1
|
Chittasupho C, Samee W, Mangmool S, Karuna N, Anuchapreeda S, Okonogi S, Athikomkulchai S. Phytochemical Characterization and Anticancer Activity of Clerodendrum chinense Leaf Extract Against Breast and Cervical Cancer Cells. Int J Mol Sci 2025; 26:2729. [PMID: 40141371 PMCID: PMC11943097 DOI: 10.3390/ijms26062729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer remains a significant global health challenge, necessitating novel therapeutic interventions. Clerodendrum chinense leaf extract (CCL) has gained interest for its potential anticancer properties due to its bioactive composition. This study aims to evaluate the cytotoxic effects of CCL against MCF-7 breast cancer and HeLa cervical cancer cells and elucidate its mechanisms of action. High-performance liquid chromatography identified verbascoside, isoverbascoside, and hispidulin as the major bioactive compounds. CCL exhibited time- and dose-dependent cytotoxicity, with MCF-7 cells showing greater sensitivity (IC50 = 126.8 µg/mL, 72 h) than HeLa cells (216.1 µg/mL, 72 h). Flow cytometry confirmed apoptotic induction, with late apoptosis increasing at moderate concentrations (16.03-23.55%) and necrosis prevailing at higher doses (50.80-63.68%). Reactive oxygen species generation was significantly elevated in MCF-7 (70.2%) and HeLa (60.4%) cells at 250 µg/mL. CCL effectively suppressed colony formation and cell migration in a dose-dependent manner. Molecular docking studies demonstrated that apoptosis induction of CCL bioactive compounds may mediate through the pro-apoptotic BCL2 associated X, apoptosis regulator (BAX) regulator. These findings highlight the potential of CCL as a natural anticancer agent with multiple mechanisms, including reactive oxygen species (ROS)-induced apoptosis, BAX activation, and inhibition of proliferation and metastasis.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (N.K.)
| | - Narainrit Karuna
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (N.K.)
| | - Songyot Anuchapreeda
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|
2
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Saini H, Gupta PK, Mahapatra AK, Rajagopala S, Tripathi R, Nesari T. Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective. Sci Rep 2024; 14:23795. [PMID: 39394443 PMCID: PMC11479599 DOI: 10.1038/s41598-024-75059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Breast Cancer (BC) is the most common cause of cancer-associated deaths in females worldwide. Despite advancements in BC treatment driven by extensive characterization of its molecular hallmarks, challenges such as drug resistance, tumor relapse, and metastasis persist. Therefore, there is an urgent need for alternative treatment approaches with multi-modal efficacy to overcome these hurdles. In this context, natural bioactives are increasingly recognized for their pivotal role as anti-cancer compounds. This study focuses on predicting molecular targets for key herbal phytoconstituents-gallic acid, piperine, quercetin, resveratrol, and beta-sitosterol-present in the polyherbal formulation, Krishnadi Churna. Using an in-silico network pharmacology model, key genes were identified and docked against these marker compounds and controls. Mammary carcinoma emerged as the most significant phenotype of the putative targets. Analysis of an online database revealed that out of 135 predicted targets, 134 were mutated in breast cancer patients. Notably, ESR1, CYP19A1, and EGFR were identified as key genes which are known to regulate the BC progression. Docking studies demonstrated that the herbal phytoconstituents had similar or better docking scores than positive controls for these key genes, with convincing protein-ligand interactions confirmed by molecular dynamics simulations, MM/GBSA and free energy landscape (FEL) analysis. Overall, this study highlights the predictive potential of herbal phytoconstituents in targeting BC genes, suggesting their promise as a basis for developing new therapeutic formulations for BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India.
| | - Prashant Kumar Gupta
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Shrikrishna Rajagopala
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Tanuja Nesari
- Department of DravyaGuna (Materia Medica & Pharmacology), All India Institute of Ayurveda, New Delhi, 110076, India.
| |
Collapse
|
4
|
Siqueira LMM, Campos ALDBS, Pires FCS, Ferreira MCR, Silva APDSE, Menezes EGO, Ramos INDF, Khayat AS, Rêgo JDARD, Carvalho Junior RND. Evaluation of Bioactive Compounds and Antioxidant and Cytotoxic Effects of Oil and Pulp without Açaí Fat ( Euterpe oleracea) Obtained by Supercritical Extraction. Foods 2024; 13:2819. [PMID: 39272584 PMCID: PMC11394948 DOI: 10.3390/foods13172819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
For bioactivity studies, it is necessary to use products with a high degree of purity, which may influence the cytotoxic effects. Supercritical technology presents itself as an alternative to obtain these products. Therefore, the objective of this work was to obtain the bioactive compounds of oil and pulp of açaí fat-free supercritical technology and evaluate the cytotoxicity of products in MRC-5 and VERO cells in vitro. The açaí pulp was subjected to extraction with supercritical CO2 to obtain the oil and pulp without fat, under conditions of 323.15 K at 35 MPa, 333.15 K at 42 MPa, and 343.15 K at 49 MPa. The largest yields (51.74%), carotenoids (277.09 µg/g), DPPH (2.55 μmol TE/g), ABTS (2.60 μmol TE/g), and FRAP (15.25 μm of SF/g) of oil and ABTS (644.23 μmol TE/g) of pulp without fat were found in the condition 343.15 K at 49 MPa. The highest levels of compounds phenolics (150.20 mg GAE/g), DPPH (414.99 μmol TE/g), and FRAP (746.2 μm SF/g) of the pulp without fat were found in the condition of 323.15 K to 35 MPa. The fat-free pulp presented high levels of anthocyanins without significant variation in cytotoxicity. The developed process was efficient in obtaining oil rich in carotenoids, and the supercritical technology elucidated an efficient way to obtain açaí fat-free pulp.
Collapse
Affiliation(s)
- Letícia Maria Martins Siqueira
- PRODERNA (Graduate Program in Engineering of Natural Resources of the Amazon), LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Ana Luiza de Barros Souza Campos
- LABEX (Extraction Laboratory), FEQ (Faculty of Chemical Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Flávia Cristina Seabra Pires
- LABTECS (Supercritical Technology Laboratory), Science and Technology Park, Perimeter Avenue of Science, km 01, Guamá, Belém 66075-750, PA, Brazil
| | - Maria Caroline Rodrigues Ferreira
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (Graduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Correa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Ana Paula de Souza E Silva
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (Graduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Correa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Eduardo Gama Ortiz Menezes
- Federal Institute of Education, Science and Technology of Rondônia, IFRO, Porto Velho 78900-000, RO, Brazil
| | - Ingryd Nayara de Farias Ramos
- NPO (Center for Research in Oncology), PPGOCM (Graduate Program in Oncology and Medical Sciences, ICB (Institute of Biological Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 665-07900, PA, Brazil
| | - André Salim Khayat
- NPO (Oncology Research Center), ICB (Institute of Biological Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 66075-900, PA, Brazil
| | - José de Arimateia Rodrigues do Rêgo
- LABA (Laboratory of Amazonian Biofilms), PPGCMA (Graduate Program in Sciences and Environment), ICEN (Institute of Exact and Natural Sciences), UFPA (Federal University of Pará), Augusto Corrêa Street S/.CON, Guamá, Belém 665-07900, PA, Brazil
| | - Raul Nunes de Carvalho Junior
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), FEA (Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém 665-07900, PA, Brazil
| |
Collapse
|
5
|
Deaconu M, Abduraman A, Brezoiu AM, Sedky NK, Ioniță S, Matei C, Ziko L, Berger D. Anti-Inflammatory, Antidiabetic, and Antioxidant Properties of Extracts Prepared from Pinot Noir Grape Marc, Free and Incorporated in Porous Silica-Based Supports. Molecules 2024; 29:3122. [PMID: 38999074 PMCID: PMC11243692 DOI: 10.3390/molecules29133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
This study presents properties of hydroethanolic extracts prepared from Pinot Noir (PN) grape pomace through conventional, ultrasound-assisted or solvothermal extraction. The components of the extracts were identified by HPLC. The total content of polyphenols, flavonoids, anthocyanins, and condensed tannins, as well as antioxidant activity and α-glucosidase inhibitory activity of extracts were evaluated using UV-vis spectroscopy. All extracts were rich in phenolic compounds, proving a good radical scavenging activity. The extract obtained by conventional extraction at 80 °C showed the best α-glucosidase inhibitory activity close to that of (-)-epigallocatechin gallate. To improve the chemical stability of polyphenols, the chosen extract was incorporated in porous silica-based supports: amine functionalized silica (MCM-NH2), fucoidan-coated amine functionalized silica (MCM-NH2-Fuc), MCM-41, and diatomite. The PN extract exhibited moderate activity against Gram-positive S. aureus (MIC = 156.25 μg/mL) better than against Gram-negative E. coli (MIC = 312.5 μg/mL). The biocompatibility of PN extract, free and incorporated in MCM-NH2 and MCM-NH2-Fuc, was assessed on RAW 264.7 mouse macrophage cells, and the samples showcased a good cytocompatibility at 10 µg/mL concentration. At this concentration, PN and PN@MCM-NH2-Fuc reduced the inflammation by inhibiting NO production. The anti-inflammatory potential against COX and LOX enzymes of selected samples was evaluated and compared with that of Indomethacin and Zileuton, respectively. The best anti-inflammatory activity was observed when PN extract was loaded on MCM-NH2-Fuc support.
Collapse
Affiliation(s)
- Mihaela Deaconu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
- CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Anil Abduraman
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
| | - Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
| | - Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (L.Z.)
| | - Simona Ioniță
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (L.Z.)
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (M.D.); (A.-M.B.); (S.I.)
| |
Collapse
|
6
|
Tsantila EM, Esslinger N, Christou M, Papageorgis P, Neophytou CM. Antioxidant and Anticancer Activity of Vitis vinifera Extracts in Breast Cell Lines. Life (Basel) 2024; 14:228. [PMID: 38398737 PMCID: PMC10890198 DOI: 10.3390/life14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Vitis vinifera extracts have been shown to possess antioxidant activity because of their polyphenol content. In addition, their therapeutic potential against several diseases, including cancer, has been reported. In this study, we produced twelve extracts from the seeds, fruit, leaves, and wood of the Vitis vinifera Airen variety using different extraction methodologies and measured their total polyphenol content (TPC). We also determined their antioxidant and antiproliferative effects against normal cells and evaluated the most potent extract against a panel of breast cancer cell lines. We found that the extracts produced by the seeds of Vitis vinifera had a higher TPC compared to the other parts of the plant. Most extracts produced from seeds had antioxidant activity and did not show cytotoxicity against normal breast cells. The extract produced from whole organic seeds of white grape showed the best correlation between the dose and the ROS inhibition at all time points compared to the other seed extracts and also had antiproliferative properties in estrogen-receptor-positive MCF-7 breast cancer cells. Its mechanism of action involves inhibition of proteins Bcl-2, Bcl-xL, and survivin, and induction of apoptosis. Further investigation of the constituents and activity of Vitis vinifera extracts may reveal potential pharmacological applications of this plant.
Collapse
Affiliation(s)
- Evgenia Maria Tsantila
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Nils Esslinger
- Department of Research and Development, Alpinamed AG, 9306 Freidorf, Switzerland;
| | - Maria Christou
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus; (M.C.); (P.P.)
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus; (M.C.); (P.P.)
| | - Christiana M. Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
7
|
Arias A, Costa CE, Moreira MT, Feijoo G, Domingues L. Resveratrol-based biorefinery models for favoring its inclusion along the market value-added chains: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168199. [PMID: 37914108 DOI: 10.1016/j.scitotenv.2023.168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Resveratrol, a natural organic polyhydroxyphenolic compound, has gained significant attention in the last years given its potential health benefits, including antioxidant, anti-cancer, and anti-inflammatory properties. It can be directly extracted from plants, vegetables, and related products and waste resources, but also chemically/enzymatically/microbially synthesized. However, certain process strategies have some limitations, such as high costs, reduced yield or high energy demand, thus implying significant environmental loads. In this context, the search for more sustainable and circular process schemes is key to the integration of resveratrol into the market value chain of the food, cosmetic and pharmaceutical sectors. The extraction of resveratrol has traditionally been based on conventional methods such as solvent extraction, but advanced green extraction techniques offer more efficient and environmentally friendly alternatives. This review analyses both conventional and green alternative extraction technologies, as well as its bioproduction through microbial fermentation, in terms of production capacity, yield, purity and sustainability. It also presents alternative biorefinery models based on resveratrol bioproduction using by-products and waste streams as resources, specifically considering wine residues, peanut shells and wood bark as input resources, and also following a circular approach. This critical review provides some insight into the opportunities that resveratrol offers for promoting sustainable development and circularity in the related market value chains, and thus provides some criteria for decision making for biorefinery models in which resveratrol is one of the targeted high value-added products. It also identifies the future challenges to promote the inclusion of resveratrol in value chains, with the scale-up of green technologies and its demonstrated economic feasibility being the most prominent.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos E Costa
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucília Domingues
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
8
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
9
|
Encapsulating Calendula arvensis (Vaill.) L. Florets: UHPLC-HRMS Insights into Bioactive Compounds Preservation and Oral Bioaccessibility. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010199. [PMID: 36615392 PMCID: PMC9822028 DOI: 10.3390/molecules28010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Wild edible plants, once consumed in times of famine or for health purposes, today represent an interesting dietary supplement, aimed at enriching local dishes and/or formulating healthy nutraceutical products. In fact, the broad content of different, and diversely bioactive, specialized metabolites therein suggests new scenarios of use which, in order to be as functional as possible, must maximize the bioactivity of these compounds while preserving their chemistry. In this context, based on a recent investigation on the metabolic profile of the organs of Calendula arvensis that highlighted that florets are abundant in flavonol glycosides and triterpene saponins, the freeze-drying encapsulation of their alcoholic extract (FE) into maltodextrin (MD) was investigated. FE-MD chemical composition was evaluated using Fourier Transform InfraRed spectroscopy (FTIR), while ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques were employed to unravel FE compound preservation also during in vitro simulated digestion. The establishment of H-bonds between FE compounds and MD hydroxyl groups was in line with FE-MD biocompatibility in Caco-2 cells, while in vitro digestion mostly affected structural integrity and/or diversity. Flavonol compounds underwent deglycosylation and demethylation, while deacylation, beyond oxidation, involved triterpene saponins, which massively preserve their aglycone core.
Collapse
|