1
|
Khalil RM, Shalaby ES, Abdelhameed MF, Shabana MEA, Wagdi MA. Novel surfactant-based elastic vesicular system as a promising approach for the topical delivery of Ibuprofen for enhanced wound healing. J Pharm Sci 2025:103796. [PMID: 40252806 DOI: 10.1016/j.xphs.2025.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
The objective of the research was to develop and evaluate ibuprofen (Ibu) loaded spanlastics as an efficient wound healing treatment. Ibu- loaded vesicles were prepared employing ethanol injection technique using three edge activators; Tego® care 450, Cremophor RH 40 and Crodafos™ CES along with Span 60. Entrapment efficiency percentage (EE %), vesicular size and zeta potential were evaluated to select the optimal formulations. In- vitro release study, differential scanning calorimetry, xray diffraction and transmission electron microscopy were performed. Selected formulations were incorporated in a hydrogel to assess their in-vivo wound healing efficiency using full-thickness wound model. The vesicles exhibited high EE% (60.6-93.9%), particle size ranged from 114.8 to 663.5 nm and zeta potential was from -26.2 to -42.3 mV which indicated good stability. In-vitro release pattern was biphasic. In-vivo assessment of wound healing efficacy of selected Ibu-loaded spanlastics disclosed significant reduction of wound size. A significant inhibition in TNF-α secretion as well as increased production of VEGF and Col-1 were noticed in rats treated with topical application of Ibu-spanlastics and an almost normal histological structure was observed in their microphotographs. These results confirmed that spanlastics might be a peculiar delivery system for Ibu to improve its topical wound healing efficacy.
Collapse
Affiliation(s)
- Rawia Mohamed Khalil
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Mohamed Fayed Abdelhameed
- Pharmacology Department, Medical Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Marwa El-Araby Shabana
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Marwa Anwar Wagdi
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Silva-Pinto PA, de Pontes JTC, Aguilar-Morón B, Canales CSC, Pavan FR, Roque-Borda CA. Phytochemical insights into flavonoids in cancer: Mechanisms, therapeutic potential, and the case of quercetin. Heliyon 2025; 11:e42682. [PMID: 40084006 PMCID: PMC11904581 DOI: 10.1016/j.heliyon.2025.e42682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Quercetin, a flavonoid known for its potent antioxidant and anti-inflammatory properties, has gained attention in cancer therapy due to its ability to modulate key molecular pathways involved in tumor progression and immune evasion. This review provides a comprehensive analysis of quercetin's effects on pathways such as PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and JAK/STAT, which are central to cancer cell survival, proliferation, and apoptosis. Through inhibition of PI3K/Akt/mTOR and MAPK/ERK signaling, quercetin promotes apoptosis and reduces proliferation specifically in cancer cells while sparing healthy cells. Additionally, quercetin downregulates NF-κB activity and modulates JAK/STAT signaling, enhancing immune recognition of cancer cells and decreasing inflammation in the tumor microenvironment. Emerging nanoformulation strategies are also discussed, highlighting how nanotechnology can improve quercetin's bioavailability and targeting capabilities. Unlike other reviews, this work uniquely integrates molecular insights with cutting-edge nanoformulations, showcasing quercetin's dual potential as a therapeutic agent and an immune modulator in the evolving landscape of cancer treatment. This review underscores quercetin's multifaceted role in cancer treatment and suggests future directions to optimize its clinical efficacy, particularly in combination with conventional therapies.
Collapse
Affiliation(s)
- Piero Alex Silva-Pinto
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| | - Janaína Teixeira Costa de Pontes
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Brigitte Aguilar-Morón
- Facultad de Ingeniería de Procesos – Universidad Nacional de San Agustín, Arequipa, Arequipa, Republic of Peru
| | | | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| |
Collapse
|
3
|
Karati D, Mukherjee S, Prajapati BG. Unveiling Spanlastics as a Novel Carrier for Drug Delivery: A Review. Pharm Nanotechnol 2025; 13:133-142. [PMID: 38258763 DOI: 10.2174/0122117385286921240103113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Innovative colloidal preparations that can alter the pharmacological properties of drugs have been made possible by the advancement of nanotechnology. Recent advances in the sciences of the nanoscale have led to the creation of new methods for treating illnesses. Developments in nanotechnology may lessen the side effects of medicine by using effective and regulated drug delivery methods. A promising drug delivery vehicle is spanlastics, an elastic nanovesicle that can transport a variety of drug compounds. Spanlastics have expanded the growing interest in many types of administrative pathways. Using this special type of vesicular carriers, medications intended for topical, nasal, ocular, and trans-ungual treatments are delivered to specific areas. Their elastic and malleable structure allows them to fit into skin pores, making them ideal for transdermal distribution. Spanlastic is composed of non-ionic surfactants or combinations of surfactants. Numerous studies have demonstrated how spanlastics significantly improve, drug bioavailability, therapeutic effectiveness, and reduce medication toxicity. The several vesicular systems, composition and structure of spanlastics, benefits of spanlastics over alternative drug delivery methods, and the process of drug penetration via skin are all summarized in this paper. Additionally, it provides an overview of the many medications that may be treated using spanlastic vesicles. The primary benefits of these formulations were associated with their surface properties, as a variety of proteins might be linked to the look. For instance, procedure assessment and gold nanoparticles were employed as biomarkers for different biomolecules, which included tumor label detection. Anticipate further advancements in the customization and combining of spanlastic vesicles with appropriate zeta potential to transport therapeutic compounds to specific areas for enhanced disease treatment.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, India
| | - Bhupendra G Prajapati
- Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, 384012, Mahesana, Gujarat, India
| |
Collapse
|
4
|
Fouad SA, Badr TA, Abdelbary A, Fadel M, Abdelmonem R, Jasti BR, El-Nabarawi M. New Insight for Enhanced Topical Targeting of Caffeine for Effective Cellulite Treatment: In Vitro Characterization, Permeation Studies, and Histological Evaluation in Rats. AAPS PharmSciTech 2024; 25:237. [PMID: 39384727 DOI: 10.1208/s12249-024-02943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Cellulite (CLT) is one of the commonly known lipodystrophy syndromes affecting post-adolescent women worldwide. It is topographically characterized by an orange-peel, dimpled skin appearance hence, it is an unacceptable cosmetic problem. CLT can be modulated by surgical procedures such as; liposuction and mesotherapy. But, these options are invasive, expensive and risky. For these reasons, topical CLT treatments are more preferred. Caffeine (CA), is a natural alkaloid that is well-known for its prominent anti-cellulite effects. However, its hydrophilicity hinders its cutaneous permeation. Therefore, in the present study CA was loaded into solid lipid nanoparticles (SLNs) by high shear homogenization/ultrasonication. CA-SLNs were prepared using Compritol® 888 ATO and stearic acid as solid lipids, and span 60 and brij™35, as lipid dispersion stabilizing agents. Formulation variables were adjusted to obtain entrapment efficiency (EE > 75%), particle size (PS < 350 nm), zeta potential (ZP < -25 mV) and polydispersity index (PDI < 0.5). CA-SLN-4 was selected and showed maximized EE (92.03 ± 0.16%), minimized PS (232.7 ± 1.90 nm), and optimum ZP (-25.15 ± 0.65 mV) and PDI values (0.24 ± 0.02). CA-SLN-4 showed superior CA release (99.44 ± 0.36%) compared to the rest CA-SLNs at 1 h. TEM analysis showed spherical, nanosized CA-SLN-4 vesicles. Con-LSM analysis showed successful CA-SLN-4 permeation transepidermally and via shunt diffusion. CA-SLN-4 incorporated into Noveon AA-1® hydrogel (CA-SLN-Ngel) showed accepted physical/rheological properties, and in vitro release profile. Histological studies showed that CA-SLN-Ngel significantly reduced mean subcutaneous fat tissue (SFT) thickness with 4.66 fold (p = 0.035) and 4.16 fold (p = 0.0001) compared to CA-gel, at 7th and 21st days, respectively. Also, significant mean SFT thickness reduction was observed compared to untreated group with 4.83 fold (p = 0.0005) and 3.83 fold (p = 0.0043), at 7th and 21st days, respectively. This study opened new avenue for CA skin delivery via advocating the importance of skin appendages. Hence, CA-SLN-Ngel could be a promising nanocosmeceutical gel for effective CLT treatment.
Collapse
Affiliation(s)
- Shahinaze A Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, 6th of October city, Giza, Egypt.
| | - Taher A Badr
- Biolink Egypt for Chemical Industries, 6th of October city, Giza, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Maha Fadel
- Department of Medical Applications of Laser (MAL), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California, USA
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Tawfeek HM, Mekkawy AI, Abdelatif AAH, Aldosari BN, Mohammed-Saeid WA, Elnaggar MG. Intranasal delivery of sulpiride nanostructured lipid carrier to central nervous system; in vitro characterization and in vivo study. Pharm Dev Technol 2024; 29:841-854. [PMID: 39264666 DOI: 10.1080/10837450.2024.2404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
The low and erratic oral absorption of sulpiride (SUL) a dopaminergic receptor antagonist, and its P-glycoprotein efflux in the gastrointestinal tract restricted its oral route for central nervous system disorders. An intranasal formulation was formulated based on nanostructured lipid carrier to tackle these obstacles and deliver SUL directly to the brain. Sulipride-loaded nanostructured lipid carrier (SUL-NLC) was prepared using compritol®888 ATO and different types of liquid lipids and emulsifiers. SUL-NLCs were characterized for their particle size, charge, and encapsulation efficiency. Morphology and compatibility with other NLC excipients were also studied. Moreover, SUL in vitro release, nanodispersion stability, in vivo performance and SUL pharmacokinetics were investigated. Results delineates that SUL-NLC have a particle size ranging from 366.2 ± 62.1 to 640.4 ± 50.2 nm and encapsulation efficiency of 75.5 ± 1.5%. SUL showed a sustained release pattern over 24 h and maintained its physical stability for three months. Intranasal SUL-NLC showed a significantly (p < 0.01) higher SUL brain concentration than that found in plasma after oral administration of commercial SUL product with 4.47-fold increase in the relative bioavailability. SUL-NLCs as a nose to brain approach is a promising formulation for enhancing the SUL bioavailability and efficient management of neurological disorders.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed A H Abdelatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Waleed A Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Hemmati J, Chiani M, Chegini Z, Seifalian A, Arabestani MR. Surface modified niosomal quercetin with cationic lipid: an appropriate drug delivery system against Pseudomonas aeruginosa Infections. Sci Rep 2024; 14:13362. [PMID: 38862754 PMCID: PMC11167023 DOI: 10.1038/s41598-024-64416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024] Open
Abstract
The Increase in infections caused by resistant strains of Pseudomonas aeruginosa poses a formidable challenge to global healthcare systems. P. aeruginosa is capable of causing severe human infections across diverse anatomical sites, presenting considerable therapeutic obstacles due to its heightened drug resistance. Niosomal drug delivery systems offer enhanced pharmaceutical potential for loaded contents due to their desirable properties, mainly providing a controlled-release profile. This study aimed to formulate an optimized niosomal drug delivery system incorporating stearylamine (SA) to augment the anti-bacterial and anti-biofilm activities of quercetin (QCT) against both standard and clinical strains of P. aeruginosa. QCT-loaded niosome (QCT-niosome) and QCT-loaded SA- niosome (QCT-SA- niosome) were synthesized by the thin-film hydration technique, and their physicochemical characteristics were evaluated by field emission scanning electron microscopy (FE-SEM), zeta potential measurement, entrapment efficacy (EE%), and in vitro release profile. The anti-P. aeruginosa activity of synthesized niosomes was assessed using minimum inhibitory and bactericidal concentrations (MICs/MBCs) and compared with free QCT. Additionally, the minimum biofilm inhibitory and eradication concentrations (MBICs/MBECs) were carried out to analyze the ability of QCT-niosome and QCT-SA-niosome against P. aeruginosa biofilms. Furthermore, the cytotoxicity assay was conducted on the L929 mouse fibroblasts cell line to evaluate the biocompatibility of the formulated niosomes. FE-SEM analysis revealed that both synthesized niosomal formulations exhibited spherical morphology with different sizes (57.4 nm for QCT-niosome and 178.9 nm for QCT-SA-niosome). The EE% for cationic and standard niosomal formulations was reported at 75.9% and 59.6%, respectively. Both formulations showed an in vitro sustained-release profile, and QCT-SA-niosome exhibited greater stability during a 4-month storage time compared to QCT-niosome. Microbial experiments indicated that both prepared formulations had higher anti-bacterial and anti-biofilm activities than free QCT. Also, the QCT-SA-niosome exhibited greater reductions in MIC, MBC, MBIC, and MBEC values compared to the QCT-niosome at equivalent concentrations. This study supports the potential of QCT-niosome and QCT-SA-niosome as effective agents against P. aeruginosa infections, manifesting significant anti-bacterial and anti-biofilm efficacy alongside biocompatibility with L929 cell lines. Furthermore, our results suggest that optimized QCT-niosome with cationic lipids could efficiently target P. aeruginosa cells with negligible cytotoxic effect.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd & Liberum Health Ltd), LBIC, University of London, London, UK
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Mehraji S, Saadatmand M, Eskandari M. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications. Int J Biol Macromol 2024; 263:129685. [PMID: 38394762 DOI: 10.1016/j.ijbiomac.2024.129685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Microfluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges. The overall goal of this study was to produce mono-disperse drug-carrying microgels capable of controlled drug release. To achieve this goal, this study used a stream-focused microfluidic chip containing a coating current to prevent chip clogging. Alginate oxide was synthesized with a 30 % oxidation percentage. Alginate oxide, gelatin, and compositions of them with volume ratios of 50-50, 70-30, and 30-70, by determining their appropriate weight percentage, were used for the controlled release of letrozole. The properties of the produced microgels were measured through various tests such as drug release test, loading percentage, SEM, FTIR, swelling ratio, and dimensional stability. It was found that microgels made of a combination of alginate oxide-gelatin with volume ratios of 70-30 had a good swelling ratio and structural stability. The drug loading percentages for alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70, respectively, were 56 %, 68 %, and 66 %, 61 % and the alginate oxide-gelatin with a volume ratio of 70-30 compared to other samples had over 70 % drug loading percentages. Furthermore, samples of alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70 had 94 %, 63 %, 56 %, and 68 % drug release in 13 days, respectively. However, alginate oxide-gelatin with a volume ratio of 70-30 had a release rate of about 50 % in 13 days, which is a more controlled release for letrozole compared to the volume ratios of 50-50 and 30-70. Examining the drug release profile, it was concluded that drug release follows the Higuchi model and therefore follows Fick's first law of diffusion. It can be concluded that the combination of alginate oxide-gelatin produces more suitable microgels than alginate and alginate oxide for the controlled-release of letrozole. A comparison of microgels of alginate oxide and gelatin with volume ratios of 50-50 and 70-30 had better results for the cytotoxicity study compared to other samples.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic University), Tehran, Iran.
| |
Collapse
|
8
|
Makhadmeh GN, AlZoubi T, Aljarrah AM, Abu Mhareb MH, Alami JHA, Zyoud SH. Enhancing photodynamic therapy efficacy through silica nanoparticle-mediated delivery of temoporfin for targeted in vitro breast cancer treatment. Photodiagnosis Photodyn Ther 2024; 46:104034. [PMID: 38423234 DOI: 10.1016/j.pdpdt.2024.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Photodynamic therapy (PDT), an approach to cancer treatment, relies fundamentally on two key elements: a light source and a photosensitizing agent. A primary challenge in PDT is the efficient delivery of photosensitizers to the target tissue, hindered by the body's reticuloendothelial system (RES). Silica nanoparticles (SiNPs), known for their unique properties, emerge as ideal carriers in this context. In this study, SiNPs are utilized to encapsulate Temoporfin, a photosensitizer, aiming to enhance its delivery and reduce toxicity, particularly for treating MCF-7 cancer cells in vitro. The synthesized SiNPs were meticulously characterized by their size and shape using Transmission Electron Microscopy (TEM). The study also involved evaluating the cytotoxicity of both encapsulated and naked Temoporfin across various concentrations. The objective was to determine the ideal concentration and exposure duration using red laser light (intensity approximately 110 mW/cm2) to effectively eradicate MCF-7 cells. The findings revealed that Temoporfin, when encapsulated in SiNPs, demonstrated significantly greater effectiveness compared to its naked form, with notable improvements in concentration efficiency (50 %) and exposure time efficiency (76.6 %). This research not only confirms the superior effectiveness of encapsulated Temoporfin in eliminating cancer cells but also highlights the potential of SiNPs as an efficient drug delivery system in photodynamic therapy. This sets the groundwork for more advanced strategies in cancer treatment.
Collapse
Affiliation(s)
- Ghaseb N Makhadmeh
- General Education Department, Skyline University College, P. O. Box 1797, Sharjah, the United Arab Emirates
| | - Tariq AlZoubi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Amer M Aljarrah
- Engineering Technology & Science Division, Sharjah Higher College of Technology, P.O Box 7947, Sharjah, the United Arab Emirates
| | - Mohammad Hasan Abu Mhareb
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia
| | - Jamil H Al Alami
- Department of Biomedical Engineering, Ajman University, P.O. Box 346, Ajman, the United Arab Emirates
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; Nonlinear Dynamics Research Center (NDRC), Ajman University, P.O. Box 346, Ajman, the United Arab Emirates; School of Physics, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
| |
Collapse
|
9
|
Manzari‐Tavakoli A, Babajani A, Tavakoli MM, Safaeinejad F, Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med 2024; 13:e7010. [PMID: 38491817 PMCID: PMC10943377 DOI: 10.1002/cam4.7010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 03/18/2024] Open
Abstract
Cancer remains a leading cause of death worldwide, necessitating the development of innovative and more effective treatment strategies. Conventional cancer treatments often suffer from limitations such as systemic toxicity, poor pharmacokinetics, and drug resistance. Recently, there has been growing attention to utilizing natural compounds derived from various sources as possible cancer therapeutics. Natural compounds have demonstrated diverse bioactive properties, including antioxidant, anti-inflammatory, and antitumor effects, making them attractive candidates for cancer treatment. However, their limited solubility and bioavailability present challenges for effective delivery to cancer cells. To overcome these limitations, researchers have turned to nanotechnology-based drug delivery systems. Nanoparticles, with their small size and unique properties, can encapsulate therapeutic agents and offer benefits such as improved solubility, prolonged drug release, enhanced cellular uptake, and targeted delivery. Functionalizing nanoparticles with specific ligands further enhances their precision in recognizing and binding to cancer cells. Combining natural compounds with nanotechnology holds great promise in achieving efficient and safe cancer treatments by enhancing bioavailability, pharmacokinetics, and selectivity toward cancer cells. This review article provides an overview of the advancements in utilizing natural substances and nanotechnology-based drug delivery systems for cancer treatment. It discusses the benefits and drawbacks of various types of nanoparticles, as well as the characteristics of natural compounds that make them appealing for cancer therapy. Additionally, current research on natural substances and nanoparticles in preclinical and clinical settings is highlighted. Finally, the challenges and future perspectives in developing natural compound-nanoparticle-based cancer therapies are discussed.
Collapse
Affiliation(s)
| | - Amirhesam Babajani
- Oncopathology Research Center, Department of Molecular Medicine, School of MedicineIran University of Medical SciencesTehranIran
| | - Maryam Manzari Tavakoli
- Department of PhytochemistryMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLDShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Elbeltagi S, Saeedi AM, Eldin ZE, Alfassam HE, Alharbi HM, Madkhali N, Shakor ABA, El-Aal MA. Biosynthesis, characterization, magnetic hyperthermia, and in vitro toxicity evaluation of quercetin-loaded magnetoliposome lipid bilayer hybrid system on MCF-7 breast cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130543. [PMID: 38103758 DOI: 10.1016/j.bbagen.2023.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Novel biocompatible and effective hyperthermia (HT) treatment materials for breast cancer therapeutic have recently attracting researchers, because of their effective ablation of cancer cells and negligible damage to healthy cells. Magnetoliposome (MLs) have numerous possibilities for utilize in cancer treatment, including smart drug delivery (SDD) mediated through alternating magnetic fields (AMF). In this work, magnesium ferrite (MgFe2O4) encapsulated with liposomes lipid bilayer (MLs), Quercetin (Q)-loaded MgFe2O4@Liposomes (Q-MLs) nano-hybrid system were successfully synthesized for magnetic hyperthermia (MHT) and SDD applications. The hybrid system was well-investigated by different techniques using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), Energy dispersive X-ray (EDX), Vibrating sample magnetometer (VSM), Transmission electron microscope (TEM), and Zeta Potential (ZP). The characterization results confirmed the improving quercetin-loading on the MLs surface. TEM analysis indicated the synthesized MgFe2O4, MLs, and Q-MLs were spherical with an average size of 23.7, 35.5, and 329.5 nm, respectively. The VSM results revealed that the MgFe2O4 exhibit excellent and effective saturation magnetization (MS) (40.5 emu/g). Quercetin drug loading and entrapment efficiency were found to be equal to 2.1 ± 0.1% and 42.3 ± 2.2%, respectively. The in-vitro Q release from Q-loaded MLs was found 40.2% at pH 5.1 and 69.87% at pH 7.4, verifying the Q-loading pH sensitivity. The MLs and Q-MLs hybrid system as MHT agents exhibit specific absorption rate (SAR) values of 197 and 205 W/g, correspondingly. Furthermore, the Q-MLs cytotoxicity was studied on the MCF-7 breast cancer cell line, and the obtained data demonstrated that the Q-MLs have a high cytotoxicity effect compared to MLs and free Q.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, New Valley 72511, Egypt.
| | - Ahmad M Saeedi
- Department of Physics, Faculty of Applied Science, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and nanotechnology epartment, (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawal Madkhali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia
| | | | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
11
|
Raafat SN, El Wahed SA, Badawi NM, Saber MM, Abdollah MR. Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int J Pharm X 2023; 6:100215. [PMID: 38024451 PMCID: PMC10630776 DOI: 10.1016/j.ijpx.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (-) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC50 of 50 μg/mL and > 500 μg/mL, respectively. Annexin V/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, -8, and - 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.
Collapse
Affiliation(s)
- Shereen Nader Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
- Stem Cells and Tissue Culture Hub (CIDS), Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Sara Abd El Wahed
- Department of Oral Pathology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Noha M. Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mona M. Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Maha R.A. Abdollah
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
12
|
Golmohammadi M, Zamanian MY, Jalal SM, Noraldeen SAM, Ramírez‐Coronel AA, Oudaha KH, Obaid RF, Almulla AF, Bazmandegan G, Kamiab Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci Nutr 2023; 11:7458-7468. [PMID: 38107139 PMCID: PMC10724635 DOI: 10.1002/fsn3.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related deaths in women. Hence, developing a therapeutic plan to overcome the disease is crucial. Numerous factors such as endogenous hormones and environmental factors may play a role in the pathophysiology of BC. Regarding the multi-modality treatment of BC, natural compounds like ellagic acid (EA) received has received increased interest in antitumor efficacy with lower adverse effects. Based on the results of this comprehensive review, EA has multiple effects on BC cells including (1) suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase, (2) suppresses migration, invasion, and metastatic, (3) stimulates apoptosis in MCF-7 cells via TGF-β/Smad3 signaling axis, (4) inhibits CDK6 that is important in cell cycle regulation, (5) binds to ACTN4 and induces its degradation via the ubiquitin-proteasome pathway, inducing decreased cell motility and invasion in BC cells, (6) inhibits the PI3K/AKT pathway, and (7) inhibits angiogenesis-associated activities including proliferation (reduces VEGFR-2 tyrosine kinase activity). In conclusion, EA exhibits anticancer activity through various molecular mechanisms that influence key cellular processes like apoptosis, cell cycle, angiogenesis, and metastasis in BC. However, further researches are essential to fully elucidate its molecular targets and implications for clinical applications.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Andrés Alexis Ramírez‐Coronel
- Research Group in Educational StatisticsNational University of Education (UNAE)AzoguesEcuador
- Epidemiology and Biostatistics Research GroupCES UniversityMedellínColombia
| | - Khulood H. Oudaha
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐OarIraq
| | - Rasha Fadhel Obaid
- Department of Biomedical EngineeringAl‐Mustaqbal University CollegeBabylonIraq
| | - Abbas F. Almulla
- Department of Medical Laboratory Technology, College of Medical TechnologyIslamic UniversityNajafIraq
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and Pharmacology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community Medicine, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
13
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
14
|
Foudah AI, Alam A, Salkini MA, Ross SA, Kumar P, Aldawsari MF, Alqarni MH, Sweilam SH. Synergistic Combination of Letrozole and Berberine in Ascorbic Acid-Stabilized AuNPs: A Promising Solution for Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1099. [PMID: 37631014 PMCID: PMC10459502 DOI: 10.3390/ph16081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is a deadly disease that affects countless women worldwide. The most conventional treatments for breast cancer, such as the administration of anticancer medications such as letrozole (LTZ), pose significant barriers due to the non-selective delivery and low bioavailability of cytotoxic drugs leading to serious adverse effects and multidrug resistance (MDR). Addressing these obstacles requires an innovative approach, and we propose a combined strategy that synergistically incorporates LTZ with berberine (BBR) into stabilised AuNPs coated with ascorbic acid (AA), known as LTZ-BBR@AA-AuNPs. The LTZ-BBR@AA-AuNPs, a novel combined drug delivery system, were carefully designed to maximise the entrapment of both LTZ and BBR. The resulting spherical nanoparticles exhibited remarkable efficiency in trapping these two compounds, with rates of 58% and 54%, respectively. In particular, the average hydrodynamic diameter of these nanoparticles was determined to be 81.23 ± 4.0 nm with a PDI value of only 0.286, indicating excellent uniformity between them. Furthermore, their zeta potential was observed to be -14.5 mV, suggesting high stability even under physiological conditions. The release profiles showed that after being incubated for about 24 h at pH levels ranging from acidic (pH = 5) to basic (pH = 7), the percentage released for both drugs ranged from 56-72%. This sustained and controlled drug release can reduce any negative side effects while improving therapeutic efficacy when administered directly to cancer. MDA-MB-231 cells treated with LTZ-BBR@AA-AuNPs for 48 h exhibited IC50 values of 2.04 ± 0.011 μg/mL, indicating potent cytotoxicity against cells. Furthermore, the nanoparticles demonstrated excellent stability throughout the duration of the treatment.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India;
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| |
Collapse
|
15
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
16
|
Lai Q, Yang CJ, zhang Q, Zhuang M, Ma YH, Lin CY, Zeng GZ, Yin JL. Alkaloid from Alstonia yunnanensis diels root against gastrointestinal cancer: Acetoxytabernosine inhibits apoptosis in hepatocellular carcinoma cells. Front Pharmacol 2023; 13:1085309. [PMID: 36712668 PMCID: PMC9873973 DOI: 10.3389/fphar.2022.1085309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Liver cancer belongs to Gastrointestinal (GI) malignancies which is a common clinical disease, a thorny public health problem, and one of the major diseases that endanger human health. Molecules from natural products (NPs) or their derivatives play an increasingly important role in various chronic diseases such as GI cancers. The chemical composition of the Alstonia yunnanensis Diels roots was studied using silica column chromatography, gel chromatography, recrystallization, and HPLC, and the compounds were structurally identified by modern spectral analysis using mass spectrometry (MS) and nuclear magnetic resonance (1H-, 13C-, HMQC-, HMBC-, and 1H-1HCOSY-NMR), ultraviolet and visible spectrum (UV), and electronic Circular Dichroism (ECD). Acetoxytabernosine (AC), an indole alkaloid with antitumor activity, was isolated from Alstonia yunnanensis Diels root. The current study aimed to investigate the influence of AC on the cell proliferation of BEL-7402 and SMMC7721 and to elucidate the underlying mechanism. The absolute configuration of AC was calculated by ECD (electronic circular dichroism). The effects of AC on the viability of different tumor cell lines were studied by the SRB method. The death mode of human hepatoma cells caused by AC was studied by TUNEL cell apoptosis detection and AnnexinV-FITC/PI double staining image. Mitochondrial membrane potential was detected by JC-1. The effects of AC on the expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) in SMMC7721 and BEL-7402 cells were detected by western blot. It was found that the absolute configuration of AC is 19(s), 20(s)-Acetoxytabernosine. AC could induce apoptosis of SMMC7721 and BEL-7402, and block the replication of DNA in the G1 phase. Under the treatment of AC, the total protein expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) significantly decreased in SMMC7721 and BEL-7402. The results suggested that AC induced apoptosis through a caspase-dependent intrinsic pathway in SMMC7721 and BEL-7402, and natural product-based drug development is an important direction in antitumor drug discovery and research.
Collapse
Affiliation(s)
- Qi Lai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Chun-Ju Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Qi zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Min Zhuang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Yan-Hua Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Cheng-Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Guang-Zhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Jun-Lin Yin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
17
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|