1
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Lou Y, Wang Y, Lu J, Chen X. MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects. Nanomedicine (Lond) 2025:1-14. [PMID: 40231694 DOI: 10.1080/17435889.2025.2492542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Recently, the regulatory effects of microRNAs (miRNAs) on gene expression have been exploited for applications in the diagnosis and treatment of cancer, neurological diseases, and cardiovascular diseases. However, the susceptibility of miRNAs to degradation during somatic circulation and the challenges associated with their delivery to target tissues and cells have limited the clinical application of miRNAs. For application in tumor therapy, it is essential for miRNAs to specifically target cancer cells. Therefore, various novel miRNA delivery systems that protect miRNA against the activity of serum nuclease and deliver miRNA to target cells have been developed and optimized. This review introduces the passive and active targeting strategies of nanoparticles, summarizes the recent progress of miRNA nanocarriers with tumor-targeting ability, and discusses various nanoparticle delivery systems and their antitumor applications. Additionally, this review focuses on the translational challenges and potential strategies for advancing miRNA-based therapies into the clinic.
Collapse
Affiliation(s)
- Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2025; 15:1121-1138. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
5
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Mańka R, Sapoń K, Zaziąbło J, Janas T, Czogalla A, Janas T. The role of RNA structural motifs in RNA-lipid raft interaction. Sci Rep 2025; 15:6777. [PMID: 40000734 PMCID: PMC11861254 DOI: 10.1038/s41598-025-91093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Here, we sought to determine the role of specific RNA structural motifs in the interaction of RNA with model lipid vesicles containing liquid-ordered domains (RAFT liposomes). We show that the presence of several small apical loops within RNA structure favors RNA affinity for RAFT liposomes while the increased number of nucleotides within bulges inhibits this affinity. FRET flow cytometry measurements confirmed a modulation of the interaction of RNA with plasma membrane by the presence of specific RNA structural motifs. The analysis of viral RNA fragments revealed that a long double helix at the apical loop increases the affinity of viral RNA to lipid rafts. The analysis of exosomal Y RNAs secreted by nematode parasites showed that the presence of the EXO-motif GGAG is strongly correlated to the presence of small number of large apical loops within RNA structure. These results show that RNA structural motifs can modulate RNA affinity to liquid-ordered membrane lipid raft domains thus suggesting the importance of these motifs both for the mechanism of RNA loading into extracellular vesicles, and for the development of RNA-based lipid biosensors for monitoring of viral RNAs in biofluids and wastewater.
Collapse
Affiliation(s)
- Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Joanna Zaziąbło
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot‑Curie 14a, 50‑383, Wrocław, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland.
| |
Collapse
|
8
|
Fontanellas A, Berraondo P, Urigo F, Jericó D, Martini PGV, Pastor F, Avila MA. RNA-based therapies in liver metabolic diseases. Gut 2025:gutjnl-2023-331742. [PMID: 39988358 DOI: 10.1136/gutjnl-2023-331742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
RNA-based therapeutics have rapidly emerged over the past decade, offering a new class of medicines that differ significantly from conventional drugs. These therapies can be programmed to target or restore defective genes, allowing for more personalised treatments and reducing side effects. Notably, RNA therapies have made significant progress in the treatment of genetic liver diseases, exemplified by small interfering RNA treatments for hereditary transthyretin amyloidosis, which use liver-targeting strategies such as GalNAc conjugation to improve efficacy and safety. RNA-based gene-editing technologies, such as base editor and prime editor clustered regularly interspaced short palindromic repeats systems, also show promise with their ability to minimise genomic rearrangements and cancer risk. While RNA therapies offer high precision, challenges remain in optimising delivery methods and ensuring long-term safety and efficacy. Lipid nanoparticle-mRNA therapeutics, particularly for protein replacement in rare diseases, have gained support from preclinical successes. Compared with viral gene therapies, mRNA therapies present a safer profile with reduced risks of genomic integration and oncogene activation. However, clinical trials, especially for rare diseases, face limitations such as small sample sizes and short observation periods. Further preclinical studies, including non-human primates, will be essential for refining trial designs. Despite their potential, the high costs of RNA therapies pose a challenge that will require cost-utility models to guide pricing and accessibility. Here, we discuss the fundamental aspects of RNA-based therapeutics and showcase the most relevant preclinical and clinical developments in genetic liver metabolic diseases.
Collapse
Affiliation(s)
- Antonio Fontanellas
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Oncologia (CIBERonc), Madrid, Spain
| | - Francesco Urigo
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Daniel Jericó
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Fernando Pastor
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| |
Collapse
|
9
|
Zhang HY, Zhang QY, Liu Q, Feng SG, Ma Y, Wang FS, Zhu Y, Yao J, Yan B. Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy. J Nanobiotechnology 2025; 23:36. [PMID: 39844301 PMCID: PMC11756024 DOI: 10.1186/s12951-024-03079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics. In this study, we report a marked down-regulation of miR-205 under pathological conditions. miR-205 potently inhibits endothelial cell functions critical for pathological neovascularization, including proliferation, migration, and tube formation. Furthermore, miR-205 strengthens the endothelial barrier, thereby reducing vascular leakage. In mouse models of retinal and choroidal neovascularization, miR-205 administration effectively suppresses abnormal blood vessel formation and leakage. Mechanistically, miR-205 directly targets VEGFA and ANGPT2, which are key drivers of pathological neovascularization. To improve delivery, we successfully loaded miR-205 into exosomes derived from mesenchymal stem cells. This innovative approach avoids cytotoxicity while preserving therapeutic efficacy in both cellular and animal models. Collectively, our findings highlight miR-205 as a promising therapeutic for ocular neovascularization, with exosome delivery offering a novel and efficient strategy for treating vision-threatening vascular diseases.
Collapse
Affiliation(s)
- Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Si-Guo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yan Ma
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Feng-Sheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
10
|
Chen W, Xu W, Ma L, Bi C, Yang M, Yang W. Inflammatory biomarkers and therapeutic potential of milk exosome-mediated CCL7 siRNA in murine intestinal ischemia-reperfusion injury. Front Immunol 2025; 15:1513196. [PMID: 39902039 PMCID: PMC11788141 DOI: 10.3389/fimmu.2024.1513196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Background Intestinal ischemia-reperfusion injury (IIRI) is a severe clinical condition associated with high morbidity and mortality. Despite advances in understanding the pathophysiology of IIRI, effective diagnostic and therapeutic strategies remain limited. Methods Using transcriptome sequencing in a mouse model of IIRI, we identified potential biomarkers that were significantly upregulated in the IIRI group compared to the sham group. Based on these findings, we developed and evaluated a therapeutic strategy using milk-derived exosomes loaded with siRNA targeting CCL7 (M-Exo/siCCL7). Results Focusing on Ccl7 as a hub gene, we explored the therapeutic efficacy of milk-derived exosomes loaded with siRNA targeting Ccl7 (M-Exo/siCCL7) in the IIRI model. M-Exo/siCCL7 treatment effectively attenuated intestinal inflammation and injury, as evidenced by reduced histological damage, decreased serum markers of intestinal barrier dysfunction, and attenuated systemic inflammation. Conclusion Our findings provide new insights into the molecular mechanisms underlying IIRI, identify potential diagnostic biomarkers, and highlight the promise of exosome-based siRNA delivery as a novel therapeutic approach for IIRI.
Collapse
Affiliation(s)
- WenDong Chen
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical
University, Kunming, Yunnan, China
| | | | | | | | | | | |
Collapse
|
11
|
Sadique Hussain M, Gupta G, Ghaboura N, Moglad E, Hassan Almalki W, Alzarea SI, Kazmi I, Ali H, MacLoughlin R, Loebenberg R, Davies NM, Kumar Singh S, Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025; 565:119983. [PMID: 39368685 DOI: 10.1016/j.cca.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs) have become essential contributors to advancing and treating lung cancers (LCs). The development of liquid biopsies that utilize exosomal ncRNAs (exo-ncRNAs) offers an encouraging method for diagnosing, predicting, and treating LC. This thorough overview examines the dual function of exo-ncRNAs as both indicators for early diagnosis and avenues for LC treatment. Exosomes are tiny vesicles secreted by various cells, including cancerous cells, enabling connection between cells by delivering ncRNAs. These ncRNAs, which encompass circular RNAs, long ncRNAs, and microRNAs, participate in the modulation of gene expression and cellular functions. In LC, certain exo-ncRNAs are linked to tumour advancement, spread, and treatment resistance, positioning them as promising non-invasive indicators in liquid biopsies. Additionally, targeting these ncRNAs offers potential for innovative treatment approaches, whether by suppressing harmful ncRNAs or reinstating the activity of tumour-suppressing ones. This review emphasizes recent developments in the extraction and analysis of exo-ncRNAs, their practical applications in LC treatment, and the challenges and prospects for translating these discoveries into clinical usage. Through this detailed examination of the current state of the art, we aim to highlight the significant potential of exo-ncRNAs for LC diagnostics and treatments.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Limited, H91HE94, Galway, Ireland
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Neal M Davies
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
12
|
Ocampo-Ortega SA, Sierra-Sanchez VM, Blancas-Napoles CM, González-Carteño A, Mera-Jiménez E, Macías-Pérez ME, Hernandez-Guerra A, Romero-Nava R, Huang F, Hong E, Villafaña S. Evaluation of an Antisense Oligonucleotide Targeting CAG Repeats: A Patient-Customized Therapy Study for Huntington's Disease. Life (Basel) 2024; 14:1607. [PMID: 39768315 PMCID: PMC11677511 DOI: 10.3390/life14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Huntington's disease is a genetic disorder characterized by progressive neuronal cell damage in some areas of the brain; symptoms are commonly associated with chorea, rigidity and dystonia. The symptoms in Huntington's Disease are caused by a pathological increase in the number of Cytokine-Adenine-Guanine (CAG) repeats on the first exon of the Huntingtin gene, which causes a protein to have an excessive number of glutamine residues; this alteration leads to a change in the protein's conformation and function. Therefore, the purpose of this work was to design, synthesize and evaluate an antisense oligonucleotide (ASO; 95 nucleotides) HTT 90-5 directed to the Huntingtin CAG repeats in primary leukocyte culture cells from a patient with Huntington's Disease; approximately 500,000 leukocytes per well extracted from venous blood were used, to which 100 pMol of ASO were administered, and the expression of Huntingtin was subsequently evaluated at 72 h by RT-PCR. Our results showed that the administration of the HTT 90-5 antisense decreased the expression of Huntingtin mRNA in the primary culture leukocyte cells from our patient. These results suggest that the use of long antisense targeting the CAG Huntingtin cluster may be an option to decrease the expression of Huntingtin and probably could be adjusted depending on the number of CAG repeats in the cluster.
Collapse
Affiliation(s)
- Sergio Adrian Ocampo-Ortega
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Vivany Maydel Sierra-Sanchez
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Asdrúbal González-Carteño
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Elvia Mera-Jiménez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Martha Edith Macías-Pérez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Adriana Hernandez-Guerra
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Rodrigo Romero-Nava
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de Mexico “Federico Gómez”, Ciudad de Mexico 06720, Mexico;
| | - Enrique Hong
- Departamento de Neurofarmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico 14330, Mexico;
| | - Santiago Villafaña
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| |
Collapse
|
13
|
Zhao X, Yu Z, Wang X, Li X, Liu Y, Wang L. The administration of human amniotic epithelial cells in premature ovarian insufficiency: From preclinical to clinical. Gynecol Endocrinol 2024; 40:2382818. [PMID: 39039858 DOI: 10.1080/09513590.2024.2382818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongna Yu
- Department of Gynecology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
15
|
Parvin N, Mandal TK, Joo SW. The Impact of COVID-19 on RNA Therapeutics: A Surge in Lipid Nanoparticles and Alternative Delivery Systems. Pharmaceutics 2024; 16:1366. [PMID: 39598489 PMCID: PMC11597542 DOI: 10.3390/pharmaceutics16111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic has significantly accelerated progress in RNA-based therapeutics, particularly through the successful development and global rollout of mRNA vaccines. This review delves into the transformative impact of the pandemic on RNA therapeutics, with a strong focus on lipid nanoparticles (LNPs) as a pivotal delivery platform. LNPs have proven to be critical in enhancing the stability, bioavailability, and targeted delivery of mRNA, facilitating the unprecedented success of vaccines like those developed by Pfizer-BioNTech and Moderna. Beyond vaccines, LNP technology is being explored for broader therapeutic applications, including treatments for cancer, rare genetic disorders, and infectious diseases. This review also discusses emerging RNA delivery systems, such as polymeric nanoparticles and viral vectors, which offer alternative strategies to overcome existing challenges related to stability, immune responses, and tissue-specific targeting. Additionally, we examine the pandemic's influence on regulatory processes, including the fast-tracked approvals for RNA therapies, and the surge in research funding that has spurred further innovation in the field. Public acceptance of RNA-based treatments has also grown, laying the groundwork for future developments in personalized medicine. By providing an in-depth analysis of these advancements, this review highlights the long-term impact of COVID-19 on the evolution of RNA therapeutics and the future of precision drug delivery technologies.
Collapse
Affiliation(s)
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang-Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
16
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
17
|
Dang Q. LncRNA DARS-AS1 in human cancers: A comprehensive review of its potency as a biomarker and therapeutic target. Gene 2024; 923:148566. [PMID: 38762015 DOI: 10.1016/j.gene.2024.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Long non-coding RNAs have emerged as important players in cancer biology. Increasing evidence has uncovered their potency in improving cancer management as they can be used as a credible prognostic and diagnostic biomarker. Recently, DARS-AS1 has gained significant attention for its involvement in facilitating tumor progression. So far, numerous research has been reported its upregulation in different malignancies of human body systems and revealed its association with cancer hallmarks as well as clinicopathological characteristics. Importantly, targeting DARS-AS1 holds promise in cancer therapy. In the current study, we provide an in-depth analysis of its expression status and explore the underlying mechanisms through which DARS-AS1 contributes to tumor initiation, growth, invasion, and metastasis. Additionally, we examine the correlation between DARS-AS1 expression and clinicopathological features of cancer patients, shedding light on its potential as a cancer biomarker. Furthermore, we discuss the therapeutic potential of targeting DARS-AS1 in cancer treatment, highlighting emerging strategies, such as RNA interference and small molecule inhibitors. Boosting the understanding of its functional role can open new avenues for precision medicine, thus resulting in better outcomes for cancer patients.
Collapse
Affiliation(s)
- Qiucai Dang
- Zhumadian Preschool Education College, Zhumadian, Henan Province 463000, China.
| |
Collapse
|
18
|
Zhang Z, Fu Y, Ju X, Zhang F, Zhang P, He M. Advances in Engineering Circular RNA Vaccines. Pathogens 2024; 13:692. [PMID: 39204292 PMCID: PMC11356823 DOI: 10.3390/pathogens13080692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Engineered circular RNAs (circRNAs) are a class of single-stranded RNAs with head-to-tail covalently linked structures that integrate open reading frames (ORFs) and internal ribosome entry sites (IRESs) with the function of coding and expressing proteins. Compared to mRNA vaccines, circRNA vaccines offer a more improved method that is safe, stable, and simple to manufacture. With the rapid revelation of the biological functions of circRNA and the success of Severe Acute Respiratory Coronavirus Type II (SARS-CoV-2) mRNA vaccines, biopharmaceutical companies and researchers around the globe are attempting to develop more stable circRNA vaccines for illness prevention and treatment. Nevertheless, research on circRNA vaccines is still in its infancy, and more work and assessment are needed for their synthesis, delivery, and use. In this review, based on the current understanding of the molecular biological properties and immunotherapeutic mechanisms of circRNA, we summarize the current preparation methods of circRNA vaccines, including design, synthesis, purification, and identification. We discuss their delivery strategies and summarize the challenges facing the clinical application of circRNAs to provide references for circRNA vaccine-related research.
Collapse
Affiliation(s)
- Zhongyan Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China;
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264005, China; (Y.F.); (X.J.); (F.Z.)
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264005, China; (Y.F.); (X.J.); (F.Z.)
| | - Furong Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264005, China; (Y.F.); (X.J.); (F.Z.)
| | - Peng Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China;
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264005, China; (Y.F.); (X.J.); (F.Z.)
| |
Collapse
|
19
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
20
|
Sani F, Shojaei S, Tabatabaei SA, Khorraminejad-Shirazi M, Latifi M, Sani M, Azarpira N. CAR-T cell-derived exosomes: a new perspective for cancer therapy. Stem Cell Res Ther 2024; 15:174. [PMID: 38886844 PMCID: PMC11184895 DOI: 10.1186/s13287-024-03783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell adoptive immunotherapy is a promising cancer treatment that uses genetically engineered T cells to attack tumors. However, this therapy can have some adverse effects. CAR-T cell-derived exosomes are a potential alternative to CAR-T cells that may overcome some limitations. Exosomes are small vesicles released by cells and can carry a variety of molecules, including proteins, RNA, and DNA. They play an important role in intercellular communication and can be used to deliver therapeutic agents to cancer cells. The application of CAR-T cell-derived exosomes could make CAR-T cell therapy more clinically controllable and effective. Exosomes are cell-free, which means that they are less likely to cause adverse reactions than CAR-T cells. The combination of CAR-T cells and exosomes may be a more effective way to treat cancer than either therapy alone. Exosomes can deliver therapeutic agents to cancer cells where CAR-T cells cannot reach. The appropriate application of both cellular and exosomal platforms could make CAR-T cell therapy a more practicable treatment for cancer. This combination therapy could offer a safe and effective way to treat a variety of cancers.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Shojaei
- School of Medicine, Shiraz Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadhossein Khorraminejad-Shirazi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mona Latifi
- Department of Physiological Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
21
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
22
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
23
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
24
|
Zareifar P, Ahmed HM, Ghaderi P, Farahmand Y, Rahnama N, Esbati R, Moradi A, Yazdani O, Sadeghipour Y. miR-142-3p/5p role in cancer: From epigenetic regulation to immunomodulation. Cell Biochem Funct 2024; 42:e3931. [PMID: 38379239 DOI: 10.1002/cbf.3931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs (miRNAs) play critical roles in cancer pathobiology, acting as regulators of gene expression and pivotal drivers of tumorigenesis. It is believed that miRNAs act through canonical mechanisms, involving the binding of mature miRNAs to target messenger RNAs (mRNAs) and subsequent repression of protein translation or degradation of target mRNAs. miR-142-3p/5p has been extensively studied and established as a key regulator in various malignancies. Recent discoveries have revealed miR-142-3p/5p serve as either oncogene or tumor suppressor in cancer. By targeting epigenetic factor and cancer-related signaling pathway, miR-142-3p/5p can regulate wide range of downstream genes. The immune modulatory role of miR-142-3p/5p has been shown in various cancers, which provides significant insight into immunosuppression and tumor escape from the immune response. Exosomes with miR-142-3p/5p facilitate cell communication and can affect cancer cell behavior, offering potential therapeutic, and diagnosis applications in cancer therapy. In this review, for the first time, we comprehensively summarize the current knowledge regarding mentioned functions of miR-142-3p/5p in cancer pathobiology.
Collapse
Affiliation(s)
- Parisa Zareifar
- Golestan University of Medical Science, Gorgan, Golestan, Iran
| | | | - Pouya Ghaderi
- Department of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
26
|
Lin Y, Chen Y, Luo Z, Wu YL. Recent advances in biomaterial designs for assisting CAR-T cell therapy towards potential solid tumor treatment. NANOSCALE 2024; 16:3226-3242. [PMID: 38284230 DOI: 10.1039/d3nr05768b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells have shown promising outcomes in the treatment of hematologic malignancies. However, CAR-T cell therapy in solid tumor treatment has been significantly hindered, due to the complex manufacturing process, difficulties in proliferation and infiltration, lack of precision, or poor visualization ability. Fortunately, recent reports have shown that functional biomaterial designs such as nanoparticles, polymers, hydrogels, or implantable scaffolds might have potential to address the above challenges. In this review, we aim to summarize the recent advances in the designs of functional biomaterials for assisting CAR-T cell therapy for potential solid tumor treatments. Firstly, by enabling efficient CAR gene delivery in vivo and in vitro, functional biomaterials can streamline the difficult process of CAR-T cell therapy manufacturing. Secondly, they might also serve as carriers for drugs and bioactive molecules, promoting the proliferation and infiltration of CAR-T cells. Furthermore, a number of functional biomaterial designs with immunomodulatory properties might modulate the tumor microenvironment, which could provide a platform for combination therapies or improve the efficacy of CAR-T cell therapy through synergistic therapeutic effects. Last but not least, the current challenges with biomaterials-based CAR-T therapies will also be discussed, which might be helpful for the future design of CAR-T therapy in solid tumor treatment.
Collapse
Affiliation(s)
- Yuting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
27
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
28
|
Abdullaev B, Rasyid SA, Ali E, Al-Dhalimy AMB, Mustafa YF, Fenjan MN, Misra N, Al-Musawi SG, Alawadi A, Alsalamy A. Effective exosomes in breast cancer: focusing on diagnosis and treatment of cancer progression. Pathol Res Pract 2024; 253:154995. [PMID: 38113765 DOI: 10.1016/j.prp.2023.154995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Breast cancer (BC) is the most prevalent aggressive malignant tumor in women worldwide and develops from breast tissue. Although cutting-edge treatment methods have been used and current mortality rates have decreased, BC control is still not satisfactory. Clarifying the underlying molecular mechanisms will help clinical options. Extracellular vesicles known as exosomes mediate cellular communication by delivering a variety of biomolecules, including proteins, oncogenes, oncomiRs, and even pharmacological substances. These transferable bioactive molecules can alter the transcriptome of target cells and affect signaling pathways that are related to tumors. Numerous studies have linked exosomes to BC biology, including therapeutic resistance and the local microenvironment. Exosomes' roles in tumor treatment resistance, invasion, and BC metastasis are the main topics of discussion in this review.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan.
| | - Sri Anggarini Rasyid
- Faculty of Science and Technology, Mandala Waluya University, Kendari, South East Sulawesi, Indonesia.
| | - Eyhab Ali
- college of chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, India
| | | | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
29
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
31
|
Ishibashi O, Muljo SA, Islam Z. Regulation of Macrophage Polarization in Allergy by Noncoding RNAs. Noncoding RNA 2023; 9:75. [PMID: 38133209 PMCID: PMC10745746 DOI: 10.3390/ncrna9060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Allergy is a type 2 immune reaction triggered by antigens known as allergens, including food and environmental substances such as peanuts, plant pollen, fungal spores, and the feces and debris of mites and insects. Macrophages are myeloid immune cells with phagocytic abilities that process exogenous and endogenous antigens. Upon activation, they can produce effector molecules such as cytokines as well as anti-inflammatory molecules. The dysregulation of macrophage function can lead to excessive type 1 inflammation as well as type 2 inflammation, which includes allergic reactions. Thus, it is important to better understand how macrophages are regulated in the pathogenesis of allergies. Emerging evidence highlights the role of noncoding RNAs (ncRNAs) in macrophage polarization, which in turn can modify the pathogenesis of various immune-mediated diseases, including allergies. This review summarizes the current knowledge regarding this topic and considers three classes of ncRNAs: microRNAs, long ncRNAs, and circular ncRNAs. Understanding the roles of these ncRNAs in macrophage polarization will provide new insights into the pathogenesis of allergies and identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Zhang B, Li J, Jiang J, Lin X, Sun X, Wang Q. Overcoming delivery barriers for RNA therapeutics in the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 192:147-160. [PMID: 37844708 DOI: 10.1016/j.ejpb.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
RNA therapeutics can manipulate gene expression or protein production, making them suitable for treating a wide range of diseases. Theoretically, any disease that has a definite biological target would probably find feasible therapeutic approach from RNA-based therapeutics. Numerous clinical trials using RNA therapeutics fighting against cancer, infectious diseases or inherited diseases have been reported and achieved desirable therapeutic efficacy. So far, encouraging findings from various animal experimental studies have also confirmed the great potential of RNA-based therapies in the treatment of rheumatic arthritis (RA). However, the in vivo multiple physiological barriers still seriously compromise the therapeutic efficacy of RNA drugs. Thus, safe and effective delivery strategies for RNA therapeutics are quite essential for their further and wide application in RA therapy. In this review, we will discuss the recent progress achieved using RNA-based therapeutics and focus on delivery strategies that can overcome the in vivo delivery barriers in RA treatment. Furthermore, discussion about the existing problems in current RNA delivery systems for RA therapy has been also included here.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiayu Jiang
- Patent Examination Cooperation Sichuan Center of the Patent office, Chengdu 610213, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Chengdu 610041, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
33
|
Han Y, Shin SH, Lim CG, Heo YH, Choi IY, Kim HH. Synthetic RNA Therapeutics in Cancer. J Pharmacol Exp Ther 2023; 386:212-223. [PMID: 37188531 DOI: 10.1124/jpet.123.001587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in the RNA delivery system have facilitated the development of a separate field of RNA therapeutics, with modalities including mRNA, microRNA (miRNA), antisense oligonucleotide (ASO), small interfering RNA, and circular (circRNA) that have been incorporated into oncology research. The main advantages of the RNA-based modalities are high flexibility in designing RNA and rapid production for clinical screening. It is challenging to eliminate tumors by tackling a single target in cancer. In the era of precision medicine, RNA-based therapeutic approaches potentially constitute suitable platforms for targeting heterogeneous tumors that possess multiple sub-clonal cancer cell populations. In this review, we discussed how synthetic coding and non-coding RNAs, such as mRNA, miRNA, ASO, and circRNA, can be applied in the development of therapeutics. SIGNIFICANCE STATEMENT: With development of vaccines against coronavirus, RNA-based therapeutics have received attention. Here, the authors discuss different types of RNA-based therapeutics potentially effective against tumor that are highly heterogeneous giving rise to resistance and relapses to the conventional therapeutics. Moreover, this study summarized recent findings suggesting combination approaches of RNA therapeutics and cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Han
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Chang Gyu Lim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Yong Ho Heo
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Ha Hyung Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| |
Collapse
|
34
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|