1
|
Zewail M, Gaafar PME, Abbas H, Elsheikh MA. Innovative rheumatoid arthritis management using injection replacement approach via dual therapeutic effects of hyalurosomes-encapsulated luteolin and dexamethasone. Colloids Surf B Biointerfaces 2025; 249:114497. [PMID: 39799610 DOI: 10.1016/j.colsurfb.2025.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis is a highly prevalent debilitating condition linked to inflammation. The effectiveness of the present therapeutic techniques is constrained; so, there is an urgent requirement for a novel nanoplatform entailing drugs with proven efficacy. The current work highlighted the development of dexamethasone and luteolin co-encapsulated hyalurosomes (LUT-DEX hyalurosomes). High entrapment efficiency of 92.79 % and 81.21 % for DEX and LUT, respectively in addition to sustained release of both drugs were attained, where only 45 % DEX and 75.87 % LUT were released after 24 h indicating the possibility of a persistent therapeutic impact. A spherical nano-system with smooth edges and a characteristic layer of hyaluronic acid surrounding the core of the particles was evidenced by a transmission electron microscope. The efficacy of LUT-DEX hyalurosomes was evaluated in-vision vivo using a rat model of rheumatoid arthritis initiated by Complete Freund's Adjuvant (CFA). Histological examination and serum concentrations of malondialdehyde (MDA), interleukin 1ß (IL1ß), tumour necrosis factor-alpha (TNF-α), interleukin 3 (MMP-3), and nuclear factor (erythroid-derived) Like 2 NRF2) were also evaluated. The dual drug-loaded hyalurosomes demonstrated 2.9-, 3.2-, 2.5- and 2.7-fold decreases in MMP3, TNF-α, MDA and IL1, respectively, compared with the positive control group. Conversely, the negative control group demonstrated the highest NRF2 level followed by LUT-DEX hyalurosomes, comparison compared to the positive control group which demonstrated the lowest NRF2 level. The histological examination of the joints confirmed the superior effect of the dual drug encapsulated nano delivery system in reducing joint swelling and inflammation achieving similar results as the negative control group. Ultimately, the developed hyalurosomes co-encapsulating dexamethasone and luteolin, possess the potential to serve as a highly auspicious innovative strategy for managing rheumatoid arthritis.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Damanhour University, P.O. Box 22511, Damanhour, Egypt.
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Damanhour University, P.O. Box 22511, Damanhour, Egypt.
| | - Manal A Elsheikh
- Department of Pharmaceutics, Damanhour University, P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
2
|
Zewail M, Abbas H, Sayed NE, Abd-El-Azim H. Intradermal delivery of teriflunomide loaded emulsomes using hollow microneedles for effective minimally invasive psoriasis management. Eur J Pharm Biopharm 2025; 210:114692. [PMID: 40081673 DOI: 10.1016/j.ejpb.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Conventional topical psoriasis treatments suffer from limited delivery to affected areas along with skin irritation due to high local drug concentration. Herein an attempt to improve the delivery of leflunomide's active metabolite (teriflunomide (TER)) by improving its solubility through nanoencapsulation in emulsomes (EMLs) besides ensuring effective intradermal delivery using hollow microneedles. Evaluation of colloidal characteristics of EMLs, encapsulation efficiency and drug release were performed. Additionally, the antipsoriatic activity in an imiquimod-induced psoriatic mouse model was evaluated by the measurement of inflammatory mediators' levels and histopathological assessment of anatomized skin. The particle size of the chosen EMLs formulation was 147.9 nm and the zeta potential value was -21.7. Entrapment efficiency was 97.23 % and EMLs provided sustained drug release for 48 h. No statistically significant differences in the in vivo levels of NF-KB, IL 8, MMP1, GSH, SOD and catalase between the animals treated by TER-EMLs and the negative control cohort were observed. Also, histopathological inspection of dissected skin samples reflected the superiority of TER-EMLs over TER suspension. Collectively, combining nanoencapsulation and hollow microneedles application improved TER properties and ensured effective TER delivery to the affected psoriatic areas.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt.
| | - Haidy Abbas
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt; Postdoc Brigham and Women's Hospital, Harvard Medical School, Harvard University, United States
| |
Collapse
|
3
|
Zhang R, Tang P, Chen Z, Tang M, Yang K, Tang Y, Zhang H, Wang Q. Microneedle hierarchical structure construction for promoting multi-stage wound healing. Int J Pharm 2025; 674:125474. [PMID: 40086651 DOI: 10.1016/j.ijpharm.2025.125474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
As a new type of drug delivery system, microneedle have received extensive attention in wound healing due to their penetrability, painlessness, and high drug delivery efficiency. However, microneedle are often unable to penetrate the skin completely due to the limitations of the skin's mechanical properties, resulting in low drug delivery efficiency during wound repair. Therefore, it is particularly important to optimize the multi-level structural design of microneedles. This article systematically summarizes the multi-level structural design of microneedles that promote wound healing, including the structural parameters of a single microneedle, microneedle array design, and microneedle system structural optimization. It also summarizes the research progress on the functional design of microneedle systems at various stages of wound repair. This paper reviews the current status and limitations of microneedle patch design, and provides theoretical guidance for the design of smart microneedle wound management/healing.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Zhenfeng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis 38105, United States
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Youhong Tang
- Medical Device Research Institute, Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Guo H, Wu Z, Shen G, Huang Z, Zha Z, Zheng X, Luo X, Mai B, Ye J, Li J. Perfluoroalkyl and polyfluoroalkyl substances crossing the blood-joint barrier: Their occurrence and distribution in synovial fluid. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138189. [PMID: 40209403 DOI: 10.1016/j.jhazmat.2025.138189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have garnered considerable research attention due to their potential adverse effects on human health. Epidemiological studies have indicated a possible association between PFASs exposure and the prevalence of osteoarthritis (OA). However, the presence of PFASs in the synovial fluid of OA patients and the distribution of PFASs across the blood-joint barrier remains unreported. This study identified significant differences in PFASs profiles between patients and controls, with a markedly higher PFOS-to-PFOA ratio observed in patients. Additionally, the blood-joint transfer efficiency of PFOS was significantly greater in patients than in controls (0.75 vs. 0.53, p < 0.05). Furthermore, PFOS levels were elevated in patients with advanced OA compared to those in the early stages. Positive correlations were observed between synovial fluid PFOS and inflammatory markers C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α), implying that inflammation may facilitate the distribution of PFOS across the joint barrier. This study represents the first documented evidence of the human joint exposure to PFASs and their blood-joint transfer abilities.
Collapse
Affiliation(s)
- Huiying Guo
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China; Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, China
| | - Zifeng Wu
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guiwang Shen
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhiyu Huang
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhengang Zha
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaofei Zheng
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, China.
| | - Jieruo Li
- Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
James JJ, Pahal S, Jayaraman A, Nayak A D, Koteshwar Narasimhachar S, Sundarrajan S, Basappa Veerabhadraiah B, Srinivasan B, Vemula PK, Nguyen TD, Kadamboor Veethil S. Polymeric Microneedles for Transdermal Delivery of Human Placental Tissue for the Treatment of Osteoarthritis. Macromol Biosci 2025; 25:e2400485. [PMID: 39704612 DOI: 10.1002/mabi.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Biologics targeting matrix-degrading proteases, cartilage repair, and inflammation are emerging as promising approaches for osteoarthritis (OA) treatment. Recent research highlights biologic-human placental tissue (HPT) as a potential OA therapy due to its biocompatibility, abundant protein biofactors, and ability to reduce cartilage degradation by suppressing protease expression. Microneedles (MNs) are receiving growing attention for enhancing transdermal delivery of biologics as an alternative to conventional subcutaneous injections. The lyophilized human placental extract (LHP) loaded polymeric MNs are fabricated using a micromolding technique for transdermal delivery. Ex vivo release studies reveal that MNs exhibit a gradual and consistent release of LHP, indicating a sustained delivery profile. LHP-MNs are nontoxic and anti-inflammatory in nature against human skin cells and interleukin (IL-1β) induced synovial cells. Furthermore, the in vivo study shows that LHP-MNs substantially improve behavioral parameters in OA rat models and lower serum concentrations of tumor necrosis factor- α (TNF-α) and cartilage oligomeric matrix protein (COMP) biomarkers, thereby alleviating knee and ankle joint injuries. Histopathological analysis indicates that LHP-MNs significantly preserve cartilage integrity. The study results suggest that employing polymeric MNs for transdermal delivery of LHP can be a promising treatment approach for OA, with the added benefit of excellent patient compliance.
Collapse
Affiliation(s)
- Jithu Jerin James
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
| | - Anbu Jayaraman
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Damodar Nayak A
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Sridhar Koteshwar Narasimhachar
- Cancyte Technologies Pvt Ltd., Sri Shankara Research Centre, Rangadore Memorial Hospital, Shankarapuram, Bengaluru, 560004, India
| | - Sudarson Sundarrajan
- Cancyte Technologies Pvt Ltd., Sri Shankara Research Centre, Rangadore Memorial Hospital, Shankarapuram, Bengaluru, 560004, India
| | | | - Bharath Srinivasan
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, 560065, India
| | - Thanh Duc Nguyen
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sandhya Kadamboor Veethil
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
6
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
7
|
Amir M, Kuznetsova N, Kraft M, Taurino I. Progression of photoresin-based microneedles: From established drug delivery to emerging biosensing technologies. Biosens Bioelectron 2025; 274:117150. [PMID: 39874922 DOI: 10.1016/j.bios.2025.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Microneedles have emerged as a highly promising technology for advancing chemical biosensing and drug delivery applications, offering a minimally invasive, efficient, and versatile approach to healthcare innovation. This review provides a comprehensive analysis of photoresin-based microneedles, with a particular focus on SU-8 photoresin due to its favorable mechanical properties, biocompatibility, and ease of fabrication. Advanced techniques for surface modification are discussed to enhance the functionality of microneedles, enabling their application in precise biochemical diagnostics and effective drug therapy. Additionally, a concise overview of the two-photon polymerization technology is presented, emphasizing its remarkable potential in the production of microneedle arrays. By examining the various types of resins employed in the production of microneedles and their integration with nanostructures, this review offers valuable insights into the development and optimization of microneedle-based systems for diverse healthcare purposes.
Collapse
Affiliation(s)
- Momina Amir
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium.
| | - Nadezda Kuznetsova
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium
| | - Irene Taurino
- Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium; KU Leuven, Department of Physics and Astronomy (HF), Celestij€nenlaan 300D, 3001, Leuven, Belgium; Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnology, Arnesano, Italy
| |
Collapse
|
8
|
Diao N, Liu Y, Wang W, Cao M, Liu X, Yang W, Cao Y, Sun T, Pei H, Guo C, Chen D. Resveratrol nanocrystals based dissolving microneedles with highly efficient for rheumatoid arthritis. Drug Deliv Transl Res 2025; 15:203-215. [PMID: 38556538 DOI: 10.1007/s13346-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Rheumatoid arthritis (RA) is a common immune disease characterized mainly by erosive arthritis with extensive clinical sequelae. Resveratrol (Res) has pharmacological effects in the treatment of RA, but it has not been widely used in the clinic due to its poor water solubility and low bioavailability. In this study, a drug delivery system (Res-NC MNs) of dissolved microneedles (MNs) loaded with Res nanocrystals (NC) was designed for the treatment of RA. Res-NC MNs can improve the drawbacks of long-term oral drug delivery with toxic side effects and low compliance associated with intra-articular drug delivery. In this study, Res-NC was prepared by media milling and loaded into soluble microneedles prepared from hyaluronic acid (HA) by vacuum casting for the treatment of RA. HA has high mechanical strength and can penetrate the cuticle layer of the skin for effective drug delivery. In in vivo pharmacodynamic experiments, Res-NC MNs achieved better therapeutic efficacy in the treatment of RA compared with oral Res. These findings suggest that Res-NC MNs may be an effective and promising drug delivery strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yan Liu
- Yantai Food and Drug Inspection and Testing Center, Yantai, 264035, PR China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Tianying Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Huijie Pei
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Yushan 10 Road, Qingdao, 266003, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
9
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
10
|
Sharma A, Singh S, Saini G, Sharma S, Singh B, Choudhary D. Quality by design-based development and in vitro evaluation of dual release tablet of etoricoxib and thiocolchicoside: A novel chronotherapeutic approach for arthritis pain management. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1103-1117. [PMID: 39002854 DOI: 10.1016/j.pharma.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE The traditional drug delivery system is not much effective when treating chronopathological diseases like arthritis. Consequently, there is a gap in the market for a delivery system that can provide an explicit treatment following the chronopharmacology of this disorder. The present study is based on the objective to develop Eudragit coated dual release bilayer tablet designed by the quality by design (QbD) and based on the chronotherapeutic approach. The dual release tablet contained an immediate release layer of etoricoxib and a sustained release layer of thiocolchicoside. MATERIAL AND METHOD The quality target product profile (QTTP) of the formulation was established along with critical quality attributes (CQA). The optimization of the dual release layer was done using a three-level, three-factor Box-Behnken design. A total of thirteen formulations of etoricoxib (ET1-ET13) and thiocolchicoside (TH1-TH13) were developed based on the design composition of etoricoxib, sodium starch glycolate and sodium bicarbonate for the immediate release (IR) layer and thiocolchicoside, HPMC E5 LV and magnesium stearate for the sustained release (SR) layer respectively. The developed dual release layers were compressed to form a bilayer tablet. The bilayer tablets were further coated with pH-dependent polymer Eudragit S-100 to avoid drug release in upper GIT. The initial characterization and drug-excipient interaction studies were performed initially using infra-red (IR) spectroscopy and X-ray diffraction studies (XRD). Formulations showing good micrometric properties, disintegration and drug release were selected for final compression of bilayer tablets. RESULT Formulation ET13 showed the fastest drug release (88%) at 15minutes and quick disintegration time (21s). The sustained release thiocolchicoside tablet layer (TH1-TH13) had a hardness that varied from 4.01 to 4.45kg/cm2. Formulation TH12 had the highest hardness, whereas TH6 showed the lowest hardness. The sustained release layer showing 97.63% of drug release after 8hours was selected for the compression to bilayer tablet. The developed dual layer tablets were investigated for quality parameters like hardness, percentage friability, weight variation, disintegration and dissolution. CONCLUSION A high level of patient compliance is ensured through the current design as the patient does not need to get out of bed at night to take the medication.
Collapse
Affiliation(s)
| | - Supriya Singh
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Geetanjali Saini
- College of Pharmacy, Teerthankar Mahaveer University, Moradabad, Utter Pradesh 244001, India
| | - Sanjay Sharma
- SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400056, India
| | - Bhupendra Singh
- College of Pharmacy, Teerthankar Mahaveer University, Moradabad, Utter Pradesh 244001, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| |
Collapse
|
11
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
12
|
Choupani A, Temucin ES, Ciftci E, Bakan F, Camic BT, Ozkoc G, Sezen M, Korkusuz P, Korkusuz F, Bediz B. Design of poly(vinyl pyrrolidone) and poly(ethylene glycol) microneedle arrays for delivering glycosaminoglycan, chondroitin sulfate, and hyaluronic acid. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39264737 DOI: 10.1080/09205063.2024.2392914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage and bone degradation. Medical therapies like glucosaminoglycan (GAG), chondroitin sulfate (CS), and hyaluronic acid (HA) aim to preserve joint function and reduce inflammation but may cause side effects when administered orally or via injection. Microneedle arrays (MNAs) offer a localized drug delivery method that reduces side effects. Thus, this study aims to demonstrate the feasibility of delivering GAG, CS, and HA using microneedles in vitro. An optimal needle geometry is crucial for the successful application of MNA. To address this, here we employ a multi-objective optimization framework using the non-dominated sorting genetic algorithm II (NSGA-II) to determine the ideal MNA design, focusing on preventing needle failure. Then, a three-step fabrication approach is followed to fabricate the MNAs. First, the master (male) molds are fabricated from poly(methyl methacrylate) using mechanical micromachining based on optimized needle geometry. Second, a micro-molding with Polydimethylsiloxane (PDMS) is used for the fabrication of production (female) molds. In the last step, the MNAs were fabricated by microcasting the hydrogels using the production molds. Light microscopy (LIMI) confirms the accuracy of the MNAs manufactured, and in vitro skin insertion tests demonstrate failure-free needle insertion. Subsequently, we confirmed the biocompatibility of MNAs by evaluating their impact on the L929 fibroblast cell line, human chondrocytes, and osteoblasts.
Collapse
Affiliation(s)
- Andisheh Choupani
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Elif Sevval Temucin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Eda Ciftci
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Feray Bakan
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul, Türkiye
| | - Busra Tugba Camic
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul, Türkiye
| | - Guralp Ozkoc
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul, Türkiye
- Department of Chemistry, Istinye University, Istanbul, Türkiye
| | - Meltem Sezen
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul, Türkiye
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
- METU MEMS Center, Ankara, Türkiye
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Bekir Bediz
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Türkiye
| |
Collapse
|
13
|
Zewail M, Abbas H, El Sayed N, Abd-El-Azim H. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis. J Drug Target 2024; 32:941-952. [PMID: 38853622 DOI: 10.1080/1061186x.2024.2365930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
14
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
15
|
Cai H, Zheng Y, Chen Y, Lu Q, Hong W, Guo Q, Zheng S. Miao medicine Gu Yan Xiao tincture inhibits mTOR to stimulate chondrocyte autophagy in a rabbit model of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118095. [PMID: 38548121 DOI: 10.1016/j.jep.2024.118095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Gu Yan Xiao tincture, a blend of traditional Chinese herbs, is traditionally used for osteoarthritis and related pain. This study investigated its mechanism of action in order to rationalize and validate its therapeutic use. AIM OF THE STUDY This study analyzed, in a rabbit model of knee osteoarthritis, whether and how Gu Yan Xiao tincture exerts therapeutic benefits by modulating chondrocyte autophagy. MATERIALS AND METHODS The active constituents within the GYX tincture were identified using liquid chromatography-mass spectrometry. The rabbit model was established by injecting animals with type II collagenase intra-articularly, and the effects of topically applied tincture were examined on osteoarthritis lesions of the knee using histopathology, micro-computed tomography and x-ray imaging. Effects of the tincture were also evaluated on levels of inflammatory cytokines, matrix metalloproteases, and autophagy in chondrocytes. As a positive control, animals were treated with sodium diclofenac. RESULTS The tincture mitigated the reduction in joint space, hyperplasia of the synovium and matrix metalloproteases in serum that occurred after injection of type II collagenase in rabbits. These therapeutic effects were associated with inhibition of mTOR and activation of autophagy in articular chondrocytes. Inhibiting mTOR with rapamycin potentiated the therapeutic effects of the tincture, while inhibiting autophagy with 3-methyladenine antagonized them. CONCLUSIONS Gu Yan Xiao tincture mitigates tissue injury in a rabbit model of osteoarthritis, at least in part by inhibiting mTOR and thereby promoting autophagy in chondrocytes. These results rationalize the use of the tincture not only against osteoarthritis but also potentially other diseases involving inhibition of autophagy in bones and joints.
Collapse
Affiliation(s)
- He Cai
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yuhao Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yinying Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing Lu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Wu Hong
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qiucheng Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Shuguang Zheng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
16
|
Abd-El-Azim H, Abbas H, El Sayed N, Mousa MR, Elbardisy HM, Zewail M. Hypericin emulsomes combined with hollow microneedles as a non-invasive photodynamic platform for rheumatoid arthritis treatment. Int J Pharm 2024; 653:123876. [PMID: 38331331 DOI: 10.1016/j.ijpharm.2024.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease that severely affects joint function. Despite the variability of treatment protocols, all of them are associated with severe side effects that compromise patient compliance. The main aim of the current study is to prepare localized effective RA treatment with reduced side effects by combining nanoencapsulation, photodynamic therapy (PDT) and hollow microneedles (Ho-MNs) to maximize the pharmacological effects of hypericin (HYP). To attain this, HYP-loaded emulsomes (EMLs) were prepared, characterized and administered through intradermal injection using AdminPen™ Ho-MNs combined with PDT in rats with an adjuvant-induced RA model. The prepared EMLs had a spherical shape and particle size was about 93.46 nm with an absolute entrapment efficiency. Moreover, confocal imaging indicated the interesting capability of Ho-MNs to deposit the HYP EMLs to a depth reaching 1560 µm into the subcutaneous tissue. In vivo, study results demonstrated that the group treated with HYP EMLs through Ho-MNs combined with PDT had no significant differences in joint diameter, TNF-α, IL1, HO-1, NRF2 and SD levels compared with the negative control group. Similarly, rats treated with the combination of HYP EMLs, Ho-MNs and PDT showed superior joint healing efficacy compared with the groups treated with HYP EMLs in dark, HYP ointment or HYP in microneedles in histopathological examination. These findings highlight the promising potential of photoactivated HYP EMLs when combined with Ho-MNs technology for RA management. The presented therapeutic EMLs-MNs platform could serve as a powerful game-changer in the development of future localized RA treatments.
Collapse
Affiliation(s)
- Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Hadil M Elbardisy
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
17
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
18
|
Garhwal A, Kendya P, Soni S, Kori S, Soni V, Kashaw SK. Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. Mini Rev Med Chem 2024; 24:704-720. [PMID: 37711105 DOI: 10.2174/1389557523666230913105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Anushka Garhwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyadarshi Kendya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
19
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
20
|
Abd-El-Azim H, Abbas H, El Sayed NS, Fayez AM, Zewail M. Non-invasive management of rheumatoid arthritis using hollow microneedles as a tool for transdermal delivery of teriflunomide loaded solid lipid nanoparticles. Int J Pharm 2023; 644:123334. [PMID: 37604364 DOI: 10.1016/j.ijpharm.2023.123334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Conventional RA treatments required prolonged therapy courses that have been accompanied with numerous side effects impairing the patient's quality of life. Therefore, microneedles combined with nanotechnology emerged as a promising alternative non-invasive, effective and self-administrating treatment option. Hence, the main aim of this study is to reduce the side effects associated with systemic teriflunomide administration through its encapsulation in solid lipid nanoparticles (TER-SLNs) and their administration through transdermal route using AdminPen™ hollow microneedles array in the affected joint area directly. In vitro characterization studies were conducted including particle size, zeta potential, encapsulation efficiency and in vitro drug release. Also, ex vivo insertion properties of AdminPen™ hollow microneedles array was carried out. Besides, in vivo evaluation in rats with antigen induced arthritis model were also conducted by assessment of joint diameter, histopathological examination of the dissected joints and testing the levels of TNF-α, IL1B, IL7, MDA, MMP 3, and NRF2 at the end of the experiment. The selected TER-SLNs formulation was about 155.3 nm with negative surface charge and 96.45 % entrapment efficiency. TER-SLNs had a spherical shape and provided sustained release for nearly 96 h. In vivo results demonstrated that nanoencapsulation along with the use of hollow microneedles had a significant influence in improving TER anti-arthritic effects compared with TER suspension with no significant difference from the negative control group.
Collapse
Affiliation(s)
- Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy ,Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy ,Damanhour University, Damanhour, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy ,Damanhour University, Damanhour, Egypt
| |
Collapse
|
21
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
22
|
He H, Wang Z, Aikelamu K, Bai J, Shen Q, Gao X, Wang M. Preparation and In Vitro Characterization of Microneedles Containing Inclusion Complexes Loaded with Progesterone. Pharmaceutics 2023; 15:1765. [PMID: 37376213 DOI: 10.3390/pharmaceutics15061765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE In order to improve patient compliance and the ease of use during progesterone application, and to increase the clinical application of progesterone, progesterone was made into a microneedle. METHODS Progesterone complexes were prepared using a single-factor and central composite design. In the preparation of the microneedles, the tip loading rate was used as an evaluation index. The selection of tip materials among the biocompatible materials of gelatin (GEL), hyaluronic acid (HA), and polyvinylpyrrolidone (PVP), and the use of polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) as backing layers, respectively, were carried out and the resulting microneedles were evaluated accordingly. RESULTS The progesterone inclusion complexes prepared at a molar ratio of 1:2.16 progesterone and hydroxypropyl-β-cyclodextrin (HP-β-CD), a temperature of 50 °C, and reaction time of 4 h had high encapsulation and drug-loading capacities of 93.49% and 9.55%, respectively. Gelatine was finally chosen as the material for the preparation of the micro-needle tip based on the drug loading rate of the tip. Two types of microneedles were prepared: one with 7.5% GEL as the tip and 50% PVA as the backing layer, and one with 15% GEL as the tip and 5% HPC as the backing layer. The microneedles of both prescriptions exhibited good mechanical strength and penetrated the skin of rats. The needle tip loading rates were 49.13% for the 7.5% GEL-50% PVA microneedles and 29.31% for the 15% GEL-5% HPC microneedles. In addition, in vitro release and transdermal experiments were performed using both types of microneedles. CONCLUSION The microneedles prepared in this study enhanced the in vitro transdermal amount of progesterone drug by releasing the drug from the microneedle tip into the subepidermis.
Collapse
Affiliation(s)
- Hongji He
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Zhaozhi Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Kadireya Aikelamu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jingya Bai
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Qi Shen
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Mei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
23
|
Lu Y, Xiao T, Lai R, Liu Z, Luo W, Wang Y, Fu S, Chai G, Jia J, Xu Y. Co-Delivery of Loxoprofen and Tofacitinib by Photothermal Microneedles for Rheumatoid Arthritis Treatment. Pharmaceutics 2023; 15:pharmaceutics15051500. [PMID: 37242742 DOI: 10.3390/pharmaceutics15051500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of synovial inflammation that affects populations worldwide. Transdermal drug delivery systems for treating RA have increased but remain challenging. We fabricated a dissolving microneedle (MN) system with photothermal (PT) polydopamine (PDA) to co-load the non-steroidal anti-inflammatory drug loxoprofen (Lox) and the Janus kinase inhibitor tofacitinib (Tof), with the aim of co-delivering Lox and Tof directly to the articular cavity, aided by the combination of MN and PT. In vitro and in vivo permeation studies showed that the PT MN significantly promoted drug permeation and retention in the skin. An in vivo visualization of the drug distribution in the articular cavity showed that the PT MN significantly promoted drug retention in the articular cavity. Importantly, compared to the intra-articular injection of Lox and Tof, the application of the PT MN to a carrageenan/kaolin-induced arthritis rat model exhibited superior performance in reducing joint swelling, muscle atrophy, and cartilage destruction. Furthermore, the PT MN downregulated the mRNA expression levels of proinflammatory cytokines, including TNF-α, IL-1β, iNOS, JAK2, JAK3, and STAT3. The results show that the PT MN transdermal co-delivery of Lox and Tof is a new synergetic therapy with high compliance and good therapeutic efficacy for RA.
Collapse
Affiliation(s)
- Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinjing Jia
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Liu D, Li X, Zhang L, Hu B, Hu S, Zhang X, Hu J. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front Physiol 2023; 14:1156913. [PMID: 37089415 PMCID: PMC10119395 DOI: 10.3389/fphys.2023.1156913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Osteoarthritis (OA) is one of the common degenerative joint diseases in clinic. It mainly damages articular cartilage, causing pain, swelling and stiffness around joints, and is the main cause of disability of the elderly. Due to the unclear pathogenesis of osteoarthritis and the poor self-healing ability of articular cartilage, the treatment options for this disease are limited. At present, NSAIDs, Glucocorticoid and Duloxetine are the most commonly used treatment choice for osteoarthritis. Although it is somewhat effective, the adverse reactions are frequent and serious. The development of safer and more effective anti-osteoarthritis drugs is essential and urgent. This review summarizes recent advances in the pharmacological treatment of OA, focusing on small molecule inhibitors targeting cartilage remodeling in osteoarthritis as well as the research idea of reducing adverse effects by optimizing the dosage form of traditional drugs for the treatment of osteoarthritis. It should provide a reference for exploration of new potential treatment options.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Sang Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Zhang
- Institute of Pathology, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
25
|
Versaci M, Morabito FC. Numerical Approaches for Recovering the Deformable Membrane Profile of Electrostatic Microdevices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1688. [PMID: 36772726 PMCID: PMC9920444 DOI: 10.3390/s23031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.
Collapse
Affiliation(s)
- Mario Versaci
- DICEAM Department, "Mediterranea" University, 89124 Reggio Calabria, Italy
| | | |
Collapse
|
26
|
Zhou Y, Jia L, Zhou D, Chen G, Fu Q, Li N. Advances in microneedles research based on promoting hair regrowth. J Control Release 2023; 353:965-974. [PMID: 36549392 DOI: 10.1016/j.jconrel.2022.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Alopecia is the most common and difficult-to-treat hair disorder. It usually brings a significant psychological burden to the patients. With the growing popularity of alopecia, the study of alopecia has gained more attention. Currently, only minoxidil and finasteride have been approved by the FDA for the treatment of alopecia, but the efficacy has always been unsatisfactory. As a new form of transdermal drug delivery, microneedles have been widely used in the treatment of alopecia and have proven to be effective. Microneedles delivery can improve the efficiency of local drug delivery and patients' compliance, which can achieve better therapeutic effects on hair-related diseases. Therefore, microneedles have gained much attention in the field of alopecia and hair regrowth promotion in recent years. This review summarizes the last decade of research on the microneedles delivery design for the treatment of alopecia or promotion of hair regrowth and provides a comprehensive evaluation of this field.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|