1
|
Kapourani A, Pantazos I, Valkanioti V, Chatzitheodoridou M, Kalogeri C, Barmpalexis P. Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions. Int J Pharm 2025; 671:125242. [PMID: 39842744 DOI: 10.1016/j.ijpharm.2025.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC(0→t) values under non-sink conditions compared to crystalline IBU. Conversely, SE ASDs showed improved supersaturation primarily under low SI conditions, especially with SOL at low drug loadings. The findings underscore the need for a systematic approach in developing ASDs, considering preparation method, matrix/carrier type, drug loading and dissolution study conditions collectively. These factors significantly influence dissolution behavior and supersaturation, emphasizing that they should not be independently studied but evaluated comprehensively to optimize ASD performance.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vasiliki Valkanioti
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Melina Chatzitheodoridou
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christina Kalogeri
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
| |
Collapse
|
2
|
Kolisnyk T, Mohylyuk V, Fil N, Bickerstaff E, Li S, Jones DS, Andrews GP. High drug-loaded amorphous solid dispersions of a poor glass forming drug: The impact of polymer type and cooling rate on amorphous drug behaviour. Int J Pharm 2025; 670:125095. [PMID: 39689829 DOI: 10.1016/j.ijpharm.2024.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Enhancing the aqueous solubility via amorphization of crystalline poor glass-forming drugs represents a challenge, particularly when drug dosing is high. In such scenarios, there is often a need for high polymer loadings, leading to an increase in the dosage form mass and less patient acceptability. This work investigated the role that polymer type and after-melt cooling rate had upon the amorphicity of solid dispersions (SDs) containing high levels of naproxen and three commonly used polymeric excipients: Eudragit® EPO, Kollidon® VA64, and Soluplus®. Using a combination of thermogravimetry, conventional and fast-scan DSC, oscillatory rheology, in silico Hansen solubility parameter computation, FTIR, and PXRD, we have shown that amorphicity could be affected by the cooling rate with the specific polymer type and amount playing a significant role in the degree of this impact. The amorphous drug content, evident at higher cooling rates, was found to be dependent on drug-polymer interaction and polymer melt viscosity. Higher polymer concentration and faster cooling produced less melt crystallization upon cooling, which was attributed to a shift in nucleation to lower temperatures where it could be inhibited by polymer matrix viscosity. Amorphous drug content, which contained drug nuclei, was evidenced by cold crystallization upon reheating. After 4 weeks of 'gentle' storage, cold crystallization increased if nucleation was the dominant process, whereas cold crystallization decreased if crystal growth prevailed. Storage at elevated temperature and humidity resulted in the absence of cold crystallization, and increased melt crystallisation. Thus, faster cooling could serve as an additional tool to improve amorphous yield and stability of high drug-loaded SDs, however, intermolecular polymer-drug interaction, melt viscosity of the drug-polymer matrix, and storage conditions are of critical importance to achieve this goal.
Collapse
Affiliation(s)
- Tetiana Kolisnyk
- Pharmaceutical Engineering Group, Medical Biology Centre, 97, Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, 21 Konsula Street, Riga LV-1007, Latvia
| | - Nataliia Fil
- Department of Automation and Computer-Integrated Technologies, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudroho Street, Kharkiv 61002, Ukraine
| | - Ellen Bickerstaff
- Pharmaceutical Engineering Group, Medical Biology Centre, 97, Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Shu Li
- Pharmaceutical Engineering Group, Medical Biology Centre, 97, Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - David S Jones
- Pharmaceutical Engineering Group, Medical Biology Centre, 97, Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, Medical Biology Centre, 97, Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
3
|
Higginbotham T, Meier K, Ramírez J, Garaizar A. Predicting Drug-Polymer Compatibility in Amorphous Solid Dispersions by MD Simulation: On the Trap of Solvation Free Energies. Mol Pharm 2025; 22:760-770. [PMID: 39585959 DOI: 10.1021/acs.molpharmaceut.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Amorphous solid dispersions (ASDs) are a prevalent method for increasing the bioavailability and apparent solubility of poorly soluble drugs. Consequently, extensive research, encompassing both experimental and computational approaches, has been dedicated to developing methods for assessing the key factors influencing their stability, notably drug-polymer interactions. A common computational approach to rank the compatibility of a drug with a set of solvents or polymers is to compare thermodynamic observables, such as solvation free energies at infinite dilution. However, the impact of the molecular weight of the polymer excipient on these interactions remains underexplored. This study delves into this impact through atomistic simulations of Indomethacin in PVP(-VA) and HPMC, and through simulations using a coarse-grained model, emphasizing its critical importance. First, we demonstrate that the molecular weight of the polymer plays a pivotal role in determining the solvation free energy of the drug, at times exerting a more significant influence than the specific chemical identity of the polymer. Additionally, our simulations suggest that higher molecular weight polymers lead to lower solvation free energies and, thus, suggest better compatibility with the drug. Yet, the lower free energy of solvation of the drug in longer polymers does not translate into a higher solubility. This work highlights the subtle role polymer molecular weight plays when measuring thermodynamic observables in amorphous solid dispersions, a role which must be considered when optimizing pharmaceutical formulations.
Collapse
Affiliation(s)
- T Higginbotham
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - K Meier
- Drug Discovery Sciences, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - J Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - A Garaizar
- Drug Discovery Sciences, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
- Computational Life Science, Bayer AG, Alfred-Nobel-Straße 50, Monheim am Rhein 40789, Germany
| |
Collapse
|
4
|
Ghazi NF, Burley JC, Dryden IL, Roberts CJ. High-Throughput Microarray Approaches for Predicting the Stability of Drug-Polymer Solid Dispersions. Mol Pharm 2025; 22:343-362. [PMID: 39707995 PMCID: PMC11707727 DOI: 10.1021/acs.molpharmaceut.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms). They were subjected to a six-month stability study under accelerated conditions (40 °C and 75% relative humidity). Physical stability outcomes varied significantly among the different drug-polymer combinations, with stability ranging from immediate drug crystallization to several days of stability. The comprehensive data set obtained from this high-throughput screening was used to construct multiple linear regression models to correlate the stability of ASDs with the physicochemical properties of the used Active Pharmaceutical Ingredients (APIs). Our findings reveal that increased stability of ASDs is associated with a lower number of hydrogen bond acceptors alongside a higher overall count of heteroatoms and oxygen atoms in the drug molecules. This suggests that, while heteroatoms and oxygen are abundant, their role as hydrogen bond acceptors is limited due to their specific chemical environments, contributing to overall stability. Additionally, drugs with lower melting points formed more stable ASDs within the polymer matrix. This study, hence, highlights the importance of minimizing repulsive drug-polymer interactions to yield a physically stable ASD. The developed models, validated through Leave-One-Out Cross-Validation, demonstrated good predictability of stability trends. Hence, the high-throughput 2D inkjet printing technique that was used to manufacture the microarrays proved valuable for assessing drug-polymer crystallization onset risks and predicting stability outcomes. In conclusion, this study demonstrates a novel approach to solid dispersion formulation physical stability screening, enhancing efficiency, minimizing material requirements, and expanding the range of samples evaluated. Our findings provide insights into the critical physicochemical properties influencing ASD stability, offering a significant advancement in developing stable ASDs.
Collapse
Affiliation(s)
- Noha F. Ghazi
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Department
of Pharmaceutics, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Jonathan C. Burley
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ian L. Dryden
- Department
of Statistics, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Clive J. Roberts
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School
of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
5
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
6
|
Patil J, Bhattacharya S, Saoji SD, Dande P. Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer. Ther Deliv 2025; 16:25-41. [PMID: 39611708 PMCID: PMC11703380 DOI: 10.1080/20415990.2024.2435240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
AIMS To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS). MATERIALS & METHODS CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated. Cytotoxic effects on HepG2 cell lines were also assessed. RESULTS CBZ-PLS exhibited a 126-fold increase in solubility and enhanced CBZ release in vitro. Pharmacokinetic studies on Wistar rats demonstrated a 1.58-fold increase in bioavailability, while acute toxicity studies confirmed biocompatibility. CBZ-PLS showed superior cytotoxicity, apoptosis induction, migration inhibition, increased ROS generation, and greater DNA fragmentation in HepG2 cells. The complex also maintained stability over 6 months. CONCLUSIONS CBZ-PLS significantly improves the solubility, bioavailability, and therapeutic efficacy of CBZ against liver cancer, presenting a promising approach for more effective liver cancer treatment.
Collapse
Affiliation(s)
- Jayesh Patil
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Nagpur, India
| | - Payal Dande
- Department of Pharmacognosy, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
7
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
8
|
Wdowiak K, Tajber L, Miklaszewski A, Cielecka-Piontek J. Application of the Box-Behnken Design in the Development of Amorphous PVP K30-Phosphatidylcholine Dispersions for the Co-Delivery of Curcumin and Hesperetin Prepared by Hot-Melt Extrusion. Pharmaceutics 2024; 17:26. [PMID: 39861675 PMCID: PMC11768460 DOI: 10.3390/pharmaceutics17010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. Methods: This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions. A Box-Behnken design was employed to assess these factors. Solid-state characterization and biopharmaceutical studies were then conducted. X-ray powder diffraction (XRPD) was used to confirm the amorphous nature of the dispersions, while differential scanning calorimetry (DSC) provided insight into the miscibility of the systems. Fourier-transform infrared spectroscopy (FTIR) was employed to assess the intermolecular interactions. The apparent solubility and dissolution profiles of the systems were studied in phosphate buffer at pH 6.8. In vitro permeability across the gastrointestinal tract and blood-brain barrier was evaluated using the parallel artificial membrane permeability assay. Results: The quantities of polyphenols and phospholipids were identified as significant factors influencing the biopharmaceutical performance of the systems. Solid-state analysis confirmed the formation of amorphous dispersions and the development of interactions among components. Notably, a significant improvement in solubility was observed, with formulations exhibiting distinct release patterns for the active compounds. Furthermore, the in vitro permeability through the gastrointestinal tract and blood-brain barrier was enhanced. Conclusions: The findings suggest that amorphous PVP K30-phosphatidylcholine dispersions have the potential to improve the biopharmaceutical properties of curcumin and hesperetin.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
9
|
Zhao MY, Shi XB, Chang JH, Wang RX, Zhou JY, Liu P. Amorphous Solid Dispersions of Glycyrrhetinic Acid: Using Soluplus, PVP, and PVPVA as the Polymer Matrix to Enhance Solubility, Bioavailability, and Stability. AAPS PharmSciTech 2024; 26:18. [PMID: 39707118 DOI: 10.1208/s12249-024-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients. The amorphous solid dispersions (ASDs) of GA were prepared with three different polymers (i.e., GA-S-ASD, GA-VA64-ASD, and GA-K30-ASD). The ASDs were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR spectroscopy), molecular docking, and contact angle measurement. Pharmacokinetics were evaluated in Beagle dogs, and long-term stability was examined. The solubility of GA increased with the rising weight of the polymer, and the optimal drug-to-carrier ratio was 1:5. In all ASDs, GA was amorphous, thus suggesting that a hydrogen bonding must have formed between GA and the polymers. The molecular docking showed that the binding energy was the highest and the hydrogen bonding was the strongest between GA and Soluplus. The dissolution of the ASDs was primarily driven by carrier-controlled dissolution, and there was minor influence from diffusion-limited release in the case of GA-S-ASD. The three ASDs significantly improved the bioavailability of GA. However, only GA-S-ASD passed the accelerated stability test. In the case of GA-VA64-ASD and GA-K30-ASD, due to serious moisture absorption, the originally fluffy ASDs became gels, and recrystallization occurred. Overall, GA-S-ASD presents promising potential for pharmaceutical applications due to its superior solubility, bioavailability, and stability.
Collapse
Affiliation(s)
- Meng-Yu Zhao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xian-Bao Shi
- Department of Pharmacy, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China. No. 5 Renmin Street, Jinzhou, 121001, China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| | - Pei Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
10
|
Wu K, Kwon SH, Zhou X, Fuller C, Wang X, Vadgama J, Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int J Mol Sci 2024; 25:13121. [PMID: 39684832 PMCID: PMC11642056 DOI: 10.3390/ijms252313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability of small-molecule drugs remains a critical challenge in pharmaceutical development, significantly impacting therapeutic efficacy and commercial viability. This review synthesizes recent advances in understanding and overcoming bioavailability limitations, focusing on key physicochemical and biological factors influencing drug absorption and distribution. We examine cutting-edge strategies for enhancing bioavailability, including innovative formulation approaches, rational structural modifications, and the application of artificial intelligence in drug design. The integration of nanotechnology, 3D printing, and stimuli-responsive delivery systems are highlighted as promising avenues for improving drug delivery. We discuss the importance of a holistic, multidisciplinary approach to bioavailability optimization, emphasizing early-stage consideration of ADME properties and the need for patient-centric design. This review also explores emerging technologies such as CRISPR-Cas9-mediated personalization and microbiome modulation for tailored bioavailability enhancement. Finally, we outline future research directions, including advanced predictive modeling, overcoming biological barriers, and addressing the challenges of emerging therapeutic modalities. By elucidating the complex interplay of factors affecting bioavailability, this review aims to guide future efforts in developing more effective and accessible small-molecule therapeutics.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Soon Hwan Kwon
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Department of Pre-Biology, University of California, Santa Barbara (UCSB), Santa Barbara, CA 93106, USA
| | - Claire Fuller
- Department of Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xianyi Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Luo C, Li R, Tang M, Gao Y, Zhang J, Qian S, Wei Y, Shen P. Amorphous solid dispersion to facilitate the delivery of poorly water-soluble drugs: recent advances on novel preparation processes and technology coupling. Expert Opin Drug Deliv 2024; 21:1807-1822. [PMID: 39484838 DOI: 10.1080/17425247.2024.2423813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Amorphous solid dispersion (ASD) technique has recently been used as an effective formulation strategy to significantly improve the bioavailability of insoluble drugs. The main industrialized preparation methods for ASDs are mainly hot melt extrusion and spray drying techniques; however, they face the limitations of being unsuitable for heat-sensitive materials and organic reagent residues, respectively, and therefore novel preparation processes and technology coupling for developing ASDs have received increasing attention. AREAS COVERED This paper reviews recent advances in ASD and provides an overview of novel preparation methods, mechanisms for improving drug bioavailability, and especially technology coupling. EXPERT COVERED As a mature pharmaceutical technology, ASD has broad application prospects and values. During the period from 2012 to 2024, the FDA has approved 49 formulation products containing ASDs. However, with the diversification of drug types and clinical needs, the traditional formulation technology of ASDs is gradually no longer sufficient to meet the needs of clinical medication. Therefore, this review summarizes the studies on both novel preparation processes and technology combinations; and provides a comprehensive overview of the mechanisms of ASD to improve drug bioavailability, in order to better select appropriate preparation methods for the development of ASD formulations.
Collapse
Affiliation(s)
- Chengxiang Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruipeng Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mi Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Jiangsu Litaier Pharma Ltd, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
12
|
Huang L, Guo J, Li Y, Yang W, Ni W, Jia Y, Yu M, Zhang J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers (Basel) 2024; 16:3302. [PMID: 39684047 DOI: 10.3390/polym16233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Itraconazole (ITZ), a broad-spectrum triazole antifungal agent, exhibits remarkable pharmacodynamic and pharmacokinetic properties. However, the low solubility of ITZ significantly reduces its oral bioavailability. Furthermore, it has been reported that this medication can result in dose-related adverse effects. Therefore, the objective of this study was to enhance the solubility of ITZ through the utilization of various polymers and to manufacture personalized and programmable release ITZ tablets. Five different polymers were selected as water-soluble carriers. Thirty percent w/w ITZ was mixed with seventy percent w/w of the polymers, which were then extruded. A series of physical and chemical characterization studies were conducted, including DSC, PXRD, PLM, and in vitro drug release studies. The results demonstrated that ITZ was dispersed within the polymers, forming ASDs that markedly enhanced its solubility and dissolution rate. Consequently, soluplus® was employed as the polymer for the extrusion of ITZ-loaded filaments, which were subsequently designed and printed. The in vitro drug release studies indicated that the release of ITZ could be regulated by modifying the 3D structure design. Overall, this study found that the combination of HME and 3D printing technologies could represent an optimal approach for the development of personalized and precise drug delivery dosages.
Collapse
Affiliation(s)
- Lianghao Huang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jingjing Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yusen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Weiwei Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wen Ni
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yaru Jia
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Mingchao Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jiaxiang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| |
Collapse
|
13
|
Zhang C, Li B, Bai Y, Liu Y, Zhang Y, Zhang J. Polymers Enhance Chlortetracycline Hydrochloride Solubility. Int J Mol Sci 2024; 25:10591. [PMID: 39408919 PMCID: PMC11477051 DOI: 10.3390/ijms251910591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Chlortetracycline hydrochloride (CTC) is a broad-spectrum tetracycline antibiotic with a wide range of antibacterial activities. Due to low solubility, poor stability, and low bioavailability, clinical preparation development is limited. We sought to improve these solubility and dissolution rates by preparing solid dispersions. A hydrophilic polymer was selected as the carrier, and a solid dispersion was prepared using a medium grinding method, with samples characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and particle size distribution (PSD). To maximize CTC solubility and stability, different polymer types and optimal drug-to-polymer ratios were screened. The solubility of optimized povidone K30 (PVPK30) (1/0.75, w/w)-, hydroxypropyl-β-cyclodextrin (HP-β-CD) (1/2, w/w)-, and gelatin (1/1, w/w)-based solid dispersions was 6.25-, 7.7-, and 3.75-fold higher than that of pure CTC powder, respectively. Additionally, in vitro dissolution studies showed that the gelatin-based solid dispersion had a higher initial dissolution rate. SEM and PS analyses confirmed that this dispersion had smaller and more uniform particles than PVPK30 and HP-β-CD dispersions. Therefore, successful solid polymer dispersion preparations improved the CTC solubility, dissolution rates, and stability, which may have potential as drug delivery systems.
Collapse
Affiliation(s)
- Chao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Bing Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yubin Bai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yangling Liu
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| |
Collapse
|
14
|
Di Mare EJ, Punia A, Lamm MS, Rhodes TA, Gormley AJ. Data-Driven Design of Novel Polymer Excipients for Pharmaceutical Amorphous Solid Dispersions. Bioconjug Chem 2024; 35:1363-1372. [PMID: 39150455 DOI: 10.1021/acs.bioconjchem.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
About 90% of active pharmaceutical ingredients (APIs) in the oral drug delivery system pipeline have poor aqueous solubility and low bioavailability. To address this problem, amorphous solid dispersions (ASDs) embed hydrophobic APIs within polymer excipients to prevent drug crystallization, improve solubility, and increase bioavailability. There are a limited number of commercial polymer excipients, and the structure-function relationships which lead to successful ASD formulations are not well-documented. There are, however, certain solid-state ASD characteristics that inform ASD performance. One characteristic shared by successful ASDs is a high glass transition temperature (Tg), which correlates with higher shelf stability and decreased drug crystallization. We aim to identify how polymer features such as side chain geometry, backbone methylation, and hydrophilic-lipophilic balance impact Tg to design copolymers capable of forming high-Tg ASDs. We tested a library of 50 ASD formulations (18 previously studied and 32 newly synthesized) of the model drug probucol with copolymers synthesized through automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. A machine learning (ML) algorithm was trained on the Tg data to identify the major factors influencing Tg, including backbone methylation and nonlinear side chain geometry. In both polymer alone and probucol-loaded ASDs, a Random Forest Regressor captured structure-function trends in the data set and accurately predicted Tg with an average R2 > 0.83 across a 10-fold cross validation. This ML model will be used to predict novel copolymers to design ASDs with high Tg, a crucial factor in predicting ASD success.
Collapse
Affiliation(s)
- Elena J Di Mare
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ashish Punia
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Lamm
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy A Rhodes
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
16
|
Wdowiak K, Miklaszewski A, Cielecka-Piontek J. Amorphous Polymer-Phospholipid Solid Dispersions for the Co-Delivery of Curcumin and Piperine Prepared via Hot-Melt Extrusion. Pharmaceutics 2024; 16:999. [PMID: 39204344 PMCID: PMC11359794 DOI: 10.3390/pharmaceutics16080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Curcumin and piperine are plant compounds known for their health-promoting properties, but their use in the prevention or treatment of various diseases is limited by their poor solubility. To overcome this drawback, the curcumin-piperine amorphous polymer-phospholipid dispersions were prepared by hot melt extrusion technology. X-ray powder diffraction indicated the formation of amorphous systems. Differential scanning calorimetry confirmed amorphization and provided information on the good miscibility of the active compound-polymer-phospholipid dispersions. Owing to Fourier-transform infrared spectroscopy, the intermolecular interactions in systems were investigated. In the biopharmaceutical properties assessment, the improvement in solubility as well as the maintenance of the supersaturation state were confirmed. Moreover, PAMPA models simulating the gastrointestinal tract and blood-brain barrier showed enhanced permeability of active compounds presented in dispersions compared to the crystalline form of individual compounds. The presented paper suggests that polymer-phospholipid dispersions advantageously impact the bioaccessibility of poorly soluble active compounds.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
17
|
Moreira GG, Taveira SF, Martins FT, Wagner KG, Marreto RN. Multivariate Analysis of Solubility Parameters for Drug-Polymer Miscibility Assessment in Preparing Raloxifene Hydrochloride Amorphous Solid Dispersions. AAPS PharmSciTech 2024; 25:127. [PMID: 38844724 DOI: 10.1208/s12249-024-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 09/05/2024] Open
Abstract
The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Felipe T Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia, 74.001-970, Brazil
| | - Karl G Wagner
- Department of Pharmaceutics, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil.
| |
Collapse
|
18
|
Wang Y, Chin CY, Shivashekaregowda NKH, Shi Q. Implications of Low-concentration Polymer on the Physical Stability of Glassy Griseofulvin: Role of the Segmental Mobility. AAPS PharmSciTech 2024; 25:103. [PMID: 38714634 DOI: 10.1208/s12249-024-02809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.
Collapse
Affiliation(s)
- Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chai-Yee Chin
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Malaysia.
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia.
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
19
|
Sokač K, Miloloža M, Kučić Grgić D, Žižek K. Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment. Pharmaceutics 2024; 16:551. [PMID: 38675212 PMCID: PMC11053848 DOI: 10.3390/pharmaceutics16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications.
Collapse
Affiliation(s)
- Katarina Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | - Martina Miloloža
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.K.G.); (K.Ž.)
| | | | | |
Collapse
|
20
|
Nagano K, Nakao T, Takeda M, Hirai H, Maekita H, Nakamura M, Imakawa N, Egawa A, Fujiwara T, Gao JQ, Kinoshita K, Sakata M, Nishino M, Yamashita T, Yoshida T, Harada K, Tachibana K, Doi T, Hirata K, Tsujino H, Higashisaka K, Tsutsumi Y. Polyglycerol fatty acid ester contributes to the improvement and maintenance of water solubility of amorphous curcumin by suppressing the intermolecular interaction and the diffusion rate of curcumin. Food Chem 2024; 437:137866. [PMID: 37931447 DOI: 10.1016/j.foodchem.2023.137866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Curcumin (CUR), a polyphenol, is an attractive component of functional foods, owing to various physiological activities. However, CUR is highly hydrophobic, insoluble in water, and difficult to absorb in the body. Here, we report an amorphous CUR formulation containing the dispersant polyglycerol fatty acid ester (PGFE), demonstrating high and stable water solubility. Improved water solubility enhanced the absorbability of CUR in our amorphous formulation along with enhanced triglyceride inhibition, compared to that in a commercial formulation. Nuclear Overhauser effect spectroscopy (NOESY) analysis revealed that PGFE reduced CUR-CUR interaction, resulting in higher dispersion and improved solubility of CUR. Taylor dispersion analysis showed a lower diffusion coefficient of CUR in the highly water-soluble formulation (with PGFE) than that in the low water-soluble formulation (without PGFE), which prevents recontact and recrystallization of CUR, which is trapped by PGFE. Overall, the amorphous CUR with high solubility could be used as a promising functional food.
Collapse
Affiliation(s)
- Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan.
| | - Tomohiro Nakao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Mariko Takeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruna Hirai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Maekita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiko Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Imakawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Egawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Keigo Kinoshita
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Makoto Sakata
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Masayuki Nishino
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Takuya Yamashita
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Museum of Osaka University, 1-13 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Larsen BS, Kissi E, Nogueira LP, Genina N, Tho I. Impact of drug load and polymer molecular weight on the 3D microstructure of printed tablets. Eur J Pharm Sci 2024; 192:106619. [PMID: 37866675 DOI: 10.1016/j.ejps.2023.106619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
This study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOLTM HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.e., filaments, at the lowest possible extrusion temperature. Filaments of the three HPMC grades were prepared to contain 2.5, 5, 10 and 20 % (w/w) prednisolone. The thermal degradation of the filaments was studied with thermogravimetric analysis, while solid-state properties of the drug-loaded filaments were assessed with the use of X-ray powder diffraction. Prednisolone in the freshly extruded filaments was determined to be amorphous for drug loads up to 10%. It remained physically stable for at least 6 months of storage, except for the filament containing 10% drug with HPMC 15LV, where recrystallization of prednisolone was detected. Fused deposition modeling was utilized to print honeycomb-shaped tablets from the HME filaments of HPMC 15LV and 100LV. The structural characteristics of the tablets were evaluated using X-ray microcomputed tomography, specifically porosity and size of structural elements were investigated. The tablets printed from HPMC 15LV possessed in general lower total porosity and pores of smaller size than tablets printed from the HPMC 100LV. The studied drug loads were shown to have minor effect on the total porosity of the tablets, though the lower the drug load was, the higher the variance of porosity along the height of the tablet was observed. It was found that tablets printed with HPMC 15LV showed higher structural similarity with the virtually designed model than tablets printed from HPMC 100LV. These findings highlight the relevance of the drug load and polymer molecular weight on the microstructure and structural properties of 3D printed tablets.
Collapse
Affiliation(s)
- Bjarke Strøm Larsen
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Eric Kissi
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway; Nanoform Finland PLC, Viikinkaari 4, 00790 Helsinki, Finland
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 71, 0455 Oslo, Norway
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ingunn Tho
- Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway
| |
Collapse
|
22
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
23
|
Corrie L, Ajjarapu S, Banda S, Parvathaneni M, Bolla PK, Kommineni N. HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6616. [PMID: 37895598 PMCID: PMC10608006 DOI: 10.3390/ma16206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Today, therapeutic candidates with low solubility have become increasingly common in pharmaceutical research pipelines. Several techniques such as hot melt extrusion, spray drying, supercritical fluid technology, electrospinning, KinetiSol, etc., have been devised to improve either or both the solubility and dissolution to enhance the bioavailability of these active substances belonging to BCS Class II and IV. The principle involved in all these preparation techniques is similar, where the crystal lattice of the drug is disrupted by either the application of heat or dissolving it in a solvent and the movement of the fine drug particles is arrested with the help of a polymer by either cooling or drying to remove the solvent. The dispersed drug particles in the polymer matrix have higher entropy and enthalpy and, thereby, higher free energy in comparison to the crystalline drug. Povidone, polymethaacrylate derivatives, hydroxypropyl methyl cellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate derivatives are commonly used as polymers in the preparation of ASDs. Specifically, hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based ASDs have become well established in commercially available products and are widely explored to improve the solubility of poorly soluble drugs. This article provides an analysis of two widely used manufacturing techniques for HPMCAS ASDs, namely, hot melt extrusion and spray drying. Additionally, details of HPMCAS-based ASD marketed products and patents have been discussed to emphasize the commercial aspect.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | | | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Madhukiran Parvathaneni
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
24
|
Mandati P, Nyavanandi D, Narala S, Alzahrani A, Vemula SK, Repka MA. A Comparative Assessment of Cocrystal and Amorphous Solid Dispersion Printlets Developed by Hot Melt Extrusion Paired Fused Deposition Modeling for Dissolution Enhancement and Stability of Ibuprofen. AAPS PharmSciTech 2023; 24:203. [PMID: 37783961 DOI: 10.1208/s12249-023-02666-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
25
|
Choudhari M, Damle S, Saha RN, Dubey SK, Singhvi G. Emerging Applications of Hydroxypropyl Methylcellulose Acetate Succinate: Different Aspects in Drug Delivery and Its Commercial Potential. AAPS PharmSciTech 2023; 24:188. [PMID: 37715004 DOI: 10.1208/s12249-023-02645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has multi-disciplinary applications spanning across the development of drug delivery systems, in 3D printing, and in tissue engineering, etc. HPMCAS helps in maintaining the drug in a super-saturated condition by inhibiting its precipitation, thereby increasing the rate and extent of dissolution in the aqueous media. HPMCAS has several distinctive characteristics, such as being amphiphilic in nature, having an ionization pH, and a succinyl and acetyl substitution ratio, all of which are beneficial while developing formulations. This review provides insights regarding the various types of formulations being developed using HPMCAS, including amorphous solid dispersion (ASD), amorphous nanoparticles, dry coating, and 3D printing, along with their applicability in drug delivery and biomedical fields. Furthermore, HPMCAS, compared with other carbohydrate polymers, shows several benefits in drug delivery, including proficiency in imparting stable ASD with a high dissolution rate, being easily processable, and enhancing bioavailability. The various commercially available formulations, regulatory considerations, and key patents containing the HPMCAS have been discussed in this review.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd. Verna Industrial Estate, Verna, Goa, 403722, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
- R&D Healthcare Emami Ltd., Belgharia, Kolkata, 700056, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
26
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
27
|
Myślińska M, Stocker MW, Ferguson S, Healy AM. A Comparison of Spray-Drying and Co-Precipitation for the Generation of Amorphous Solid Dispersions (ASDs) of Hydrochlorothiazide and Simvastatin. J Pharm Sci 2023:S0022-3549(23)00064-3. [PMID: 36805392 DOI: 10.1016/j.xphs.2023.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Co-processing of APIs, the practice of creating multi-component APIs directly in chemical processing facilities used to make drug substance, is gaining increased attention with a view to streamlining manufacturing, improving supply chain robustness and accessing enhanced product attributes in terms of stability and bioavailability. Direct co-precipitation of amorphous solid dispersions (ASDs) at the final step of chemical processing is one such example of co-processing. The purpose of this work was to investigate the application of different advanced solvent-based processing techniques - direct co-precipitation (CP) and the benchmark well-established spray-drying (SD) process - to the production of ASDs comprised of a drug with a high Tg (hydrochlorothiazide, HCTZ) or a low Tg (simvastatin, SIM) molecularly dispersed in a PVP/VA 64 or Soluplus® matrix. ASDs of the same composition were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Both methods produced ASDs that were PXRD amorphous, with some differences, depending on the process used, in glass transition temperature and particle size distribution. Irrespective of manufacturing method used, all ASDs remained PXRD amorphous when subjected to high relative humidity conditions (75% RH, 25°C) for four weeks, although changes in the colour and physical characteristics were observed on storage for spray-dried systems with SIM and PVP/VA 64 copolymer. The particle morphology differed for co-precipitated compared to spray dried systems, with powder generated by the former process being comprised of more irregularly shaped particles of larger particle size when compared to the equivalent spray-dried systems which may enable more streamlined drug product processes to be used for CP materials. These differences may have implications in downstream drug product processing. A limitation identified when applying the solvent/anti-solvent co-precipitation method to SIM was the high antisolvent to solvent ratios required to effect the precipitation process. Thus, while similar outcomes may arise for both co-precipitation and spray drying processes in terms of ASD critical quality attributes, practical implications of applying the co-precipitation method and downstream processability of the resulting ASDs should be considered when choosing one solvent-based ASD production process over another.
Collapse
Affiliation(s)
- Monika Myślińska
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland
| | - Michael W Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; National Institute for Bioprocess Research and Training, Dublin, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| |
Collapse
|
28
|
Evaluation of Different Thermoanalytical Methods for the Analysis of the Stability of Naproxen-Loaded Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14112508. [PMID: 36432698 PMCID: PMC9692747 DOI: 10.3390/pharmaceutics14112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this research was to investigate three thermoanalytical techniques from the glass transition temperature (Tg) determination point of view. In addition, the examination of the correlation between the measured Tg values and the stability of the amorphous solid dispersions (ASDs) was also an important part of the work. The results showed that a similar tendency of the Tg can be observed in the case of the applied methods. However, Tg values measured by thermally stimulated depolarization currents showed higher deviation from the theoretical calculations than the values measured by modulated differential scanning calorimetry, referring better to the drug-polymer interactions. Indeed, the investigations after the stress stability tests revealed that micro-thermal analysis can indicate the most sensitive changes in the Tg values, better indicating the instability of the samples. In addition to confirming that the active pharmaceutical ingredient content is a crucial factor in the stability of ASDs containing naproxen and poly(vinylpyrrolidone-co-vinyl acetate), it is worthwhile applying orthogonal techniques to better understand the behavior of ASDs. The development of stable ASDs can be facilitated via mapping the molecular mobilities with suitable thermoanalytical methods.
Collapse
|
29
|
Recent Advances in Amorphous Solid Dispersions: Preformulation, Formulation Strategies, Technological Advancements and Characterization. Pharmaceutics 2022; 14:pharmaceutics14102203. [PMID: 36297638 PMCID: PMC9609913 DOI: 10.3390/pharmaceutics14102203] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are among the most popular and widely studied solubility enhancement techniques. Since their inception in the early 1960s, the formulation development of ASDs has undergone tremendous progress. For instance, the method of preparing ASDs evolved from solvent-based approaches to solvent-free methods such as hot melt extrusion and Kinetisol®. The formulation approaches have advanced from employing a single polymeric carrier to multiple carriers with plasticizers to improve the stability and performance of ASDs. Major excipient manufacturers recognized the potential of ASDs and began introducing specialty excipients ideal for formulating ASDs. In addition to traditional techniques such as differential scanning calorimeter (DSC) and X-ray crystallography, recent innovations such as nano-tomography, transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray microscopy support a better understanding of the microstructure of ASDs. The purpose of this review is to highlight the recent advancements in the field of ASDs with respect to formulation approaches, methods of preparation, and advanced characterization techniques.
Collapse
|