medicines. It was found that thermoresponsive behaviours can be maintained in the presence of drug substances, and that the liberation of the incorporated drugs occurs in a sustained manner. The BCS appear to have comparable cytotoxicity to common excipients and significantly enhanced retention on nasal tissue compared to even well-established mucoadhesives. The emulsions were incorporated into a spray device to demonstrate that the materials can be atomised with a plume appropriate for nasal administration prior to in situ gelation.
Collapse
Affiliation(s)
- Abhishek Rajbanshi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Eleanor Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Emily Atkinson
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - James B Phillips
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shiva Vanukuru
- School of Life and Medical Science, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; School of Pharmacy, University of Reading, Reading, Berkshire RG6 6UR, UK
| | | | - Adam Gibbons
- Bespak, Bergen Way, King's Lynn, Norfolk PE30 2JJ, UK
| | | | - Cecile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 8WA, UK
| | - Darragh Murnane
- School of Life and Medical Science, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK
| | - Michael T Cook
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
6
|
Hatem S, Sayyed ME, El-Kayal M. Intranasal delivery of kaempferol via magnesomes for brain seizure treatment: Design, characterization, and biodistribution studies. J Pharm Sci 2025; 114:103780. [PMID: 40185474 DOI: 10.1016/j.xphs.2025.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The current study aims to develop phospholipid magnesomes retaining the inherent neuroprotective activities of kaempferol as a proposed treatment approach for epilepsy. Magnesomes were prepared using varied amounts of phospholipid, magnesium sulfate and poloxamer 188, and evaluated on in-vitro and in-vivo levels. The prepared vesicles possessed nanosizes (112-625 nm), negative charges (-16 to -20 mV), and entrapment efficiency (80-96 %) with negligible changes in their colloidal properties after 3 months' storage. Magnesomes showed sustained release of kaempferol as well as superior permeability relative to drug solution. Radiolabeling of kaempferol with iodine-131 was successfully performed using electrophilic substitution. The superior brain uptake of intranasally delivered 131I-kaempferol-magnesomes containing 3.13 µg/20µl of kaempferol compared to intravenous and intranasal solutions was demonstrated employing biodistribution and pharmacokinetic tests conducted using Swiss Albino male mice. Brain to blood ratio of the intranasally administered kaempferol was significantly higher compared to intravenous injection showing uptake of 9.9 ± 0.3 % injected dose per gram organ at the first 5 min ensuring a rapid onset of action. The drug targeting efficiency and nose to brain direct transport percentages of 131I- kaempferol-magnesomes were 215.0 and 87.0 %, respectively with relative bioavailability of 810.24 ± 119.1 %. Accordingly, intranasal kaempferol-magnesomes showed effectiveness in brain targeting and could be beneficial for managing epileptic seizures.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt
| | - Marwa Eid Sayyed
- Radio Labelled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt.
| |
Collapse
|
7
|
Desai S, Thorat P, Majumdar A. A promise of nose to brain delivery of bevacizumab intranasal sol-gel formulation substantiated in rat C6 glioma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4123-4148. [PMID: 39417842 DOI: 10.1007/s00210-024-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Glioblastoma is one of the rapidly spreading cancers, with its potent malignancy often linked to pronounced angiogenesis within tumors. To mitigate this vascularization profile, bevacizumab (Avastin®), a monoclonal antibody, has been utilized for its antiangiogenic activity. However, its effectiveness is hindered by challenges in crossing the blood-brain barrier and the risk of off-target organ toxicity. Delivering drugs directly from the nose to the brain through the olfactory or trigeminal nerves bypassing the blood-brain barrier offers enhanced bioavailability and a more precise targeting strategy. To overcome these challenges, we aimed to develop bevacizumab in situ gel loaded mesoporous silica nanoparticles for intranasal delivery and further examine their pharmacokinetic and pharmacodynamic characteristics. The intranasal gel of mesoporous silica nanoparticles loaded with bevacizumab was optimized and formulated using a factorial and quality by design approach. In the case of bevacizumab mesoporous silica nanoparticles, lower particle size and most negative zeta potential were selected as quality target product profiles which is important for drug loading on the mesoporous silica nanoparticles and also transport of these nanoparticles across the nasal mucosa to the brain. A design space with a multidimensional combination of input variables and process parameters has been demonstrated to assure quality. To optimize the design space and achieve the desired quality standards, the base catalyst and surfactant concentration were chosen as the critical process parameters, while particle size and zeta potential were identified as the critical quality attributes. The novel formulation was assessed for physicochemical parameters such as particle size, zeta potential, entrapment efficiency, appearance, color, consistency, and pH. Additionally, studies on in vitro release, ex vivo permeation, stability, nasal toxicity, organ safety, and bioavailability were conducted. The efficacy study was conducted in an orthotopic murine glioblastoma rat model in which C6 Luc cells were instilled in the striatum of the rat's brain. In vivo, bioluminescence imaging of brain tumors was carried out to observe the tumor regression after treatment with the intranasal and intravenous bevacizumab formulation. Biochemical parameters and histopathology were performed for organ safety studies. The optimized intranasal formulation exhibited an average particle size of 318.8 nm and a zeta potential of - 14.7 mV for the mesoporous silica nanoparticles. The formulation also demonstrated an entrapment efficiency of 91.34% and a loading capacity of 45.67%. Further pharmacokinetic studies revealed that the optimized intranasal bevacizumab formulation achieved a significantly higher brain concentration Cmax = 147.9 ng/ml, indicating improved bioavailability compared to rats administered with intravenous bevacizumab formulation (BEVATAS®), which had a Cmax of 127.2 ng/ml. Moreover, this nanoparticle formulation entirely mitigated systemic exposure to bevacizumab. Organ safety evaluation of different biochemical parameters and histopathological analyses revealed that the intranasal bevacizumab-treated group was showing less off-target organ toxicity compared to the group treated with intravenous bevacizumab formulation. Subsequently, the efficacy of this nanosystem was evaluated in an orthotopic glioblastoma rat model, monitoring tumor growth over time through in vivo bioluminescence imaging and assessing anti-angiogenic effects. Twenty-one days post-induction, mesoporous silica nanoparticles loaded with bevacizumab in situ gel exhibited a marked reduction in average bioluminescence radiance (4.39 × 103) from day 7 (1.35 × 107) emphasizing an enhanced anti-angiogenic effect compared to the group treated with intravenous bevacizumab formulation which showed a gradual decrease in average bioluminescence radiance (4.82 × 104) from day 7 (1.42 × 107). These results suggest that the proposed novel formulation of mesoporous silica nanoparticles loaded bevacizumab in situ gel could serve as a promising avenue to enhance glioblastoma treatment efficacy, thereby potentially improving patient quality of life and survival rates significantly. Furthermore, the success of this delivery method could open new avenues for treating other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. By providing effective brain-targeted therapies, this approach has the potential to revolutionize treatment options and improve outcomes for a broad spectrum of neurological conditions.
Collapse
Affiliation(s)
- Siddhesh Desai
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Prajakta Thorat
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India.
| |
Collapse
|
8
|
Harini K, Girigoswami K, Vajagathali M, Bose D, Thirumalai A, Kiran V, Durgadevi P, Girigoswami A. Enhanced behavioral impact of optimized bupropion-encapsulated bilosomes over traditional niosomes treating depression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4373-4392. [PMID: 39476247 DOI: 10.1007/s00210-024-03549-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 04/10/2025]
Abstract
Bupropion (Bpn), an FDA-approved NDRI (norepinephrine-dopamine reuptake inhibitor), poses risks of seizures and liver failure due to its stimulant properties, necessitating the development of alternative formulations. This research aims to develop a Bpn nanoformulation within bilosomal vesicles to enhance therapeutic efficacy at lower doses, using three bile salts, span 20 surfactants, and cholesterol via thin-film hydration. Optimization of bilosomal stability is achieved by trialing various ingredient concentrations, identifying a surfactant-to-cholesterol-to-bile salt ratio of 1.5:1:0.17 µM, with sodium cholate (B.SCF) yielding the most stable system. Bpn encapsulated in the optimized bilosomal vesicle (Bpn@B.SC F) demonstrated high encapsulation efficiency of 78.142 ± 11.07% and drug-retaining capacity compared to the niosomal system. The in vitro and in vivo toxicity profile of the product is superior to the niosomal system and shows negligible toxicity with a viability rate of not less than 95%, with a sustained release profile in artificial cerebrospinal fluid (ACSF). In vivo, behavioral analysis on zebrafish revealed that Bpn@B.SC F treatment more effectively improved depressive behavior compared to free Bpn and other treatments, evidenced by increased exploration rates and reduced irregular movements, as shown through statistical and trajectory data. Hence, it is concluded that the bilosomal structure, compared to the niosomal system, is a better carrier of drugs to achieve brain delivery and improve mood.
Collapse
Affiliation(s)
- Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Mohammed Vajagathali
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Debosreeta Bose
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, Newtown Rajarhat, West Bengal, 700035, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Venkatakrishnan Kiran
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Pazhani Durgadevi
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India.
| |
Collapse
|
9
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Agnihotri TG, Dahifale A, Gomte SS, Rout B, Peddinti V, Jain A. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Mol Pharm 2025; 22:599-619. [PMID: 39746097 DOI: 10.1021/acs.molpharmaceut.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akanksha Dahifale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
11
|
Duong K, Aisenstat M, Chen JZ, Murphy B, Tavernini S, Wang H, Reiz B, Zheng J, Whittal R, McClary WD, Gerhardt A, Fox CB, Finlay WH, Vehring R, Martin AR. Characterization of Spray-Dried Powders Using a Coated Alberta Idealized Nasal Inlet. J Aerosol Med Pulm Drug Deliv 2025; 38:1-12. [PMID: 39804033 PMCID: PMC11839532 DOI: 10.1089/jamp.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background: Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for in vitro characterization of nasal products that may prove useful in examining intranasal delivery of powders. Methods: Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices. Primary particle sizes (∼Dv50 = 10 µm for powder A and 25 µm for powder B), and sizes dispersed by devices, were evaluated using laser diffraction. The interior of the AINI was coated with a glycerol-surfactant mixture to mitigate particle bounce, and flow rates of 7.5 or 15 L/min were drawn through the AINI. Deposition of trehalose powder was determined in the four regions of the AINI (vestibule, turbinates, olfactory, and nasopharynx), a downstream preseparator, and an absolute filter (representing in vitro lung deposition) using liquid chromatography coupled with mass spectrometry. Results: Coating the AINI was effective in mitigating particle bounce for both trehalose powders. No difference in regional nasal deposition was observed when testing at a flow rate of 7.5 versus 15 L/min. A high fraction of both powders penetrated past the vestibule and deposited in the turbinates and nasopharynx for all loaded doses. For powder A, a non-negligible fraction of the recovered dose (up to 7%) is deposited on the filter, representing potential lung exposure. Conversely, a negligible fraction of the total recovered dose was deposited on the filter for powder B. Conclusion: Powders with a larger primary particle size showed reduced penetration through the nasal airways while maintaining high turbinate deposition. Optimized spray-dried powders offer the potential to target delivery to the peripheral nasal airways based on powder particle size while reducing lung exposure.
Collapse
Affiliation(s)
- Kelvin Duong
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | | | - John Z. Chen
- Access to Advanced Health Institute (AAHI), Seattle, Washington, USA
| | - Brynn Murphy
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Jing Zheng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Randy Whittal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Wynton D. McClary
- Access to Advanced Health Institute (AAHI), Seattle, Washington, USA
| | - Alana Gerhardt
- Access to Advanced Health Institute (AAHI), Seattle, Washington, USA
| | | | - Warren H. Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
- Access to Advanced Health Institute (AAHI), Seattle, Washington, USA
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Sharma G, Wadhwa K, Kumar S, Singh G, Pahwa R. Revolutionizing Parkinson's treatment: Harnessing the potential of intranasal nanoemulsions for targeted therapy. Drug Deliv Transl Res 2025:10.1007/s13346-024-01770-z. [PMID: 39777646 DOI: 10.1007/s13346-024-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways. For brain targeting through nasal delivery, several advanced and promising formulation techniques have been investigated globally. Nanoemulsions are regarded as an innovative carrier approach for PD, where these provide targeted administration and enhanced bioavailability of neurotherapeutics. This manuscript provides deeper insight into the pathophysiology of PD, various drug delivery strategies to overcome BBB, and the potential role of nanoemulsions via the intranasal route. Various research findings on the intranasal administration of nanoemulsions and their pivotal applications in the treatment of PD have also been embarked. The potential role of phytoconstituents and surface-modified nanoemulsions for the effective treatment of PD has also been reflected along with current challenges and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58 Delhi-Roorkee Highway, Meerut, 250005, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
13
|
Jannapu Reddy S, Mutalik S, Viswanatha GL, Kumar G, John J, Chamallamudi MR, Das A, Das S, Nandakumar K. Nose-to-brain Drug Delivery System: An Emerging Approach to Chemotherapy-induced Cognitive Impairment. Pharm Nanotechnol 2025; 13:212-238. [PMID: 38757164 DOI: 10.2174/0122117385291482240426101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
The rise in global cancer burden, notably breast cancer, emphasizes the need to address chemotherapy-induced cognitive impairment, also known as chemobrain. Although chemotherapy drugs are effective against cancer, they can trigger cognitive deficits. This has triggered the exploration of preventive strategies and novel therapeutic approaches. Nanomedicine is evolving as a promising tool to be used for the mitigation of chemobrain by overcoming the blood-brain barrier (BBB) with innovative drug delivery systems. Polymer and lipid-based nanoparticles enable targeted drug release, enhancing therapeutic effectiveness. Utilizing the intranasal route of administration may facilitate drug delivery to the central nervous system (CNS) by circumventing first-pass metabolism. Therefore, knowledge of nasal anatomy is critical for optimizing drug delivery via various pathways. Despite challenges, nanoformulations exhibit the potential in enhancing brain drug delivery. Continuous research into formulation techniques and chemobrain mechanisms is vital for developing effective treatments. The intranasal administration of nanoformulations holds promise for improving therapeutic outcomes in chemobrain management. This review offers insights into potential future research directions, such as exploring novel drug combinations, investigating alternative delivery routes, or integrating emerging technologies to enhance the efficacy and safety of nanoformulations for chemobrain management.
Collapse
Affiliation(s)
- Shireesha Jannapu Reddy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Gautam Kumar
- Department of Pharmacy, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpita Das
- Department of Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Sudip Das
- College of Pharmacy and Health Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, United States
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
14
|
Chaudhri N, Rastogi V, Verma A. A Review on Lipid-based Nanoformulations for Targeting Brain through Non-invasive Nasal Route. Pharm Nanotechnol 2025; 13:143-154. [PMID: 38685789 DOI: 10.2174/0122117385293436240321090218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The nasal method for administering nanoformulations to the brain has been examined and proven successful by prior investigators. For the treatment of central nervous system (CNS) disorders such as neuropsychiatric, depression, Alzheimer and anxiety, intranasal administration has become more popular for delivering drugs to the brain. This method offers direct transport through neuronal pathways. The lipid-based nanocarriers like nanostructured lipid carriers (NLC) appear more favorable than other nanosystems for brain administration. The nanostructured lipid carriers (NLC) system can quickly transform into a gelling system to facilitate easy administration into the nasal passages. The various compatibility studies showed that the other lipid structured-based formulations may not work well for various reasons, including a low drug filing capacity; during storage, the formulation showed changes in the solid lipid structures, which gives a chance of medication ejection. Formulations containing NLC can minimize these problems by improving drug solubility and permeation rate by incorporating a ratio of liquid lipids with solid lipids, resulting in improved stability during storage and drug bioavailability because of the higher drug loading capacity. This review aimed to find and emphasize research on lipid-based nanocarrier formulations that have advanced the treatment of central nervous system illnesses using nasal passages to reach the targeted area's drug molecules.
Collapse
Affiliation(s)
- Nirvesh Chaudhri
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
16
|
Lamptey RNL, Sun C, Singh J. Intranasal administration of angiotensin receptor shRNA to brain lowers blood pressure in spontaneously hypertensive rats. Biomed Pharmacother 2025; 182:117790. [PMID: 39721326 PMCID: PMC11874126 DOI: 10.1016/j.biopha.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness. We hypothesize that the intranasal delivery of plasmid DNA encoding angiotensin receptor shRNA (PEAS) can effectively lower blood pressure (BP). PEAS was administered encapsulated within transferrin and Tetanus Toxin Fragment C-functionalized liposomes. Equal number of both male and female spontaneously hypertensive rats (SHR) were used to determine the effect of PEAS delivery to brain. Blood pressure was measured by the tail cuff measurement. Synthesized liposomes were found to be cationic, < 200 nm, entrapped over 88 % of the plasmid and protected PEAS from DNase degradation. In vitro, formulations caused a significant (p < 0.05) decrease (>70 %) in angiotensin receptor expression in brain endothelial cell lines, primary astrocytes and primary neurons. Intranasal administration of PEAS to SHR resulted in a significant (p < 0.05) reduction of angiotensin receptor gene expression in the brain. In the hypothalamus of SHR, intranasal administration resulted in > 70 % reduction in gene expression, ∼15 % greater than intravenous administration. Both routes were associated with an over 25 mmHg significant (p < 0.05) reduction in BP following administration of PEAS. Intranasal administration of PEAS effectively lowered BP in SHR, offering a promising non-invasive approach for managing NH.
Collapse
Affiliation(s)
- Richard Nii Lante Lamptey
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States.
| |
Collapse
|
17
|
Watanabe S, Ueda M, Asayama S. Inhibition of Aβ Aggregation by Cholesterol-End-Modified PEG Vesicles and Micelles. Pharmaceutics 2024; 17:1. [PMID: 39861653 PMCID: PMC11769297 DOI: 10.3390/pharmaceutics17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to design and evaluate Chol-PEG2000 micelles and Chol-PEG500 vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). Methods: The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE). Results: Chol-PEG2000 micelles and Chol-PEG500 vesicles were found to exhibit diameters of 20-30 nm and 70-80 nm, respectively, with neutral surface charges and those physical properties indicated the high affinity for Aβ. At a 10-fold molar ratio, thioflavin T (ThT) assay revealed that Chol-PEG2000 delayed Aβ fibril elongation by 20 hours, while Chol-PEG500 delayed it by 40 hours against Aβ peptide. At a 50-fold molar ratio, both Chol-PEG2000 and Chol-PEG500 significantly inhibited Aβ aggregation, as indicated by minimal fluorescence intensity increases over 48 hours. CD spectroscopy indicated that Aβ maintained its random coil structure in the presence of Chol-PEG assemblies at a 50-fold molar ratio. Native-PAGE analysis demonstrated a retardation in Aβ migration immediately after mixing with Chol-PEG assemblies, suggesting complex formation. However, this retardation disappeared within 5 min, implying rapid dissociation of the complexes. Conclusions: This study demonstrated that Chol-PEG500 vesicles more effectively inhibit Aβ aggregation than Chol-PEG2000 micelles. Chol-PEG assemblies perform as DDS carriers to be capable of inhibiting Aβ aggregation. Chol-PEG assemblies can deliver additional therapeutics targeting other aspects of AD pathology. This dual-function platform shows promise as both a DDS carrier and a therapeutic agent, potentially contributing to a fundamental cure for AD.
Collapse
Affiliation(s)
| | | | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan; (S.W.); (M.U.)
| |
Collapse
|
18
|
Chua AJ, Di Francesco V, D'Souza A, Amiji M, Bleier BS. Murine model of minimally invasive nasal depot (MIND) technique for central nervous system delivery of blood-brain barrier-impermeant therapeutics. Lab Anim (NY) 2024; 53:363-375. [PMID: 39548349 DOI: 10.1038/s41684-024-01460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
The blood-brain barrier (BBB) poses a substantial obstacle to the successful delivery of therapeutics to the central nervous system (CNS). The transnasal route has been extensively explored, but success rates have been modest due to challenges related to the precise anatomical placement of drugs, the small volumes that the olfactory cleft can accommodate and short drug residence times due to mucociliary clearance. Here, to address these issues, we have developed a surgical technique known as the minimally invasive nasal depot (MIND), which allows the accurate placement of depot drugs into the submucosal space of the olfactory epithelium of rats. This technique exploits the unique anatomy of the olfactory apparatus to enable transnasal delivery of drugs into the CNS, bypassing the BBB. In our rat model, a bony window is created in the animal snout to expose the submucosal space. Using the MIND technique, we have successfully delivered oligonucleotides to the CNS in Sprague-Dawley and Long-Evans rats, leading to an upregulation of brain-derived neurotrophic factor in the substantia nigra and hippocampus. In this Protocol, we describe the procedural steps for MIND. This procedure takes about 45 min and can be performed by researchers with basic surgical skills. We additionally describe modifications to perform MIND in mice, which are anatomically smaller. The MIND procedure represents a unique platform that can be used to overcome the limitations posed by the BBB. This technique can potentially expand the therapeutic toolkit in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA.
- Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, Singapore, Singapore.
| | - Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
19
|
Khot KB, D S S, Gopan G, Deshpande N S, Shastry P, Bandiwadekar A, Jose J. Enhancing selegiline hydrochloride efficacy: Box Behnken-optimized liposomal delivery via intranasal route for Parkinson's disease intervention. J Liposome Res 2024; 34:575-592. [PMID: 38591935 DOI: 10.1080/08982104.2024.2336549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Sandeep D S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Shridhar Deshpande N
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, India
| |
Collapse
|
20
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
21
|
Akpinar Adscheid S, Türeli AE, Günday-Türeli N, Schneider M. Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1400-1414. [PMID: 39559726 PMCID: PMC11572074 DOI: 10.3762/bjnano.15.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood-brain barrier. While protecting the brain's homeostasis, the barrier limits the passage of almost all large-molecule drugs and most small-molecule drugs. A noninvasive method, nose-to-brain delivery (N2B delivery) has been proposed to overcome this challenge. By exploiting the direct anatomical interaction between the nose and the brain, the drugs can reach the target, the brain. Moreover, the drugs can be encapsulated into various drug delivery systems to enhance physicochemical characteristics and targeting success. Many preclinical data show that this strategy can effectively deliver biopharmaceuticals to the brain. Therefore, this review focuses on N2B delivery while giving examples of different drug delivery systems suitable for the applications. In addition, we emphasize the importance of the effective delivery of monoclonal antibodies and RNA and stress the recent literature tackling this challenge. While giving examples of nanotechnological approaches for the effective delivery of small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies' success and limitations.
Collapse
Affiliation(s)
- Selin Akpinar Adscheid
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| | | | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, PharmaScienceHub, Saarland University, Campus C4 1, Saarbrücken D-66123, Germany
| |
Collapse
|
22
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
23
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea G, Radwan A, Abo El-Enin HA. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024; 16:1417. [PMID: 39598541 PMCID: PMC11597305 DOI: 10.3390/pharmaceutics16111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The blood-brain barrier (BBB) significantly limits the treatment of central nervous system disorders, such as schizophrenia, by restricting drug delivery to the brain. This study explores the potential of intranasal clozapine-loaded lipid nanocapsules (IN LNCsClo) as a targeted and effective delivery system to the brain. METHODS LNCsClo were prepared using the phase inversion technique and characterized in terms of size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. The pharmacokinetic, safety, and pharmacodynamic effects of LNCsClo were then evaluated in a rat model through intranasal (IN) administration and compared with those of oral and intravenous (IV) Clo solutions. RESULTS LNCsClo were prepared using a phase inversion technique, resulting in a nanocarrier with a particle size of 28.6 ± 3.6 nm, homogenous dispersion, and high EE% (84.66 ± 5.66%). Pharmacokinetic analysis demonstrated that IN LNCsClo provided enhanced Clo brain bioavailability, rapid CNS targeting, and prolonged drug retention compared to oral and intravenous routes. Notably, the area under the curve (AUC) for brain concentration showed more than two-fold and eight-fold increases with LNCsClo, compared to IV and oral solutions, respectively, indicating improved brain-targeting efficiency. Safety assessments indicated that LNCsClo administration mitigated Clo-associated metabolic side effects, such as hyperglycemia, insulin imbalance, and liver enzyme alterations. Additionally, pharmacodynamic studies showed that LNCsClo significantly improved antipsychotic efficacy and reduced schizophrenia-induced hyperactivity, while preserving motor function. CONCLUSIONS These results highlight the potential of IN LNCsClo as a novel drug delivery system, offering improved therapeutic efficacy, reduced systemic side effects, and better patient compliance in the treatment of schizophrenia and potentially other CNS disorders.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Egyptian Drug Authority, Giza 12511, Egypt;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Northeast Delta Branch, Department of Pharmacies, Health Insurance Organization, Mansoura 35511, Egypt
| | - Gehad Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
24
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024; 39:1922-1937. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
25
|
Botan MVG, da Silva JB, Bruschi ML. Technological Strategies Applied to Pharmaceutical Systems for Intranasal Administration of Drugs Intended for Neurological Treatments: A Review. AAPS PharmSciTech 2024; 25:258. [PMID: 39487374 DOI: 10.1208/s12249-024-02974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
The complexity of treating neurological diseases has meant that new strategies have had to be developed to deliver drugs to the brain more efficiently and safely. Intranasal drug delivery is characterized by its ease of administration, safety, and rapid delivery directly from the nose to the brain. Several strategies have been developed to improve the delivery of drugs to the brain via nasal administration. These include the use of mucoadhesive and thermoresponsive polymers and their combination into polymer blends, as well as the use of liposomes, niosomes, and nano- and microemulsions. Therefore, this review focuses on technologies for developing pharmaceutical systems aimed at delivery via the nose to the brain, contributing to new treatments for difficult neurological disorders. Some of the most common and difficult-to-treat neurological conditions, the intranasal route of administration, and the anatomy of the nasal cavity have been discussed, as well as factors that may influence the absorption of drugs administered into the nose. The types of intranasal formulations and the devices that can be used to administer these products are also discussed in this review. Strategies for improving the transport of bioactive agents and increasing bioavailability are highlighted. The technologies discussed in this review can facilitate the development of formulations with improved properties, such as drug release and mucoadhesiveness, which have several advantages for patients requiring complex neurological treatments.
Collapse
Affiliation(s)
- Maria Vitoria Gouveia Botan
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
26
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
27
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
28
|
Torres J, Silva R, Farias G, Sousa Lobo JM, Ferreira DC, Silva AC. Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. Pharmaceutics 2024; 16:1297. [PMID: 39458626 PMCID: PMC11510892 DOI: 10.3390/pharmaceutics16101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT1B/1D receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - José Manuel Sousa Lobo
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos Carvalho Ferreira
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
29
|
Lee D, Shen AM, Shah M, Garbuzenko OB, Minko T. In Vivo Evaluation of Nose-to-Brain Delivery of Liposomal Donepezil, Memantine, and BACE-1 siRNA for Alzheimer's Disease Therapy. Int J Mol Sci 2024; 25:10357. [PMID: 39408684 PMCID: PMC11476875 DOI: 10.3390/ijms251910357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Our study took an innovative approach by evaluating, in vivo, the efficacy of intranasal (IN) administration of liposomal formulations of donepezil, memantine, and beta-site amyloid precursor protein-cleaving enzyme (BACE-1) siRNA, and their combination as a "triple-drug therapy" in treating Alzheimer's disease (AD). Female APP/PS1 homozygous, transgenic mice were used as an AD model. The spatial short-term memory of the APP/PS1 mice was evaluated by a Y-maze behavioral test. IN-administered formulations demonstrated better short-term memory recovery than oral administration. Triple-drug therapy induced short-term memory recovery and lowered beta-amyloid (Aβ) 40 and 42 peptide levels and BACE-1 mRNA expression. Additionally, inflammatory cytokine mRNA expression was downregulated. This innovative approach opens new possibilities for Alzheimer's disease treatment and nose-to-brain delivery.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Andrew M. Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Milin Shah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
31
|
Jadhav K, Jhilta A, Singh R, Ray E, Kumar V, Yadav AB, Singh AK, Verma RK. Effective cerebral tuberculosis treatment via nose-to-brain transport of anti-TB drugs using mucoadhesive nano-aggregates. NANOSCALE 2024; 16:16485-16499. [PMID: 39135488 DOI: 10.1039/d4nr02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Awadh Bihari Yadav
- Center of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj-211002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
32
|
Lee D, Shen AM, Garbuzenko OB, Minko T. Liposomal Formulations of Anti-Alzheimer Drugs and siRNA for Nose-to-Brain Delivery: Design, Safety and Efficacy In Vitro. AAPS J 2024; 26:99. [PMID: 39231845 DOI: 10.1208/s12248-024-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
β-site amyloid precursor protein cleaving enzyme (BACE1) represents a key target for Alzheimer's disease (AD) therapy because it is essential for producing the toxic amyloid β (Aβ) peptide that plays a crucial role in the disease's development. BACE1 inhibitors are a promising approach to reducing Aβ levels in the brain and preventing AD progression. However, systemic delivery of such inhibitors to the brain demonstrates limited efficacy because of the presence of the blood-brain barrier (BBB). Nose-to-brain (NtB) delivery has the potential to overcome this obstacle. Liposomal drug delivery systems offer several advantages over traditional methods for delivering drugs and nucleic acids from the nose to the brain. The current study aims to prepare, characterize, and evaluate in vitro liposomal forms of donepezil, memantine, BACE-1 siRNA, and their combination for possible treatment of AD via NtB delivery. All the liposomal formulations were prepared using the rotary evaporation method. Their cellular internalization, cytotoxicity, and the suppression of beta-amyloid plaque and other pro-inflammatory cytokine expressions were studied. The Calu-3 Transwell model was used as an in vitro system for mimicking the anatomical and physiological conditions of the nasal epithelium and studying the suitability of the proposed formulations for possible NtB delivery. The investigation results show that liposomes provided the effective intracellular delivery of therapeutics, the potential to overcome tight junctions in BBB, reduced beta-amyloid plaque accumulation and pro-inflammatory cytokine expression, supporting the therapeutic potential of our approach.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Science Institute, Piscataway, NJ, 08854, USA.
| |
Collapse
|
33
|
Ge Y, Xu X, Cao M, Liu B, Wang Y, Liao P, Wang J, Chen Y, Yuan H, Chen G. Nasal Drug Delivery and Nose-to-Brain Delivery Technology Development Status and Trend Analysis: Based on Questionnaire Survey and Patent Analysis. Pharmaceutics 2024; 16:929. [PMID: 39065623 PMCID: PMC11279750 DOI: 10.3390/pharmaceutics16070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Nasal administration is a non-invasive method of drug delivery that offers several advantages, including rapid onset of action, ease of use, no first-pass effect, and fewer side effects. On this basis, nose-to-brain delivery technology offers a new method for drug delivery to the brain and central nervous system, which has attracted widespread attention. In this paper, the development status and trends of nasal drug delivery and nose-to-brain delivery technology are deeply analyzed through multiple dimensions: literature research, questionnaire surveys, and patent analysis. First, FDA-approved nasal formulations for nose-to-brain delivery were combed. Second, we collected a large amount of relevant information about nasal drug delivery through a questionnaire survey of 165 pharmaceutical industry practitioners in 28 provinces and 161 different organizations in China. Third, and most importantly, we conducted a patent analysis of approximately 700+ patents related to nose-to-brain delivery, both domestically and internationally. This analysis was conducted in terms of patent application trends, technology life cycle, technology composition, and technology evolution. The LDA topic model was employed to identify technological topics in each time window (1990-2023), and the five key major evolution paths were extracted. The research results in this paper will provide useful references for relevant researchers and enterprises in the pharmaceutical industry, promoting the further development and application of nasal drug delivery and nose-to-brain delivery technology.
Collapse
Affiliation(s)
- Yuanyuan Ge
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.G.); (B.L.); (Y.W.)
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| | - Xingying Xu
- Shanghai Library (Institute of Scientific and Technical Information of Shanghai), Shanghai 200031, China;
| | - Meng Cao
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| | - Baijun Liu
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.G.); (B.L.); (Y.W.)
| | - Ying Wang
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.G.); (B.L.); (Y.W.)
| | - Ping Liao
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| | - Jiajing Wang
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| | - Yifei Chen
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.G.); (B.L.); (Y.W.)
| | - Guiliang Chen
- Shanghai Center for Drug Evaluation and Inspection, Shanghai 201203, China; (M.C.); (P.L.); (J.W.); (Y.C.)
| |
Collapse
|
34
|
Khan TTS, Sheikh Z, Maleknia S, Oveissi F, Fathi A, Abrams T, Ong HX, Traini D. Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges. Expert Opin Drug Deliv 2024; 21:1081-1101. [PMID: 39086086 DOI: 10.1080/17425247.2024.2387110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), approved by the US FDA for obesity treatment, are typically administered subcutaneously, an invasive method leading to suboptimal patient adherence and peripheral side effects. Additionally, this route requires the drug to cross the restrictive blood-brain barrier (BBB), limiting its safety and effectiveness in weight management and cognitive addiction disorders. Delivering the drug intranasally could overcome these drawbacks. AREAS COVERED This review summarizes GLP-1 RAs used as anti-obesity agents, focusing on the intranasal route as a potential pathway to deliver these biomolecules to the brain. It also discusses strategies to overcome challenges associated with nasal delivery. EXPERT OPINION Nose-to-brain (N2B) pathways can address limitations of the subcutaneous route for GLP-1 RAs. However, peptide delivery to the brain is challenging due to nasal physiological barriers and the drug's physicochemical properties. Innovative approaches, such as cell permeation enhancers, mucoadhesive systems, and nanocarriers in nasal formulations, along with efficient drug delivery devices, show promising preclinical results. Despite this, successful preclinical data does not guarantee clinical effectiveness, highlighting the need for comprehensive clinical investigations to optimize formulations and fully utilize the nose-to-brain interface for peptide delivery.
Collapse
Affiliation(s)
- Tanisha Tabassum Sayka Khan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Zara Sheikh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Simin Maleknia
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Farshad Oveissi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ali Fathi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Terence Abrams
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
36
|
Bonaccorso A, Ortis A, Musumeci T, Carbone C, Hussain M, Di Salvatore V, Battiato S, Pappalardo F, Pignatello R. Nose-to-Brain Drug Delivery and Physico-Chemical Properties of Nanosystems: Analysis and Correlation Studies of Data from Scientific Literature. Int J Nanomedicine 2024; 19:5619-5636. [PMID: 38882536 PMCID: PMC11179666 DOI: 10.2147/ijn.s452316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 06/18/2024] Open
Abstract
Background In the last few decades, nose-to-brain delivery has been investigated as an alternative route to deliver molecules to the Central Nervous System (CNS), bypassing the Blood-Brain Barrier. The use of nanotechnological carriers to promote drug transfer via this route has been widely explored. The exact mechanisms of transport remain unclear because different pathways (systemic or axonal) may be involved. Despite the large number of studies in this field, various aspects still need to be addressed. For example, what physicochemical properties should a suitable carrier possess in order to achieve this goal? To determine the correlation between carrier features (eg, particle size and surface charge) and drug targeting efficiency percentage (DTE%) and direct transport percentage (DTP%), correlation studies were performed using machine learning. Methods Detailed analysis of the literature from 2010 to 2021 was performed on Pubmed in order to build "NANOSE" database. Regression analyses have been applied to exploit machine-learning technology. Results A total of 64 research articles were considered for building the NANOSE database (102 formulations). Particle-based formulations were characterized by an average size between 150-200 nm and presented a negative zeta potential (ZP) from -10 to -25 mV. The most general-purpose model for the regression of DTP/DTE values is represented by Decision Tree regression, followed by K-Nearest Neighbors Regressor (KNeighbor regression). Conclusion A literature review revealed that nose-to-brain delivery has been widely investigated in neurodegenerative diseases. Correlation studies between the physicochemical properties of nanosystems (mean size and ZP) and DTE/DTP parameters suggest that ZP may be more significant than particle size for DTP/DTE predictability.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Alessandro Ortis
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Mazhar Hussain
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | | | - Sebastiano Battiato
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| |
Collapse
|
37
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
38
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
39
|
Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech 2024; 25:96. [PMID: 38710855 DOI: 10.1208/s12249-024-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
40
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
41
|
Lim SH, Yee GT, Khang D. Nanoparticle-Based Combinational Strategies for Overcoming the Blood-Brain Barrier and Blood-Tumor Barrier. Int J Nanomedicine 2024; 19:2529-2552. [PMID: 38505170 PMCID: PMC10949308 DOI: 10.2147/ijn.s450853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
The blood-brain barrier (BBB) and blood-tumor barrier (BTB) pose substantial challenges to efficacious drug delivery for glioblastoma multiforme (GBM), a primary brain tumor with poor prognosis. Nanoparticle-based combinational strategies have emerged as promising modalities to overcome these barriers and enhance drug penetration into the brain parenchyma. This review discusses various nanoparticle-based combinatorial approaches that combine nanoparticles with cell-based drug delivery, viral drug delivery, focused ultrasound, magnetic field, and intranasal drug delivery to enhance drug permeability across the BBB and BTB. Cell-based drug delivery involves using engineered cells as carriers for nanoparticles, taking advantage of their intrinsic migratory and homing capabilities to facilitate the transport of therapeutic payloads across BBB and BTB. Viral drug delivery uses engineered viral vectors to deliver therapeutic genes or payloads to specific cells within the GBM microenvironment. Focused ultrasound, coupled with microbubbles or nanoparticles, can temporarily disrupt the BBB to increase drug permeability. Magnetic field-guided drug delivery exploits magnetic nanoparticles to facilitate targeted drug delivery under an external magnetic field. Intranasal drug delivery offers a minimally invasive avenue to bypass the BBB and deliver therapeutic agents directly to the brain via olfactory and trigeminal pathways. By combining these strategies, synergistic effects can enhance drug delivery efficiency, improve therapeutic efficacy, and reduce off-target effects. Future research should focus on optimizing nanoparticle design, exploring new combination strategies, and advancing preclinical and clinical investigations to promote the translation of nanoparticle-based combination therapies for GBM.
Collapse
Affiliation(s)
- Su Hyun Lim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Gi Taek Yee
- Department of Neurosurgery, Gil Medical Center, Gachon University, School of Medicine, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
42
|
Song L, Tang Y, Law BYK. Targeting calcium signaling in Alzheimer's disease: challenges and promising therapeutic avenues. Neural Regen Res 2024; 19:501-502. [PMID: 37721273 PMCID: PMC10581553 DOI: 10.4103/1673-5374.380898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- LinLin Song
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - YongPei Tang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Betty Yuen Kwan Law
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| |
Collapse
|
43
|
Sonawane D, Pokharkar V. Quercetin-Loaded Nanostructured Lipid Carrier In Situ Gel for Brain Targeting Through Intranasal Route: Formulation, In Vivo Pharmacokinetic and Pharmacodynamic Studies. AAPS PharmSciTech 2024; 25:30. [PMID: 38316672 DOI: 10.1208/s12249-024-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Quercetin (QT) shows potential for protecting against neurodegenerative diseases like Alzheimer's. However, its limited bioavailability and instability in physiological pH hinder its clinical use. The purpose of this work is to construct QT-filled nanostructured lipid carriers (QT-NLC) intranasal in situ gel to enhance pharmacokinetic and pharmacodynamic performance. NLCs were developed using a melt emulsification-high-pressure homogenization and were optimized using design expert software with the Box-Behnken design. NLCs were then incorporated into an in situ gel based on Lutrol F127 and further characterized. The pharmacodynamics of the formulation was evaluated in neurodegeneration induced by trimethyl tin (TMT) Wistar rats. The optimized QT in situ gel had spherical shape, entrapment efficiency of 96.1 ± 4.40%, and in vitro drug release of 83.74 ± 1.40%. The mean particle size was 123.3 ± 5.46 nm. After intranasal administration, in vivo single-dose pharmacokinetic studies demonstrated a significant therapeutic concentration of drug in CNS, having Cmax 183.41 ± 11.76 ng/mL and Tmax of 2 h. The more brain targeting efficiency of NLCs was proved by the developed QT in situ gel, which had a higher drug targeting efficiency (DTE) of 117.47% and drug targeting potential (DTP) of 88.9%. As compared to the neurodegeneration control group, the QT in situ gel-treated group had significantly decreased escape latency and pathlength. Biochemical analysis and histological investigations demonstrated that QT in situ gel exhibited superior anti-Alzheimer's potential compared to standard drug, donepezil. The promising results of the developed and optimized intranasal QT in situ gel suggest its potential and can be used in Alzheimer's disease management.
Collapse
Affiliation(s)
- Devika Sonawane
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India.
| |
Collapse
|
44
|
Chmielewska N, Szyndler J. Intranasal administration of antiseizure medications in chronic and emergency treatment: Hopes and challenges. Seizure 2024; 115:62-67. [PMID: 38184900 DOI: 10.1016/j.seizure.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
Despite the availability of many antiseizure medications (ASMs), 30 % of patients experience pharmacoresistant seizures. High-throughput screening methods undoubtedly remain one of the most important approaches for discovering new molecules to treat seizures. However, the costly and time-consuming nature of drug development prompts us to explore alternative strategies to counteract drug-resistant seizures. One such approach is to consider intranasal administration of known molecules for seizure treatment. In the case of treating epileptic seizures, administering ASMs intranasally may enhance treatment effectiveness and minimize adverse effects. A good example of changes in drug administration is the intranasal administration of fentanyl, which has become a clinical standard in the emergency setting to treat moderate to severe pain in adults and children. This review discusses the utilization of intranasally administered ASMs for both acute and chronic seizures. It addresses various targeted pharmacokinetic approaches, challenges and prospects associated with these regimens. Brief neuroanatomical and molecular rationale for nose-to-brain drug transport is also presented. Furthermore, recent preclinical studies validating the efficacy and brain distribution following intranasal administration of the most commonly used drugs in chronic treatment are also discussed.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland.
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, Warsaw 02- 097, Poland
| |
Collapse
|
45
|
Nguyen LTH, Nguyen NPK, Tran KN, Choi HJ, Moon IS, Shin HM, Yang IJ. Essential oil of Pterocarpus santalinus L. alleviates behavioral impairments in social defeat stress-exposed mice by regulating neurotransmission and neuroinflammation. Biomed Pharmacother 2024; 171:116164. [PMID: 38242042 DOI: 10.1016/j.biopha.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pterocarpus santalinus L. essential oil (PSEO) is traditionally employed for treating fever and mental aberrations. We aim to explore the antidepressant potential of intranasal PSEO in social defeat stress (SDS)-expose mice and identify its mechanisms and components. METHODS PSEO components were analyzed using gas chromatography-mass spectrometry (GC-MS). C57BL/6 mice underwent a 10-day SDS with intranasal PSEO (10, 20 mg/kg) for 21 days. Efficacy was evaluated through changes in behaviors and serum corticosterone (CORT), hippocampal neurotransmitter, and inflammatory cytokine levels. In vitro effects were examined using primary hippocampal neurons, PC12 and BV2 cells. RESULTS GC-MS identified 22 volatile compounds in PSEO, and (+)-ledene (16.7%), cedrol (13.5%), and isoaromadendrene epoxide (7.0%) as major components. PSEO (20 mg/kg) significantly reversed SDS-induced social withdrawal, increased open-area explorations in the open field test (OFT) and elevated plus maze (EPM) test, and reduced immobility time in the tail suspension test (TST) and forced swimming test (FST). PSEO downregulated serum CORT and hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, while increasing hippocampal gamma-aminobutyric acid (GABA), norepinephrine (NE), and serotonin (5-HT) levels. PSEO (0.1, 1, 10 µg/mL) reduced neurotoxicity and neuroinflammation in PC12 and BV2 cells, respectively. PSEO (10 µg/mL) enhanced glutamic acid decarboxylase 6 (GAD6)- and GABA B receptor 1 (GABABR1)-positive puncta in the hippocampal neurons and FM1-43 fluorescence intensity. CONCLUSION Intranasal PSEO exhibited antidepressant-like effects on SDS-exposed mice, potentially through modulating stress hormone, neurotransmission, and neuroinflammation. Further investigation into the pharmacokinetics, bioavailability, and mechanisms of (+)-ledene, cedrol, and isoaromadendrene epoxide is needed.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, and Medical Institute of Dongguk University, Gyeongju, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
46
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Matías-Pérez D, Antonio-Estrada C, Guerra-Martínez A, García-Melo KS, Hernández-Bautista E, García-Montalvo IA. Relationship of quercetin intake and oxidative stress in persistent COVID. Front Nutr 2024; 10:1278039. [PMID: 38260057 PMCID: PMC10800910 DOI: 10.3389/fnut.2023.1278039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Diana Matías-Pérez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Carolina Antonio-Estrada
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Araceli Guerra-Martínez
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Karen Seydel García-Melo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Emilio Hernández-Bautista
- Department of Chemical Engineering, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Iván Antonio García-Montalvo
- Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
48
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
49
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
50
|
Di Gioia S, Fracchiolla G, Cometa S, Perna FM, Quivelli AF, Trapani G, Daniello V, Nobile C, Hossain MN, Trapani A, Conese M. Carboxymethyl chitosan dopamine conjugates: Synthesis and evaluation for intranasal anti Parkinson therapy. Int J Biol Macromol 2023; 253:127174. [PMID: 37783252 DOI: 10.1016/j.ijbiomac.2023.127174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
With respect to the Parkinson's disease (PD), herein, we aimed at synthetizing and characterizing two novel macromolecular conjugates where dopamine (DA) was linked to N,O-carboxymethyl chitosan or O-carboxymethyl chitosan, being both conjugates obtained from an organic solvent free synthetic procedure. They were characterized by FT-IR, 1H NMR spectroscopies, whereas thermal analysis (including Differential Scanning Calorimetry and Thermal Gravimetric Analysis) revealed good stability of the two conjugates after exposure at temperatures close to 300 °C. Release studies in simulated nasal fluid elucidated that a faster release occurred since O-carboxymethyl chitosan-DA conjugate maybe due to the less steric hindrance exerted by the polymeric moiety. The CMCS-DA conjugates prepared in aqueous medium may self-assembly to form polymeric micelles and/or may form polymeric nanoparticles. TEM and Photon correlation spectroscopy lent support for polymeric nanoparticle formation. Moreover, such CMCS-DA conjugates showed antioxidant activity, as demonstrated by DPPH radical scavenging assay. Finally, cytocompatibility studies with neuroblastoma SH-SY5Y cells showed no cytotoxicity of both conjugates, whereas their uptake increased from 2.5 to 24 h and demonstrated in 40-66 % of cells.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., via E. Orabona, 4-70125 Bari, Italy
| | | | - Filippo Maria Perna
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., via E. Orabona, 4-70125 Bari, Italy
| | - Andrea Francesca Quivelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., via E. Orabona, 4-70125 Bari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., via E. Orabona, 4-70125 Bari, Italy
| | - Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Concetta Nobile
- CNR-NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., via E. Orabona, 4-70125 Bari, Italy.
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|