1
|
Moreira Silva EZ, Rodrigues AC, Kohler AF, Cruz JV, Prado KB, Gradia DF, de Oliveira DP, Pestana CB, Leme DM. Evaluating dermal toxicity of the flame retardant aluminum diethylphosphinate by in silico-in vitro testing strategy. CHEMOSPHERE 2025; 379:144421. [PMID: 40286754 DOI: 10.1016/j.chemosphere.2025.144421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Flame retardants (FRs) are a group of chemicals used in different products to improve fire safety; however, many of them negatively impact human health, encouraging the use of safer alternatives. The aluminum diethylphosphinate (AlPi) is one of the potential alternatives to harmful FRs; however, close data gaps on human toxicity and enhanced mechanistic understanding are still needed. This study evaluated the dermal toxicity potential of AlPi using in silico models (OECD QSAR Toolbox, Toxtree) and a multi-biomarkers approach with human keratinocyte models (HaCaT cell line and reconstructed human epidermis (RHE) model). Our findings revealed no significant increases in reactive oxygen species (ROS, H2DCFDA) or pro-inflammatory cytokines (IL-6, IL-8, IL-10, IL-1β, IL12p70, TNF) in HaCaT cells exposed to AlPi at non-cytotoxic concentrations (30, 60, 120 μg/ml). This suggests that AlPi does not induce oxidative stress or inflammatory responses in the skin. Additionally, in silico predictions and in vitro assays (HaCaT - IL-6; OECD TG 439 with SkinVitro-RHE) did not classify AlPi as a skin sensitizer or skin irritant. Regarding changes in DNA, AlPi-exposed HaCaT cells did not show significant levels of γ-H2AX; however, this FR increased the level of 5-hydroxymethylcytosine (5-hmC) and TET1 expression, which is a gene involved in the regulation of the DNA methylation. In summary, most biomarker responses indicated that AlPi poses minimal toxic effects on the skin; however, further research is needed to understand better the biological consequences of its effect on DNA methylation.
Collapse
Affiliation(s)
| | | | - Ana Flávia Kohler
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Juliana Varella Cruz
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karin Braun Prado
- Department of Basic Pathology, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Correa Barrera BS, Alves IA, Aragón DM. Novel Methods Developed in Bioequivalence Assays: Patent Review. AAPS PharmSciTech 2025; 26:91. [PMID: 40133713 DOI: 10.1208/s12249-025-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
This study examines advancements in bioequivalence (BE) assessment methods, with a focus on in vitro-in vivo correlation (IVIVC) and dissolution testing technologies. A systematic patent search was conducted via Espacenet, following PRISMA criteria and the study objectives, revealing 216 relevant patents, of which 28 were selected based on their contributions to novel BE methodologies. Analysis indicates a rapid increase in patent filings from 2021 to 2022, with a significant concentration of contributions from China. Key innovations include enhancements in dissolution testing apparatus, application of physiologically based pharmacokinetic (PBPK) modeling for IVIVC, and advanced statistical approaches for BE assessment. In dissolution testing, ƒ1 and ƒ2 factors remain essential metrics for assessing similarity, especially in solid oral dosage forms. These innovations enhance the efficiency (streamline) of BE evaluations, optimizing the biowaiver process and minimizing the need for extensive clinical trials while ensuring greater precision and reliability. The dissolution test, particularly when combined with PBPK models, allows for predictive evaluation of formulation changes and population-specific responses, fostering efficiency in drug development. Overall, these novel BE assessment approaches provide a framework for regulatory compliance, cost-effective production, and assurance of therapeutic equivalence in generic formulations. While they may not always be implemented in practice, they contribute significantly to innovation in the field, driving advancements in bioequivalence evaluation. This review highlights the evolving landscape of BE and IVIVC methodologies and underscores the importance of incorporating innovative testing approaches to advance pharmaceutical science and regulatory practices.
Collapse
Affiliation(s)
- Brian Sebastian Correa Barrera
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, 111321, Bogotá , D.C., Colombia
| | - Izabel Almeida Alves
- Faculdade de Farmácia, Departamento Do Medicamento, Universidad Federal da Bahia, Rua Augusto Viana, S/N - Palácio da Reitoria, Canela, 40110-909, Salvador, Bahia, Brasil
- Programa de Pós-Graduação Em Farmácia, Universidade Estadual da Bahia, Rua Silveira Martins, 2555, Cabula, 41.150-000, Salvador, Bahia, Brasil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, 111321, Bogotá , D.C., Colombia.
| |
Collapse
|
3
|
Steyn JD, Haasbroek-Pheiffer A, Pheiffer W, Weyers M, van Niekerk SE, Hamman JH, van Staden D. Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models. Pharmaceuticals (Basel) 2025; 18:195. [PMID: 40006008 PMCID: PMC11859300 DOI: 10.3390/ph18020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the skin. Some drugs exhibit poor permeation across biological membranes or may experience excessive degradation during first-pass metabolism, which tends to limit their bioavailability. Various strategies have been used to improve drug bioavailability. Absorption enhancement strategies include the co-administration of chemical permeation enhancers, enzymes, and/or efflux transporter inhibitors, chemical changes, and specialized dosage form designs. Models with physiological relevance are needed to evaluate the efficacy of drug absorption enhancement techniques. Various in vitro cell culture models and ex vivo tissue models have been explored to evaluate and quantify the effectiveness of drug permeation enhancement strategies. This review deliberates on the use of in vitro and ex vivo models for the evaluation of drug permeation enhancement strategies for selected extravascular drug administration routes including the nasal, oromucosal, pulmonary, oral, rectal, and transdermal routes of drug administration.
Collapse
Affiliation(s)
- Johan D. Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Wihan Pheiffer
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Suzanne E. van Niekerk
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Josias H. Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Daniélle van Staden
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| |
Collapse
|
4
|
Krumpholz L, Polak S, Wiśniowska B. Physiologically-based pharmacokinetic model of in vitro porcine ear skin permeation for drug delivery research. J Appl Toxicol 2024; 44:1936-1948. [PMID: 39134399 DOI: 10.1002/jat.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 11/09/2024]
Abstract
In silico techniques, such as physiologically based pharmacokinetic modeling (PBKP), are recently gaining importance. Computational methods in drug discovery and development and the generic drugs industry enhance research effectiveness by saving time and money and avoiding ethical issues. One key advantage is the ability to conduct toxicology studies without risking harm to living beings. This study aimed to repurpose the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) PBPK model for simulation permeation through porcine ear skin under in vitro conditions. The work was divided into four steps: (1) the development of a pig ear skin model based on a previously collected dataset; (2) testing the model's ability to discriminate permeation between pig ear, human abdomen, and human back skin; (3) development of a caffeine permeation model; and (4) testing the caffeine model's performance against in vitro generated data sourced from the scientific literature. Data from 31 manuscripts were used for the development of the pig skin model. Based on these data, values specific to pig skin were found for 22 parameters of the MPML MechDermA model. The model was able to discriminate permeation between pig and human skin. A caffeine model was developed and used to simulate seven experiments identified in the literature. The model's performance was assessed by comparing simulated to observed results. Based on a visual check, all simulations were considered acceptable, whereas three out of seven experiments met the twofold difference criterion. The variability of the experimental data was considered the biggest challenge for reliable model assessment.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Sebastian Polak
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Certara UK Ltd. (Simcyp Division), Sheffield, UK
| | - Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Gordhan BG, Liebenberg D, Scarlatti G, Herrera C, Chiodi F, Martinson N, Fox J, Kana BD. Ex vivo challenge models for infectious diseases. Crit Rev Microbiol 2024; 50:785-804. [PMID: 37909097 DOI: 10.1080/1040841x.2023.2274855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Dale Liebenberg
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bavesh Davandra Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Lourenço D, Miranda M, Sousa JJ, Vitorino C. Therapeutic-driven framework for bioequivalence assessment of complex topical generic drug products. Int J Pharm 2024; 661:124398. [PMID: 38964491 DOI: 10.1016/j.ijpharm.2024.124398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products. Nevertheless, significant financial and time resources were required to be allocated owing to the inherent complexity of these studies. To address this problem, regulatory authorities have begun to accept alternative approaches that could lead to a biowaiver, avoiding the need for clinical endpoint trials. These alternatives encompass various in vitro and/or in vivo techniques that have been analysed and the benefits and drawbacks of each method have been considered. Furthermore, other factors like the integration of a quality by design framework to ensure a comprehensive understanding of the product and process quality attributes have also been taken into account. This review delves into international regulatory recommendations for semisolid topical products, with a focus on those established by the European Medicines Agency, as well as the Food and Drug Administration. Both approaches were carefully examined, discussing aspects such as acceptance criteria, sample size, and microstructure evaluation. Additionally, novel and innovative therapeutic-driven approaches based on in vitro disease models for the rapid and effective development of topical generic products are presented.
Collapse
Affiliation(s)
- Diogo Lourenço
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Miranda
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
7
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
8
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Kichou H, Bonnier F, Dancik Y, Bakar J, Michael-Jubeli R, Caritá AC, Perse X, Soucé M, Rapetti L, Tfayli A, Chourpa I, Munnier E. Strat-M® positioning for skin permeation studies: A comparative study including EpiSkin® RHE, and human skin. Int J Pharm 2023; 647:123488. [PMID: 37805151 DOI: 10.1016/j.ijpharm.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the development and optimization of dermatological products, In Vitro Permeation Testing (IVPT) is pivotal for controlled study of skin penetration. To enhance standardization and replicate human skin properties reconstructed human skin and synthetic membranes are explored as alternatives. Strat-M® is a membrane designed to mimic the multi-layered structure of human skin for IVPT. For instance, in Strat-M®, the steady-state fluxes (JSS) of resorcinol in formulations free of permeation enhancers were found to be 41 ± 5 µg/cm2·h for the aqueous solution, 42 ± 6 µg/cm2·h for the hydrogel, and 40 ± 6 µg/cm2·h for the oil-in-water emulsion. These results were closer to excised human skin (5 ± 3, 9 ± 2, 13 ± 6 µg/cm2·h) and surpassed the performance of EpiSkin® RHE (138 ± 5, 142 ± 6, and 162 ± 11 µg/cm2·h). While mass spectrometry and Raman microscopy demonstrated the qualitative molecular similarity of EpiSkin® RHE to human skin, it was the porous and hydrophobic polymer nature of Strat-M® that more faithfully reproduced the skin's diffusion-limiting barrier. Further validation through similarity factor analysis (∼80-85%) underscored Strat-M®'s significance as a reliable substitute for human skin, offering a promising approach to enhance realism and reproducibility in dermatological product development.
Collapse
Affiliation(s)
- Hichem Kichou
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- LVMH Recherche, 185 Av. de Verdun, 45800 Saint-Jean-de-Braye, France
| | - Yuri Dancik
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2B1, UK
| | - Joudi Bakar
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Rime Michael-Jubeli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Amanda C Caritá
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Xavier Perse
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Martin Soucé
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Laetitia Rapetti
- Alphenyx, 430 avenue du Maréchal Lattre de Tassigny, 13009 Marseille, France
| | - Ali Tfayli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France.
| |
Collapse
|
10
|
Nguyen R, Barry M, Azevedo Loiola R, Ferret PJ, Andres E. PhotoSENSIL-18 assay development: Enhancing the safety testing of cosmetic raw materials and finished products to support the in vitro photosensitization assessment? Toxicology 2023; 495:153613. [PMID: 37558156 DOI: 10.1016/j.tox.2023.153613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Although photosensitization remains a major toxicological endpoint for the safety assessment of cosmetic products and their raw materials, there is no validated in vitro method available for the evaluation of this adverse effect so far. Given that previous studies have proposed that the Interleukine-18 (IL-18) plays a key role in keratinocyte-driven pro-inflammatory responses specific of the skin sensitization process, we hypothesize that IL-18 might be used as a specific biomarker for in vitro photosensitization assessment. The aim of the present study was the set-up of a new in vitro assay using IL-18 as a biomarker for the identification of photosensitizers in a reconstructed human epidermis (RHE) model. EpiCS™ RHE were incubated with a set of 16 known sensitising / phototoxic / photosensitizing substances and exposed to ultra-violet (UV) irradiation. Then, the cell viability was analysed by MTT assay, while the IL-18 secretion was quantified by ELISA. Preliminary assays have shown that 1 h of incubation followed by a recovery period of 23 h induced the highest IL-18 production in response to UV exposure. This protocol was used to test 16 substances and a ratio of IL-18 production (UV+/UV- ratio) was then generated. Our data shows that the cut-off of 1.5 (UV+/UV- ratio) is the most predictive model among the tested conditions, being capable of identifying true positive photosensitizers (8 of 9) with a good prediction in comparison with in vivo data. In a nutshell, our data suggests that the PhotoSENSIL-18 is a promising in vitro method for identification of photosensitizing substances. Although further studies are necessary to optimize the model, we foresee that the PhotoSENSIL-18 assay can be used in the context of an Integrative Approach to Testing and Assessment (IATA) of chemicals.
Collapse
Affiliation(s)
- R Nguyen
- Laboratoires Pierre Fabre, 3 avenue Hubert Curien, BP 13562, 31035 Toulouse Cedex, France
| | - M Barry
- Oroxcell SAS, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - R Azevedo Loiola
- Oroxcell SAS, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - P-J Ferret
- Laboratoires Pierre Fabre, 3 avenue Hubert Curien, BP 13562, 31035 Toulouse Cedex, France
| | - E Andres
- Oroxcell SAS, 102 avenue Gaston Roussel, 93230 Romainville, France.
| |
Collapse
|
11
|
Veit JGS, Weidow M, Serban MA. A versatile, bioengineered skin reconstruction device designed for use in austere environments. Front Bioeng Biotechnol 2023; 11:1208322. [PMID: 37362212 PMCID: PMC10285514 DOI: 10.3389/fbioe.2023.1208322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Austere environments in which access to medical facilities, medical personnel, or even water and electricity is limited or unavailable pose unique challenges for medical device product design. Currently existing skin substitutes are severely inadequate for the treatment of severe burns, chronic wounds, battlefield injuries, or work-related injuries in resource-limited settings. For such settings, an ideal device should be biocompatible, bioresorbable, promote tissue healing, not require trained medical personnel for deployment and use, and should enable topical drug delivery. As proof of concept for such a device, silk fibroin and an antioxidant hyaluronic acid derivative were chosen as primary constituents. The final formulation was selected to optimize tensile strength while retaining mechanical compliance and protection from reactive oxygen species (ROS). The ultimate tensile strength of the device was 438.0 KPa. Viability of dermal fibroblasts challenged with ROS-generating menadione decreased to 49.7% of control, which was rescued by pre-treatment with the hyaluronic acid derivative to 85.0% of control. The final device formulation was also tested in a standardized, validated, in vitro skin irritation test which revealed no tissue damage or statistical difference from control. Improved topical drug delivery was achieved via an integrated silk fibroin microneedle array and selective device processing to generate crosslinked/through pores. The final device including these features showed a 223% increase in small molecule epidermal permeation relative to the control. Scaffold porosity and microneedle integrity before and after application were confirmed by electron microscopy. Next, the device was designed to be self-adherent to enable deployment without the need of traditional fixation methods. Device tissue adhesive strength (12.0 MPa) was evaluated and shown to be comparable to a commercial adhesive surgical drape (12.9 MPa) and superior to an over-the-counter liquid bandage (4.1 MPa). Finally, the device's wound healing potential was assessed in an in vitro full-thickness skin wound model which showed promising device integration into the tissue and cellular migration into and above the device. Overall, these results suggest that this prototype, specifically designed for use in austere environments, is mechanically robust, is cytocompatible, protects from ROS damage, is self-adherent without traditional fixation methods, and promotes tissue repair.
Collapse
Affiliation(s)
- Joachim G. S. Veit
- Serban Lab, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Morgan Weidow
- Serban Lab, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Monica A. Serban
- Serban Lab, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| |
Collapse
|