1
|
Irby D, Hibma J, Elmeliegy M, Wang D, Vandendries E, Poels K, Shtylla B, Williams JH. A Novel Two-Part Mixture Model for the Incidence and Time Course of Cytokine Release Syndrome After Elranatamab Dosing in Multiple Myeloma Patients. Clin Pharmacol Ther 2025. [PMID: 39955765 DOI: 10.1002/cpt.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 02/18/2025]
Abstract
Cytokine release syndrome (CRS) is a common, acute adverse event associated with T-cell redirecting therapies such as bispecific antibodies (BsAbs). The nature of CRS events data makes it challenging to capture an unbiased exposure-response relationship with commonly used models. For example, simple logistic regression models cannot handle traditional time-varying exposure, and static exposure metrics chosen at early time points and with lower priming doses may underestimate the incidence of CRS. Therefore, more advanced modeling techniques are needed to adequately describe the time course of BsAb-induced CRS. Herein, we present a two-part mixture model that describes the population incidence and time course of CRS following various dose-priming regimens of elranatamab, a humanized BsAb that targets the B-cell maturation antigen on myeloma cells and CD3 on T cells, where the conditional time-evolution of CRS was described with a two-state (i.e., CRS-yes or no) Markov model. In the first part, increasing elranatamab exposure (maximum elranatamab concentration at first CRS event time (Cmax,event)) was associated with an increased CRS incidence probability. Similarly, in the second part, increased early elranatamab exposure (Cmax,D1) increased the predicted probability of CRS over time, whereas premedication including corticosteroids and IL-6 pathway inhibitors use demonstrated the opposite effect. This is the first reported application of a Markov model to describe the probability of CRS following BsAb therapy, and it successfully explained differences between different dose-priming regimens via clinically relevant covariates. This approach may be useful for the future clinical development of BsAbs.
Collapse
Affiliation(s)
- Donald Irby
- Pfizer Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Jennifer Hibma
- Pfizer Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Mohamed Elmeliegy
- Oncology Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Diane Wang
- Oncology Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Erik Vandendries
- Oncology Research and Development, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Kamrine Poels
- Pfizer Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Blerta Shtylla
- Pfizer Research and Development, Pfizer, Inc., San Diego, California, USA
| | - Jason H Williams
- Pfizer Research and Development, Pfizer, Inc., San Diego, California, USA
| |
Collapse
|
2
|
Kim HU, Kim YK. Bispecific antibodies and CLEM: an analytical approach to advanced cell imaging for therapeutic strategies. Appl Microsc 2025; 55:1. [PMID: 39828773 PMCID: PMC11743405 DOI: 10.1186/s42649-024-00106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The development of bispecific antibodies (BsAbs) represents a significant advancement in therapeutic antibody design, enabling the simultaneous targeting of two different antigens. This dual-targeting capability enhances therapeutic efficacy, particularly in complex diseases like cancer, where tumor heterogeneity presents a significant challenge for traditional treatments. By bridging two distinct pathways, BsAbs can improve specificity and minimize off-target effects, making them invaluable in therapeutic contexts. Integrating advanced imaging techniques, particularly Correlative Light and Electron Microscopy (CLEM), offers a unique opportunity to visualize the dynamic interactions of BsAbs within cellular environments. CLEM combines the strengths of optical and electron microscopy, allowing researchers to observe real-time antibody-antigen interactions at nanoscale resolution. This synergy not only deepens our understanding of BsAbs' mechanisms of action but also provides critical insights into their spatial distribution, binding kinetics, and functional dynamics in live cells. In this review, the integration of BsAbs and CLEM paves the way for targeted therapeutic strategies, fostering the development of more effective treatments that can adapt to the complexities of disease pathology.
Collapse
Affiliation(s)
- Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
3
|
Park DH, Bhojnagarwala PS, Liaw K, Bordoloi D, Tursi NJ, Zhao S, Binder ZA, O’Rourke D, Weiner DB. Novel tri-specific T-cell engager targeting IL-13Rα2 and EGFRvIII provides long-term survival in heterogeneous GBM challenge and promotes antitumor cytotoxicity with patient immune cells. J Immunother Cancer 2024; 12:e009604. [PMID: 39622583 PMCID: PMC11624777 DOI: 10.1136/jitc-2024-009604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is known for its high antigenic heterogeneity, which undermines the effectiveness of monospecific immunotherapies. Multivalent immunotherapeutic strategies that target multiple tumor antigens simultaneously could enhance clinical outcomes by preventing antigen-driven tumor escape mechanisms. METHODS We describe novel trivalent antibodies, DNA-encoded tri-specific T-cell engagers (DTriTEs), targeting two GBM antigens, epidermal growth factor receptor variant III (EGFRvIII) and IL-13Rα2, and engaging T cells through CD3. We engineered three DTriTE constructs, each with a unique arrangement of the antigen-binding fragments within a single-chain sequence. We assessed the binding efficiency and cytotoxic activity of these DTriTEs in vitro on target cells expressing relevant antigens. In vivo efficacy was tested in immunocompromised mice, including a longitudinal expression study post-administration and a survival analysis in an NOD scid gamma (NSG)-K mouse model under a heterogeneous tumor burden. RNA sequencing of DTriTE-activated T cells was employed to identify the molecular pathways influenced by the treatment. The antitumor cytotoxicity of patient-derived immune cells was evaluated following stimulation by DTriTE to assess its potential effectiveness in a clinical setting. RESULTS All DTriTE constructs demonstrated strong binding to EGFRvIII and IL-13Rα2-expressing cells, induced significant T cell-mediated cytotoxicity, and enhanced cytokine production (interferon-γ, tumor necrosis factor (TNF)-α, and interleukin(IL)-2). The lead construct, DT2035, sustained expression for over 105 days in vivo and exhibited elimination of tumor burden in a heterogeneous intracranial GBM model, outperforming monospecific antibody controls. In extended survival studies using the NSG-K model, DT2035 achieved a 67% survival rate over 120 days. RNA sequencing of DTriTE-activated T cells showed that DT2035 enhances genes linked to cytotoxicity, proliferation, and immunomodulation, reflecting potent immune activation. Finally, DT2035 effectively induced target-specific cytotoxicity in post-treatment peripheral blood mononuclear cells from patients with GBM, highlighting its potential for clinical effectiveness. CONCLUSIONS DTriTEs exhibit potent anti-tumor effects and durable in vivo activity, offering promising therapeutic potential against GBM. These findings support further development of such multivalent therapeutic strategies to improve treatment outcomes in GBM and potentially other antigenically heterogeneous tumors. The opportunity to advance such important therapies either through biologic delivery or direct in vivo nucleic acid production is compelling.
Collapse
Affiliation(s)
- Daniel H Park
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Kevin Liaw
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Devivasha Bordoloi
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shushu Zhao
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zev A Binder
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Philadelphia, Pennsylvania, USA
| | - Donald O’Rourke
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Philadelphia, Pennsylvania, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Choi SM, Lee JH, Ko S, Hong SS, Jin HE. Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies. Biomol Ther (Seoul) 2024; 32:708-722. [PMID: 39448393 PMCID: PMC11535297 DOI: 10.4062/biomolther.2024.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges. Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology; however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
Collapse
Affiliation(s)
- Seong Min Choi
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine & Program in Biomedicals Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Hyo-Eon Jin
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
6
|
Strazza M, Song R, Hiner S, Mor A. Changing the location of proteins on the cell surface is a promising strategy for modulating T cell functions. Immunology 2024; 173:248-257. [PMID: 38952142 PMCID: PMC11987702 DOI: 10.1111/imm.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Targeting immune receptors on T cells is a common strategy to treat cancer and autoimmunity. Frequently, this is accomplished through monoclonal antibodies targeting the ligand binding sites of stimulatory or inhibitory co-receptors. Blocking ligand binding prevents downstream signalling and modulates specific T cell functions. Since 1985, the FDA has approved over 100 monoclonal antibodies against immune receptors. This therapeutic approach significantly improved the care of patients with numerous immune-related conditions; however, many patients are unresponsive, and some develop immune-related adverse events. One reason for that is the lack of consideration for the localization of these receptors on the cell surface of the immune cells in the context of the immune synapse. In addition to blocking ligand binding, changing the location of these receptors on the cell surface within the different compartments of the immunological synapse could serve as an alternative, efficient, and safer approach to treating these patients. This review discusses the potential therapeutic advantages of altering proteins' localization within the immune synapse and summarizes published work in this field. It also discusses the novel use of bispecific antibodies to induce the clustering of receptors on the cell surface. It presents the rationale for developing novel antibodies, targeting the organization of signalling receptor complexes on the cell surface. This approach offers an innovative and emerging technology to treat cancer patients resistant to current immunotherapies.
Collapse
Affiliation(s)
- Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Ruijiang Song
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Shannon Hiner
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Fuster MM. Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm. Front Oncol 2024; 14:1417621. [PMID: 39165679 PMCID: PMC11333800 DOI: 10.3389/fonc.2024.1417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
An array of published cell-based and small animal studies have demonstrated a variety of exposures of cancer cells or experimental carcinomas to electromagnetic (EM) wave platforms that are non-ionizing and non-thermal. Overall effects appear to be inhibitory, inducing cancer cell stress or death as well as inhibition in tumor growth in experimental models. A variety of physical input variables, including discrete frequencies, amplitudes, and exposure times, have been tested, but drawing methodologic rationale and mechanistic conclusions across studies is challenging. Nevertheless, outputs such as tumor cytotoxicity, apoptosis, tumor membrane electroporation and leak, and reactive oxygen species generation are intriguing. Early EM platforms in humans employ pulsed electric fields applied either externally or using interventional tumor contact to induce tumor cell electroporation with stromal, vascular, and immunologic sparing. It is also possible that direct or external exposures to non-thermal EM waves or pulsed magnetic fields may generate electromotive forces to engage with unique tumor cell properties, including tumor glycocalyx to induce carcinoma membrane disruption and stress, providing novel avenues to augment tumor antigen release, cross-presentation by tumor-resident immune cells, and anti-tumor immunity. Integration with existing checkpoint inhibitor strategies to boost immunotherapeutic effects in carcinomas may also emerge as a broadly effective strategy, but little has been considered or tested in this area. Unlike the use of chemo/radiation and/or targeted therapies in cancer, EM platforms may allow for the survival of tumor-associated immunologic cells, including naïve and sensitized anti-tumor T cells. Moreover, EM-induced cancer cell stress and apoptosis may potentiate endogenous tumor antigen-specific anti-tumor immunity. Clinical studies examining a few of these combined EM-platform approaches are in their infancy, and a greater thrust in research (including basic, clinical, and translational work) in understanding how EM platforms may integrate with immunotherapy will be critical in driving advances in cancer outcomes under this promising combination.
Collapse
Affiliation(s)
- Mark M. Fuster
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Pulmonary & Critical Care Division, University of California, San Diego, San Diego, CA, United States
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, San Diego, CA, United States
- Veterans Medical Research Foundation, San Diego, CA, United States
| |
Collapse
|
8
|
Al Agrafi F, Gaballa A, Hahn P, Arruda LCM, Jaramillo AC, Witsen M, Lehmann S, Önfelt B, Uhlin M, Stikvoort A. Selective lysis of acute myeloid leukemia cells by CD34/CD3 bispecific antibody through the activation of γδ T-cells. Oncoimmunology 2024; 13:2379063. [PMID: 39076247 PMCID: PMC11285226 DOI: 10.1080/2162402x.2024.2379063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the considerable progress in acute myeloid leukemia (AML) treatment, relapse after allogeneic hematopoietic stem cell transplantation (HSCT) is still frequent and associated with a poor prognosis. Relapse has been shown to be correlated with an incomplete eradication of CD34+ leukemic stem cells prior to HSCT. Previously, we have shown that a novel CD34-directed, bispecific T-cell engager (BTE) can efficiently redirect the T-cell effector function toward cancer cells, thus eliminating leukemic cells in vitro and in vivo. However, its impact on γδ T-cells is still unclear. In this study, we tested the efficacy of the CD34-specific BTE using in vitro expanded γδ T-cells as effectors. We showed that the BTEs bind to γδ T-cells and CD34+ leukemic cell lines and induce target cell killing in a dose-dependent manner. Additionally, γδ T-cell mediated killing was found to be superior to αβ T-cell mediated cytotoxicity. Furthermore, we observed that only in the presence of BTE the γδ T-cells induced primary AML blast killing in vitro. Importantly, our results show that γδ T-cells did not target the healthy CD34intermediate endothelial blood-brain barrier cell line (hCMEC/D3) nor lysed CD34+ HSCs from healthy bone marrow samples.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibody Specificity
- Lymphocyte Activation
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Humans
- Cell Line, Tumor
- Antigens, CD34/immunology
- CD3 Complex/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Cell Proliferation
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Cytokines/immunology
- Cell Death
- T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Faisal Al Agrafi
- Healthy Aging Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Ahmed Gaballa
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebeen El-Kom, Egypt
| | - Paula Hahn
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Lucas C. M. Arruda
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Adrian C. Jaramillo
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Maartje Witsen
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medical Sciences, Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael Uhlin
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| |
Collapse
|
9
|
Suwanchiwasiri K, Phanthaphol N, Somboonpatarakun C, Yuti P, Sujjitjoon J, Luangwattananun P, Maher J, Yenchitsomanus PT, Junking M. Bispecific T cell engager-armed T cells targeting integrin ανβ6 exhibit enhanced T cell redirection and antitumor activity in cholangiocarcinoma. Biomed Pharmacother 2024; 175:116718. [PMID: 38744221 DOI: 10.1016/j.biopha.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvβ6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvβ6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvβ6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvβ6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.β6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvβ6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvβ6-expressing cancers.
Collapse
Affiliation(s)
- Kwanpirom Suwanchiwasiri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Cardiovascular and Medical Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London, United Kingdom
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Döring M, Brux M, Paszkowski-Rogacz M, Guillem-Gloria PM, Buchholz F, Pisabarro MT, Theis M. Nucleolar protein TAAP1/ C22orf46 confers pro-survival signaling in non-small cell lung cancer. Life Sci Alliance 2024; 7:e202302257. [PMID: 38228372 PMCID: PMC10791977 DOI: 10.26508/lsa.202302257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Tumor cells subvert immune surveillance or lytic stress by harnessing inhibitory signals. Hence, bispecific antibodies have been developed to direct CTLs to the tumor site and foster immune-dependent cytotoxicity. Although applied with success, T cell-based immunotherapies are not universally effective partially because of the expression of pro-survival factors by tumor cells protecting them from apoptosis. Here, we report a CRISPR/Cas9 screen in human non-small cell lung cancer cells designed to identify genes that confer tumors with the ability to evade the cytotoxic effects of CD8+ T lymphocytes engaged by bispecific antibodies. We show that the gene C22orf46 facilitates pro-survival signals and that tumor cells devoid of C22orf46 expression exhibit increased susceptibility to T cell-induced apoptosis and stress by genotoxic agents. Although annotated as a non-coding gene, we demonstrate that C22orf46 encodes a nucleolar protein, hereafter referred to as "Tumor Apoptosis Associated Protein 1," up-regulated in lung cancer, which displays remote homologies to the BH domain containing Bcl-2 family of apoptosis regulators. Collectively, the findings establish TAAP1/C22orf46 as a pro-survival oncogene with implications to therapy.
Collapse
Affiliation(s)
- Marietta Döring
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Melanie Brux
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Frank Buchholz
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | - Mirko Theis
- National Center for Tumor Diseases/University Cancer Center (NCT/UCC): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Pan Q, Weng D, Liu J, Han Z, Ou Y, Xu B, Peng R, Que Y, Wen X, Yang J, Zhong S, Zeng L, Chen A, Gong H, Lin Y, Chen J, Ma K, Lau JYN, Li Y, Fan Z, Zhang X. Phase 1 clinical trial to assess safety and efficacy of NY-ESO-1-specific TCR T cells in HLA-A∗02:01 patients with advanced soft tissue sarcoma. Cell Rep Med 2023; 4:101133. [PMID: 37586317 PMCID: PMC10439245 DOI: 10.1016/j.xcrm.2023.101133] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/14/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cell receptor (TCR) T cell therapy is effective in tumors with NY-ESO-1 expression, but a safe and effective TCR-T cell therapeutic protocol remains to be improved. Here, we report a phase 1 investigational new drug clinical trial with TCR affinity-enhanced specific T cell therapy (TAEST16001) for targeting NY-ESO-1. Enrolled patients receive TAEST16001 cell infusion after dose-reduced lymphodepletion with cyclophosphamide (15 mg/kg/day × 3 days) combined with fludarabine (20 mg/m2/day × 3 days), and the TCR-T cells are maintained with low doses of interleukin-2 injection post-adoptive transfer. Analysis of 12 patients treated with the regimen demonstrates no treatment-related serious adverse events. The overall response rate is 41.7%. The median progression-free survival is 7.2 months, and the median duration of response is 13.1 months. The protocol of TAEST16001 cells delivers a safe and highly effective treatment for patients with advanced soft tissue sarcoma (ClinicalTrials.gov: NCT04318964).
Collapse
Affiliation(s)
- Qiuzhong Pan
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Desheng Weng
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiayong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, P.R. China
| | - Zhaosheng Han
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Yusheng Ou
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ruiqing Peng
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Que
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xizhi Wen
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shi Zhong
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Lun Zeng
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Aiyuan Chen
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Haiping Gong
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Yanmei Lin
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Jiewen Chen
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Ke Ma
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China
| | - Johnson Y N Lau
- Axis Therapeutics, Ltd., Hong Kong SAR, P.R. China; Athenex, Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY 14203, USA
| | - Yi Li
- Xiangxue Life Science Technology (Guangdong) Co., Ltd., Guangzhou 510663, P.R. China.
| | - Zhengfu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, P.R. China.
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|