1
|
Chen KY, Chan HC, Chan CM. Can Stem Cell Therapy Revolutionize Ocular Disease Treatment? A Critical Review of Preclinical and Clinical Advances. Stem Cell Rev Rep 2025:10.1007/s12015-025-10884-x. [PMID: 40266467 DOI: 10.1007/s12015-025-10884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Stem cell therapy in regenerative medicine has a scope for treating ocular diseases. Stem cell therapy aims to repair damaged tissue and restore vision. The present review focuses on the advancements in stem cell therapies for ocular disorders, their mechanism of action, and clinical applications while addressing some outstanding challenges. Stem cells that include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells have regenerative potential for ocular repair. They differentiate into specialized ocular cell types, conduct neuroprotection, and modulate immune responses. It is emphasized in preclinical and clinical studies that stem cell therapy can treat corneal disorders such as limbal stem cell deficiency, retinal diseases like dry age macular degeneration and retinitis pigmentosa, and diabetic retinopathy. Various studies suggested that stem cells have considerable scope in glaucoma treatment by supporting retinal ganglion cell survival and optic nerve regeneration. Advanced approaches such as gene editing, organoid generation, and artificial intelligence enhance these therapies. Effective delivery to target areas, engraftment, orientation, and long-term survival of transplanted cells need optimization. Issues such as immune rejection and tumorigenicity must be addressed. This approach is further hindered by regulatory issues and overly complicated approval processes and trials. Ethical issues related to sourcing embryonic stem cells and patient consent complicate the issue. The cost of manufacturing stem cells and their accessibility are other factors posing potential barriers to widespread application. These regulatory, ethical, and economic issues must be tackled if stem cell treatments are to be made safe, accessible, and effective. Future studies will include refining therapeutic protocols, scaling manufacturing processes, and overcoming socio-economic barriers, eventually improving clinical outcomes.
Collapse
Affiliation(s)
- Kai-Yang Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoi-Chun Chan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Wang A, Li H, Wu Y, Wang T, Lian P. Melatonin ameliorates retinal neurovascular degeneration in Rd1 mice by inhibiting oxidativestress. Exp Eye Res 2025; 255:110388. [PMID: 40216063 DOI: 10.1016/j.exer.2025.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/15/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Oxidative stress has been involved in the occurrence of retinal photoreceptor degeneration and retinal vascular dysfunctions. This study investigated the effects of melatonin (MLT) on neurovascular changes in rd1 mice, evaluating its therapeutic potential as an antioxidant for retinal degeneration. MLT was administered to rd1 mice at postnatal day 7 (P7), and retinal vascular alterations were assessed using retina flatmounts, while neural and functional changes were evaluated through frozen sections and electroretinography at P14. In vitro, human retinal microvascular endothelial cells (HRMECs) were treated with MLT to counteract oxidative stress induced by H2O2. Analyses included assessments of cell function, apoptosis, oxidative stress, and inflammatory markers in both in vivo and in vitro models. The results demonstrated that MLT significantly improved retinal vascular densities in the deep and superficial layers at P14 and P21, though not fully restoring them to wild-type levels. Additionally, MLT exerted protective effects against photoreceptor degeneration, oxidative stress, and inflammation, partially preserving retinal function. In vitro, MLT alleviated functional abnormalities and reduced cell death in HRMECs by decreasing reactive oxygen species levels. These findings suggest that MLT holds promise as a therapeutic approach for retinal degeneration by mitigating oxidative stress, thereby protecting photoreceptors and retinal vasculature. This underscores the importance of vascular preservation in developing therapeutic strategies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Aoxiang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Ping Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Hanna J, Touahri Y, Pak A, David LA, van Oosten E, Dixit R, Vecchio LM, Mehta DN, Minamisono R, Aubert I, Schuurmans C. Pten Loss Triggers Progressive Photoreceptor Degeneration in an mTORC1-Independent Manner. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40116678 PMCID: PMC11935561 DOI: 10.1167/iovs.66.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Silencing Phosphatase and tensin homolog (Pten) is a proposed therapeutic strategy for tissue regeneration to treat neurological disorders. However, Pten is pleiotropic, inhibiting several signaling and metabolic pathways, including mTORC1 and glycolysis, both pro-regenerative in certain contexts. This study aims to assess the long-term impact of inactivating Pten on photoreceptor survival in the retina and to identify downstream pathway(s). Methods We assessed retinal integrity in Pten conditional knock-outs (cKOs) that were retinal progenitor cell (RPC)-specific (Pten RPC-cKO), a congenital model, or rod-specific (Pten Rho-cKO). We examined early changes in photoreceptor gene expression and used immunostaining to assess photoreceptors, reactive astrocytes, microglia, angiogenesis, and subretinal deposit formation from postnatal day (P) 21 to 1 year of age. Pten RPC-cKO retinal explants were treated with rapamycin, an mTOR inhibitor, or 2-deoxy-D-glucose (2DG), a glycolysis inhibitor. Results In both Pten-cKO models, retinas display signs of early pathogenesis as photoreceptor-specific gene expression is downregulated at P0, before photoreceptor loss. Pten loss triggers progressive rod and cone degeneration beginning at P21 in Pten RPC-cKOs and at 6 months of age in Pten Rho-cKOs. Activated microglia and astrocytes, and increased angiogenesis, are observed in both Pten-cKO models, while subretinal amyloid-β deposits develop in Pten RPC-cKOs. Rapamycin accelerates photoreceptor degeneration in Pten RPC-cKOs, whereas 2DG has no effect. Conclusions Our findings suggest that Pten loss, either in RPCs as a congenital model, or solely in mature rod photoreceptors, leads to progressive retinal degeneration that is exacerbated by mTORC1 suppression, drawing into question the therapeutic value of Pten-mTORC1 manipulations.
Collapse
Affiliation(s)
- Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edwin van Oosten
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M. Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ren Minamisono
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Piano I, Polini B, Corsi F, Carpi S, Petrarolo G, Quattrini L, D'Agostino I, Gamberini MC, Baraldi C, Chiellini G, Nieri P, Motta CL, Gargini C. β-Cyclodextrin nanosponges for the ocular delivery of therapeutic Micro-RNA in a Mouse model of retinitis Pigmentosa: A proof of concept study. Eur J Pharm Biopharm 2025; 208:114660. [PMID: 39914571 DOI: 10.1016/j.ejpb.2025.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/23/2025]
Abstract
The exploitation of micro-RNA (miR) sequences as therapeutics has become highly attractive for the treatment of several diseases, including those still lacking effective cures such as retinitis pigmentosa (RP). Interestingly, miR-155-5p plays a role in photo-oxidative inflammation in wild-type mice and is up-regulated in rd10 mice showing peak rod degeneration, suggesting its inhibition by the corresponding anti-miR as a viable therapeutic strategy for RP. However, biomedical application of (anti-)miRs is limited by their oligonucleotide nature, suffering from low solubility and bioavailability along with a very low half-life in vivo due to enzymatic degradation. Thereby, the need for suitable delivery systems led to the development of various nanocarriers, including oligosaccharide-based polymers. In this context, we designed and prepared an innovative nanosponge (NS) with a β-cyclodextrin (β-CD) motif payload with a bridge-like molecule, the amphipathic adamantane derivative (ADM), able to establish strong interactions with both NS and the therapeutic miR, thereby delivering and eventually releasing it close to the active site. Through an in vivo study, we both validated the NS system as a useful tool for miR topical administration by eye drop formulation and the functional activity of anti-miR-155-5p in RP.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy.
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2 5612 Pisa, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Sara Carpi
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, Catanzaro, Italy; National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze-Centro Nazionale Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy.
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103 41125 Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103 41125 Modena, Italy
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2 5612 Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | | | - Claudia Gargini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| |
Collapse
|
5
|
Torkashvand A, Hajrasouliha A. Exosome's Implications in Age-Related Macular Degeneration. Curr Eye Res 2025:1-8. [PMID: 39854159 DOI: 10.1080/02713683.2025.2457105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE This study aims to conduct a mini review of published literature concerning the role of exosomes in the field of ophthalmology, with a specific focus on Age-Related Macular Degeneration (AMD). METHODS In this study, a comprehensive search was conducted using PubMed and Google Scholar to identify relevant publications. Additionally, trials submitted to clinicaltrials.gov were reviewed to identify further relevant articles. The selected studies specifically focused on the ocular implications of exosomes in Age-Related Macular Degeneration. RESULTS Exosomes, small extracellular vesicles measuring less than 200 nm, play a crucial role in cell signaling and are involved in various physiological and pathological processes. Recent research has focused on utilizing exosomes for disease detection and treatment. Studies have investigated the ocular implications of exosomes, particularly in AMD. Exosomes found in aqueous fluid and blood have been examined as potential markers for AMD and as indicators of treatment response. Additionally, research in animal models has indicated the potential of exosomes in preventing AMD, as well as their promise for targeted and efficient drug delivery. This mini review primarily emphasizes the clinical aspects of publications related to AMD, rather than focusing solely on basic science. CONCLUSIONS Exosomes have a great potential for understanding Age-related Macular Degeneration and effective and targeted treatment for retinal diseases.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Luís MA, Goes MAD, Santos FM, Mesquita J, Tavares-Ratado P, Tomaz CT. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025; 17:104. [PMID: 39861752 PMCID: PMC11768343 DOI: 10.3390/pharmaceutics17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Monogenic disorders are a group of human diseases caused by mutations in single genes. While some disease-altering treatments offer relief and slow the progression of certain conditions, the majority of monogenic disorders still lack effective therapies. In recent years, gene therapy has appeared as a promising approach for addressing genetic disorders. However, despite advancements in gene manipulation tools and delivery systems, several challenges remain unresolved, including inefficient delivery, lack of sustained expression, immunogenicity, toxicity, capacity limitations, genomic integration risks, and limited tissue specificity. This review provides an overview of the plasmid-based gene therapy techniques and delivery methods currently employed for monogenic diseases, highlighting the challenges they face and exploring potential strategies to overcome these barriers.
Collapse
Affiliation(s)
- Marco A. Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marcelo A. D. Goes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Av. Reyes Católicos, 28040 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paulo Tavares-Ratado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratory of Clinical Pathology, Sousa Martins Hospital, Unidade Local de Saúde (ULS) da Guarda, Av. Rainha D. Amélia, 6300-749 Guarda, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Hu S, Chen Y, Zhou Y, Cao T, Liu S, Ding C, Xie D, Liang P, Huang L, Liu H, Huang J. In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa. J Genet Genomics 2024:S1673-8527(24)00365-5. [PMID: 39725189 DOI: 10.1016/j.jgg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy approach for dominantly inherited ocular disorders.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yitong Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chenhui Ding
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Huang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
8
|
Liu Z, Chen S, Lo CH, Wang Q, Sun Y. All-in-one AAV-mediated Nrl gene inactivation rescues retinal degeneration in Pde6a mice. JCI Insight 2024; 9:e178159. [PMID: 39499900 DOI: 10.1172/jci.insight.178159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Retinitis pigmentosa (RP) is a complex group of inherited retinal diseases characterized by progressive death of photoreceptor cells and eventual blindness. Pde6a, which encodes a cGMP-specific phosphodiesterase, is a crucial pathogenic gene for autosomal recessive RP (RP43); there is no effective therapy for this form of RP. The compact CRISPR/Staphylococcus aureus Cas9 (CRISPR/SaCas9) system, which can be packaged into a single adeno-associated virus (AAV), holds promise for simplifying effective gene therapy. Here, we demonstrated that all-in-one AAV-SaCas9-mediated Nrl gene inactivation can efficiently prevent retinal degeneration in a RP mouse model with Pde6anmf363/nmf363 mutation. We screened single-guide RNAs capable of efficiently editing the mouse Nrl gene in N2a cells and then achieved effective gene editing by using a single AAV to codeliver SaCas9 and an optimal Nrl-sg2 into the mouse retina. Excitingly, in vivo inactivation of Nrl improved photoreceptor cell survival and rescued retinal function in treated Pde6a-deficient mice. Thus, we showed that a practical, gene-independent method, AAV-SaCas9-mediated Nrl inactivation, holds promise for future therapeutic applications in patients with RP.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
| |
Collapse
|
9
|
Ruggeri ML, Baroni LB, Passamonti M, Quarta A, Lorenzi C, Formenti F, Giansante R, Porreca A, Di Nicola M, Toto L, Stuppia L, Mastropasqua R. OCT analysis and MPOD assessment in patients affected by retinitis pigmentosa. Sci Rep 2024; 14:28830. [PMID: 39572660 PMCID: PMC11582672 DOI: 10.1038/s41598-024-79979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
This study aimed to analyze Optical Coherence Tomography (OCT) parameters and Macular Pigment Optical Density (MPOD) changes in patients affected by Retinitis pigmentosa (RP). Eighteen eyes of 18 patients suffering from early-stage RP were enrolled in our observational study. 18 eyes of 18 patients age and gender matched were enrolled as controls. Patients were analyzed at baseline by undergoing complete baseline ophthalmologic examination, Spectral-domain Optical Coherence Tomography (OCT), Electroretinogram (ERG) and Heterochromatic Flicker Photometry (HFP). Main outcome measures were Macular Pigment Optical Density (MPOD), Central macular thickness (CMT), Central Choroidal Thickness (CCT) and Choroidal Vascularity Index (CVI). Lower CCT (p = 0.006), CVI (p < 0.001) and MPOD levels (p = 0.038) were found in affected patients, whereas higher CMT was detected in cases compared to healthy controls. Correlation analysis revealed the presence of a negative correlation between BCVA and Age and CMT and BCVA and a positive correlation between CCT and MPOD and CVI and CCT. Retinal and choroidal variations occur in patients affected by early-stage RP regarding functional and anatomical changes.
Collapse
Affiliation(s)
- Maria Ludovica Ruggeri
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Luca Belloni Baroni
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Marzia Passamonti
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Alberto Quarta
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy.
| | - Carolina Lorenzi
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Federico Formenti
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Roberta Giansante
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
- Department of Medical Genetics, "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
| | - Lisa Toto
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, "G. d'Annunzio" University, Chieti-Pescara, 66100, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, "G.d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
| | - Rodolfo Mastropasqua
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
10
|
Carleton M, Oesch NW. Bridging the gap of vision restoration. Front Cell Neurosci 2024; 18:1502473. [PMID: 39640234 PMCID: PMC11617155 DOI: 10.3389/fncel.2024.1502473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Retinitis pigmentosa (RP) and Age-Related Macular Degeneration (AMD) are similar in that both result in photoreceptor degeneration leading to permanent progressive vision loss. This affords the possibility of implementing vision restoration techniques, where light signaling is restored to spared retinal circuitry to recreate vision. There are far more AMD patients (Wong et al., 2014), yet more resources have been put towards researching and developing vision restoration strategies for RP despite it rarity, because of the tractability of RP disease models. The hope is that these therapies will extend to the AMD population, however, many questions remain about how the implementation of prosthetic or optogenetic vision restoration technologies will translate between RP and AMD patients. In this review, we discuss the difference and similarities of RP and AMD with a focus on aspects expected to impact vision restoration strategies, and we identify key gaps in knowledge needed to further improve vision restoration technologies for a broad patient population.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models. J Clin Invest 2024; 134:e177700. [PMID: 39441757 PMCID: PMC11601915 DOI: 10.1172/jci177700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
Affiliation(s)
| | - Daniel M. Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin T.A. Booth
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mantian Wang
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cole W. Peters
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex J. Klein
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinlan Chen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
13
|
Karti O, Saatci AO. Cataract surgery in retinitis pigmentosa. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2024; 13:96-103. [PMID: 39206084 PMCID: PMC11347957 DOI: 10.51329/mehdiophthal1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Background Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by progressive vision loss due to photoreceptor degeneration. Complicated cataract formation, particularly posterior subcapsular cataract (PSC), frequently occurs in RP and exacerbates the visual impairment. Cataract surgery may improve vision; however, the distinctive challenges of RP require specific considerations. This mini-review aims to provide a comprehensive overview of the RP-related cataract. Methods A comprehensive literature review was conducted via PubMed/MEDLINE, spanning the period from January 1976 to June 2024, using the keywords "cataract," "cataract surgery," "cystoid macular edema," "hereditary retinal dystrophy," "retinitis pigmentosa," "posterior subcapsular cataract," "posterior capsular opacification," "zonular weakness," and "artificial intelligence." We aimed to evaluate cataract surgery in patients with RP, focusing on cataract formation, its surgical management, postoperative complications, patient follow-up, and visual outcomes. Relevant review articles, clinical trials, and case reports with related reference lists of these articles were included. Results A total of 53 articles were examined in detail, including those identified through focused keyword searches and the reference lists of these articles. Cataract surgery in patients with RP generally results in substantial visual improvement. However, surgery can be complicated, particularly by zonular weakness and subluxation of the crystalline lens. These risks can be reduced by using capsular tension rings and employing meticulous surgical technique. Furthermore, postoperative complications, such as cystoid macular edema and posterior capsular opacification, are common. Despite these challenges, regular postoperative follow-up and appropriate management can help mitigate complications. Integrity of the ellipsoid zone and external limiting membrane on preoperative optical coherence tomographic examination are the main predictors of visual outcomes following cataract surgery; however, outcomes can vary. Though many patients experience significant visual improvement, some may experience limited benefits due to pre-existing advanced retinal degeneration. Conclusions Cataract surgery may offer meaningful visual benefits in patients with RP; however, careful preoperative evaluation and meticulous surgical technique are required to address the possible challenges. Attentive postoperative care and follow-up are essential to optimize visual outcomes. Early surgical intervention can significantly improve the quality of life in selected candidates, and tailored approaches are necessary in patients with RP requiring cataract surgery. Further studies on the potential application of artificial intelligence to monitor postoperative recovery and detect complications may improve surgical outcomes and enhance patient care.
Collapse
Affiliation(s)
- Omer Karti
- Dokuz Eylul University, Department of Ophthalmology, Izmir, Turkey
| | - Ali Osman Saatci
- Dokuz Eylul University, Department of Ophthalmology, Izmir, Turkey
| |
Collapse
|
14
|
Pawar YB, Thool AR. Navigating the Genetic Landscape: A Comprehensive Review of Novel Therapeutic Strategies for Retinitis Pigmentosa Management. Cureus 2024; 16:e67046. [PMID: 39286723 PMCID: PMC11405069 DOI: 10.7759/cureus.67046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Retinitis pigmentosa (RP) is a collection of retinal disorders characterized by the progressive degeneration of photoreceptor cells, leading to significant visual impairment and, in severe cases, blindness. RP affects individuals worldwide and can be inherited through various genetic patterns, making it a genetically diverse condition. Despite considerable advancements in diagnostic methods and supportive therapies, there is currently no cure for RP. The focus of existing management strategies is on slowing the progression of the disease and improving the quality of life for those affected. This comprehensive review explores the latest therapeutic approaches in the management of RP, highlighting advancements in genetic therapies, such as gene augmentation and editing, as well as cell-based treatments including stem cell transplantation and induced pluripotent stem cell (iPSC) technologies. Emerging methods like optogenetics and pharmacological interventions designed to preserve retinal function are also discussed. Additionally, the review examines technological innovations, including retinal prosthetics and the use of artificial intelligence, which hold the potential to revolutionize RP treatment. The challenges and limitations associated with these novel therapies, such as safety concerns, accessibility issues, and regulatory hurdles, are critically evaluated. By providing an overview of current research and future directions, this review aims to inform clinicians and researchers about the state of the art in RP treatment and the prospects for achieving significant therapeutic advancements.
Collapse
Affiliation(s)
- Yuga B Pawar
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Archana R Thool
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Nair PP, Keskar MP, Borghare PT, Dzoagbe HY, Kumar T. The New Era of Therapeutic Strategies for the Management of Retinitis Pigmentosa: A Narrative Review of the Pathomolecular Mechanism for Gene Therapies. Cureus 2024; 16:e66814. [PMID: 39280562 PMCID: PMC11393205 DOI: 10.7759/cureus.66814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/18/2024] Open
Abstract
Retinitis pigmentosa, or RP, is a group of inherited retinal degenerations involving progressive loss of photoreceptor cells- rods and cones- ultimately causing severe vision loss and blindness. RP, although a very common ailment, continues to be an incurable disease with little to be done medically. However, with the breakthroughs in gene therapy and stem cell transplantation in recent years, a new door has been opened to the treatment of RP. This narrative review summarizes the pathomolecular mechanisms of RP, focusing on the genetic and molecular abnormalities that lead to the process of retinal degeneration. In this section, we talk about the current theories of how RP develops, gene mutations, oxidative stress, and inflammation. We also delve into new therapeutic approaches such as gene therapy, stem cell transplantation and genome surgery, which are designed to either replace or repair the damaged photoreceptors to restore vision and ultimately enhance the life of the RP patient. Another topic covered is the obstacles and research frontiers of these revolutionary treatments. This article is intended to give a complete overview of the molecular processes of RP and the promising treatment strategies that could change the way this devastating disease is treated.
Collapse
Affiliation(s)
- Praveena P Nair
- Otolaryngology, Mandsaur Institute of Ayurved Education and Research, Bhunyakhedi, IND
- Otolaryngology, Parul Institute of Ayurved, Parul University, Limda, IND
| | - Manjiri P Keskar
- Otolaryngology, Parul institute of Ayurved, Parul University, Limda, IND
| | - Pramod T Borghare
- Otolaryngology, Mahatma Gandhi Ayurved College Hospital and Research, Wardha, IND
| | - Hellen Y Dzoagbe
- Anatomy, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanish Kumar
- Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Stanbury K, Schofield EC, McLaughlin B, Forman OP, Mellersh CS. Exonic Short Interspersed Nuclear Element Insertion in FAM161A Is Associated with Autosomal Recessive Progressive Retinal Atrophy in the English Shepherd. Genes (Basel) 2024; 15:952. [PMID: 39062732 PMCID: PMC11275866 DOI: 10.3390/genes15070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Progressive retinal atrophies (PRAs) are a genetically heterogeneous group of inherited eye diseases that affect over 100 breeds of dog. The initial clinical sign is visual impairment in scotopic conditions, as a consequence of rod photoreceptor cell degeneration. Photopic vision degeneration then follows, due to progression of the disease to the cone photoreceptors, and ultimately results in complete blindness. Two full-sibling English Shepherds were diagnosed with PRA at approximately 5 years old and tested clear of all published PRA genetic variants. This study sought to identify the novel PRA-associated variant segregating in the breed. We utilised a combined approach of whole genome sequencing of the probands and homozygosity mapping of four cases and 22 controls and identified a short interspersed nuclear element within an alternatively spliced exon in FAM161A. The XP_005626197.1 c.17929_ins210 variant was homozygous in six PRA cases and heterozygous or absent in control dogs, consistent with a recessive mode of inheritance. The insertion is predicted to extend exon 4 by 39 aberrant amino acids followed by an early termination stop codon. PRA is intractable to treatment, so the development of a genetic screening test, based on the associated variant, is significant, because it provides dog breeders/owners with a means of reducing the frequency of the disease variant within this breed as well as minimising the risk of breeding puppies that will develop this blinding disease.
Collapse
Affiliation(s)
- Katherine Stanbury
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ellen C. Schofield
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan McLaughlin
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare (Science and Diagnostics Division), Freeby Lane, Waltham on the Wolds, Leicestershire LE14 4RS, UK
| | - Cathryn S. Mellersh
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
17
|
Shi Y, Chen Y, Pan Y, Chen G, Xiao Z, Chen X, Wang M, Liang D. Minocycline prevents photoreceptor degeneration in Retinitis pigmentosa through modulating mitochondrial homeostasis. Int Immunopharmacol 2024; 139:112703. [PMID: 39018687 DOI: 10.1016/j.intimp.2024.112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Minocycline, a broad-spectrum tetracycline antibiotic, has been shown to possess anti-inflammatory and antioxidative effects in various neurodegenerative diseases. However, its specific effects on retinitis pigmentosa (RP) have not been thoroughly investigated. Therefore, the objective of this study was to explore the potential role of minocycline in treating RP. In this investigation, we used rd1 to explore the antioxidant effect of minocycline in RP. Minocycline therapy effectively restored retinal function and structure in rd1 mice at 14 days postnatal. Additionally, minocycline inhibited the activation of microglia. Moreover, RNA sequencing analysis revealed a significant downregulation in the expression of mitochondrial genes within the retina of rd1 mice. Further KEGG and GO pathway analysis indicated impaired oxidative phosphorylation and electron transport chain processes. TEM confirmed the presence of damaged mitochondria in photoreceptors, while JC-1 staining demonstrated a decrease in mitochondrial membrane potential, accompanied by an increase in mitochondrial reactive oxygen species (ROS) levels. However, treatment with minocycline successfully reversed the abnormal expression of mitochondrial genes and reduced the levels of mitochondrial ROS, thereby providing protection against photoreceptor degeneration. Collectively, minocycline demonstrated the ability to rescue photoreceptor cells in RP by effectively modulating mitochondrial homeostasis and subsequently inflammation. These findings hold significant implications for the development of potential therapeutic strategies for RP.
Collapse
Affiliation(s)
- Yuxun Shi
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuxi Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuan Pan
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Guanyu Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zhiqiang Xiao
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xiaoqing Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minzhen Wang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Dan Liang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
18
|
Tang Y, Li Y, Chen H, Huang Y, Huang C, Wei W. Application of cord blood-derived platelet-rich plasma in the treatment of diseases. J Int Med Res 2024; 52:3000605241263729. [PMID: 39068531 PMCID: PMC11287719 DOI: 10.1177/03000605241263729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Platelet-rich plasma (PRP), a blood product containing high concentrations of platelets, has been increasingly used for the treatment of a number of diseases because of its anti-inflammatory and regenerative properties. PRP is generally obtained from the patient's own peripheral blood when used in clinical applications, but allogeneic PRP extracted from umbilical cord blood has also attracted attention due to its unique advantages. The main purpose of this narrative review was to summarize the research and clinical application of cord blood-derived PRP (CB-PRP) in the treatment of diseases up to April 2024. This review also discusses the differences between CB-PRP and autologous PRP (A-PRP). A thorough search of PubMed® and Clinicaltrials.gov identified 13 articles and four clinical trials. To date, CB-PRP has been primarily studied in the fields of orthopaedics, dermatology, neurology, obstetrics/gynaecology and ophthalmology. This is likely to be because this research is relatively novel. Considering the differences between the characteristics of A-PRP and CB-PRP, it is thought that CB-PRP might hold more promise for broader applications in the future.
Collapse
Affiliation(s)
- Yukuan Tang
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Laboratory Centre, Guangdong Cord Blood Bank, Guangzhou, Guangdong Province, China
- Scientific Research Centre, Guangzhou Municipality Tianhe Nuoya Bio-engineering Company Limited, Guangzhou, Guangdong Province, China
| | - Hanwei Chen
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
- Institute of Medical Imaging, Guangzhou Panyu District Health Management Centre (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou, China, Guangzhou, Guangdong Province, China
| | - Yuyang Huang
- Department of Bone, Joint and Sports Medicine, Guangzhou Panyu District Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| | - Chen Huang
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Wei Wei
- Laboratory Centre, Guangdong Cord Blood Bank, Guangzhou, Guangdong Province, China
- Scientific Research Centre, Guangzhou Municipality Tianhe Nuoya Bio-engineering Company Limited, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Utine CA, Güven S. Tissue Engineering and Ophthalmology. Turk J Ophthalmol 2024; 54:159-169. [PMID: 38940358 PMCID: PMC11589309 DOI: 10.4274/tjo.galenos.2024.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue engineering (TE) is a field of science that combines biological, engineering, and medical sciences and allows the development of disease models, drug development and gene therapy studies, and even cellular or tissue-based treatments developed by engineering methods. The eye is an organ that is easily accessible and amenable to engineering applications, paving the way for TE in ophthalmology. TE studies are being conducted on a wide range of topics, including the tear film, eyelids, cornea, optic nerve, glaucoma, and retinal diseases. With the rapid scientific advances in the field, it seems that TE is radically modifying the management of ocular disorders.
Collapse
Affiliation(s)
- Canan Aslı Utine
- Dokuz Eylul University Faculty of Medicine Department of Ophthalmology, İzmir, Turkiye
- İzmir Biomedicine and Genome Center İzmir, Turkiye
| | - Sinan Güven
- İzmir Biomedicine and Genome Center İzmir, Turkiye
- Dokuz Eylul University İzmir International Biomedicine and Genome Institute, İzmir, Turkiye
- Dokuz Eylul University Faculty of Medicine Department of Medical Biology and Genetics, İzmir, Turkiye
| |
Collapse
|
20
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
21
|
Perez VL, Mousa HM, Miyagishima KJ, Reed AA, Su AJA, Greenwell TN, Washington KM. Retinal transplant immunology and advancements. Stem Cell Reports 2024; 19:817-829. [PMID: 38729155 PMCID: PMC11297553 DOI: 10.1016/j.stemcr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Several gaps and barriers remain for transplanting stem cells into the eye to treat ocular disease, especially diseases of the retina. While the eye has historically been considered immune privileged, recent thinking has identified the immune system as both a barrier and an opportunity for eye stem cell transplantation. Recent approaches leveraging scaffolds or cloaking have been considered in other tissues beyond immune suppression. This perspective paper outlines approaches for transplantation and proposes opportunities to overcome barriers of the immune system in stem cell transplantation in the eye.
Collapse
Affiliation(s)
- Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Hazem M Mousa
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Amberlynn A Reed
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kia M Washington
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
23
|
Costa BLD, Quinn PMJ, Wu WH, Liu S, Nolan ND, Demirkol A, Tsai YT, Caruso SM, Cabral T, Wang NK, Tsang SH. Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy. Cell Biosci 2024; 14:64. [PMID: 38773556 PMCID: PMC11110387 DOI: 10.1186/s13578-024-01243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process. RESULTS Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis. CONCLUSIONS Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Siyuan Liu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas D Nolan
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Aykut Demirkol
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Salvatore Marco Caruso
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS and Vision Center Unit, Ophthalmology EBSERH, HUCAM/CCS, UFES-Federal University of Espírito Santo (UFES), Vitória, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Nan-Kai Wang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Stem Cell Initiative, Institute of Human Nutrition ,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Irving Medical Center, Hammer Health Sciences Center 205b, 701 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Charng J, Escalona IAV, Turpin A, McKendrick AM, Mackey DA, Alonso-Caneiro D, Chen FK. Nonlinear Reduction in Hyperautofluorescent Ring Area in Retinitis Pigmentosa. Ophthalmol Retina 2024; 8:298-306. [PMID: 37743021 DOI: 10.1016/j.oret.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE To report baseline dimension of the autofluorescent (AF) ring in a large cohort of retinitis pigmentosa (RP) patients and to evaluate models of ring progression. DESIGN Cohort study. PARTICIPANTS Four hundred and forty-five eyes of 224 patients with clinical diagnosis of RP. METHODS Autofluorescent rings from near-infrared AF (NIRAF) and short-wavelength AF (SWAF) imaging modalities in RP eyes were segmented with ring area and horizontal extent extracted from each image for cross-sectional and longitudinal analyses. In longitudinal analysis, for each eye, ring area, horizontal extent, and natural logarithm of the ring area were assessed as the best dependent variable for linear regression by evaluating R2 values. Linear mixed-effects modeling was utilized to account for intereye correlation. MAIN OUTCOME MEASURES Autofluorescent ring size characteristics at baseline and ring progression rates. RESULTS A total of 439 eyes had SWAF imaging at baseline with the AF ring observed in 206 (46.9%) eyes. Mean (95% confidence interval) of ring area and horizontal extent were 7.85 (6.60 to 9.11) mm2 and 3.35 (3.10 to 3.60) mm, respectively. In NIRAF, the mean ring area and horizontal extent were 7.74 (6.60 to 8.89) mm2 and 3.26 (3.02 to 3.50) mm, respectively in 251 out of 432 eyes. Longitudinal analysis showed mean progression rates of -0.57 mm2/year and -0.12 mm/year in SWAF using area and horizontal extent as the dependent variable, respectively. When ln(Area) was analyzed as the dependent variable, mean progression was -0.07 ln(mm2)/year, which equated to 6.80% decrease in ring area per year. Similar rates were found in NIRAF (area: -0.59 mm2/year, horizontal extent: -0.12 mm/year and ln(Area): -0.08 ln(mm2)/year, equated to 7.75% decrease in area per year). Analysis of R2 showed that the dependent variable ln(Area) provided the best linear model for ring progression in both imaging modalities, especially in eyes with large overall area change. CONCLUSIONS Our data suggest that using an exponential model to estimate progression of the AF ring area in RP is more appropriate than the models assuming linear decrease. Hence, the progression estimates provided in this study should provide more accurate reference points in designing clinical trials in RP patients. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - Ignacio A V Escalona
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Andrew Turpin
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; School of Population Health, Curtin University, Perth, Australia
| | - Allison M McKendrick
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - David A Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia; School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
26
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
27
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
28
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
29
|
He X, Fu Y, Ma L, Yao Y, Ge S, Yang Z, Fan X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. RESEARCH (WASHINGTON, D.C.) 2023; 6:0291. [PMID: 38188726 PMCID: PMC10768554 DOI: 10.34133/research.0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Owing to the promising therapeutic effect and one-time treatment advantage, gene therapy may completely change the management of eye diseases, especially retinal diseases. Adeno-associated virus (AAV) is considered one of the most promising viral gene delivery tools because it can infect various types of tissues and is considered as a relatively safe gene delivery vector. The eye is one of the most popular organs for gene therapy, since its limited volume is suitable for small doses of AAV stably transduction. Recently, an increasing number of clinical trials of AAV-mediated gene therapy are underway. This review summarizes the biological functions of AAV and its application in the treatment of various ocular diseases, as well as the characteristics of different AAV delivery routes in clinical applications. Here, the latest research progresses in AAV-mediated gene editing and silencing strategies to modify that the genetic ocular diseases are systematically outlined, especially by base editing and prime editing. We discuss the progress of AAV in ocular optogenetic therapy. We also summarize the application of AAV-mediated gene therapy in animal models and the difficulties in its clinical transformation.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yidian Fu
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease,
The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
30
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
31
|
Ramirez KA, Drew-Bear LE, Vega-Garces M, Betancourt-Belandria H, Arevalo JF. An update on visual prosthesis. Int J Retina Vitreous 2023; 9:73. [PMID: 37996905 PMCID: PMC10668475 DOI: 10.1186/s40942-023-00498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/17/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE To review the available evidence on the different retinal and visual prostheses for patients with retinitis pigmentosa and new implants for other indications including dry age-related macular degeneration. METHODS The PubMed, GoogleScholar, ScienceDirect, and ClinicalTrials databases were the main resources used to conduct the medical literature search. An extensive search was performed to identify relevant articles concerning the worldwide advances in retinal prosthesis, clinical trials, status of devices and potential future directions up to December 2022. RESULTS Thirteen devices were found to be current and were ordered by stimulation location. Six have active clinical trials. Four have been discontinued, including the Alpha IMS, Alpha AMS, IRIS II, and ARGUS II which had FDA and CE mark approval. Future directions will be presented in the review. CONCLUSION This review provides an update of retinal prosthetic devices, both current and discontinued. While some devices have achieved visual perception in animals and/or humans, the main issues impeding the commercialization of these devices include: increased length of time to observe outcomes, difficulties in finding validated meaures for use in studies, unknown long-term effects, lack of funding, and a low amount of patients simultaneously diagnosed with RP lacking other comorbid conditions. The ARGUS II did get FDA and CE mark approval so it was deemed safe and also effective. However, the company became more focused on a visual cortical implant. Future efforts are headed towards more biocompatible, safe, and efficacious devices.
Collapse
Affiliation(s)
- Kailyn A Ramirez
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Laura E Drew-Bear
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA
| | | | | | - J Fernando Arevalo
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA.
| |
Collapse
|
32
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566447. [PMID: 38014037 PMCID: PMC10680673 DOI: 10.1101/2023.11.09.566447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore a novel approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
|
33
|
Haraguchi Y, Chiang TK, Yu M. Application of Electrophysiology in Non-Macular Inherited Retinal Dystrophies. J Clin Med 2023; 12:6953. [PMID: 37959417 PMCID: PMC10649281 DOI: 10.3390/jcm12216953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Inherited retinal dystrophies encompass a diverse group of disorders affecting the structure and function of the retina, leading to progressive visual impairment and, in severe cases, blindness. Electrophysiology testing has emerged as a valuable tool in assessing and diagnosing those conditions, offering insights into the function of different parts of the visual pathway from retina to visual cortex and aiding in disease classification. This review provides an overview of the application of electrophysiology testing in the non-macular inherited retinal dystrophies focusing on both common and rare variants, including retinitis pigmentosa, progressive cone and cone-rod dystrophy, bradyopsia, Bietti crystalline dystrophy, late-onset retinal degeneration, and fundus albipunctatus. The different applications and limitations of electrophysiology techniques, including multifocal electroretinogram (mfERG), full-field ERG (ffERG), electrooculogram (EOG), pattern electroretinogram (PERG), and visual evoked potential (VEP), in the diagnosis and management of these distinctive phenotypes are discussed. The potential for electrophysiology testing to allow for further understanding of these diseases and the possibility of using these tests for early detection, prognosis prediction, and therapeutic monitoring in the future is reviewed.
Collapse
Affiliation(s)
| | | | - Minzhong Yu
- Department of Ophthalmology, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Yang J, Chen X, A L, Gao H, Zhao M, Ge L, Li M, Yang C, Gong Y, Gu Z, Xu H. Alleviation of Photoreceptor Degeneration Based on Fullerenols in rd1 Mice by Reversing Mitochondrial Dysfunction via Modulation of Mitochondrial DNA Transcription and Leakage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205998. [PMID: 37407519 DOI: 10.1002/smll.202205998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Poor therapeutic outcomes of antioxidants in ophthalmologic clinical applications, including glutathione during photoreceptor degeneration in retinitis pigmentosa (RP), are caused by limited anti-oxidative capacity. In this study, fullerenols are synthesized and proven to be highly efficient in vitro radical scavengers. Fullerenol-based intravitreal injections significantly improve the flash electroretinogram and light/dark transition tests performed for 28 days on rd1 mice, reduce the thinning of retinal outer nuclear layers, and preserve the Rhodopsin, Gnat-1, and Arrestin expressions of photoreceptors. RNA-sequencing, RT-qPCR, and Western blotting validate that mitochondrial DNA (mt-DNA)-encoded genes of the electron transport chain (ETC), such as mt-Nd4l, mt-Co1, mt-Cytb, and mt-Atp6, are drastically downregulated in the retinas of rd1 mice, whereas nuclear DNA (n-DNA)-encoded genes, such as Ndufa1 and Atp5g3, are abnormally upregulated. Fullerenols thoroughly reverse the abnormal mt-DNA and n-DNA expression patterns of the ETC and restore mitochondrial function in degenerating photoreceptors. Additionally, fullerenols simultaneously repress Flap endonuclease 1 (FEN1)-mediated mt-DNA cleavage and mt-DNA leakage via voltage-dependent anion channel (VDAC) pores by downregulating the transcription of Fen1 and Vdac1, thereby inactivating the downstream pro-inflammatory cGAS-STING pathway. These findings demonstrate that fullerenols can effectively alleviate photoreceptor degeneration in rd1 mice and serve as a viable treatment for RP.
Collapse
Affiliation(s)
- Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yu Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| |
Collapse
|
35
|
Chen X, Chen Y, Lin X, Ye Q, Zhang S, Wang Y, Chen M, Yan W. The clinical research on the effect of hydrogen-rich water on primary retinitis pigmentosa. Heliyon 2023; 9:e20671. [PMID: 37860576 PMCID: PMC10582286 DOI: 10.1016/j.heliyon.2023.e20671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Objective To investigate the feasibility and effectiveness of hydrogen in the treatment of retinitis pigmentosa (RP) patients through the drinking of hydrogen-rich water (HRW). Methods RP patients clinically diagnosed in our hospital were selected and given HRW for drinking at 400-500 ml twice a day for four consecutive weeks. Changes in best corrected visual acuity (BCVA), intraocular pressure, the retinal thickness, and choroidal thickness, as well as the amplitude and peak time of visual electrophysiological examinations before and after HRW drinking were observed. Data were statistically analyzed. Results In total, 24 eyes of 13 patients with RP (3 males and 10 females aged-27-65 years old, were enrolled in the study. The BCVA after HRW drinking was 0.34 ± 0.25, which was statistically improved compared with that before (P < 0.05). There were no significant differences in intraocular pressure, retinal lhickness, or choroidal thickness before and after HRW drinking (all P > 0.05). The amplitudes of the b-wave in Dark-adaptation 0.01 response, a and b waves in Dark-adaptation 3.0 response, the Dark-adaptation Ops total wave, a and b waves in Light-adaptation 3.0 response, and the Light-adaptation Flicker response of electroretinogram (ERG) were significantly higher than those before HRW drinking (all P < 0.05). The corresponding peak times iwere mproved to some extent compared to those before HRW consumption (all P < 0.05). Six patients with RP (11 eyes) had a BCVAm ore than 20/200. The amplitude and peak time of the P100 -ave from the 1°p attern visual evoked potentials (PVEP) were not significantly different from those before HRW drinking (P > 0.05), while the data from the 15' PVEP were statistically different (P < 0.05). Seven patients with RP (13 eyes) had a BCVA less than. 20/200 No significant differences were found in the amplitude and peak time of the P2 wave from the 1.0 Hz flash visual evoked potentials (FVEP) and the amplitude from the 12 Hz FVEP compared with those before HRW drinking (all P > 0.05). Conclusion Short-term HRW drinking slightly improved visual function in patients with primary RP, whereas no significant improvement was found in the thickness of the retina and choroid.
Collapse
Affiliation(s)
| | | | | | - Qian Ye
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of Joint Logistic Support Force of PLA, Dongfang Hospital Affiliated to Xiamen University), 350025, Fuzhou, China
| | - Sheng Zhang
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of Joint Logistic Support Force of PLA, Dongfang Hospital Affiliated to Xiamen University), 350025, Fuzhou, China
| | - Yunpeng Wang
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of Joint Logistic Support Force of PLA, Dongfang Hospital Affiliated to Xiamen University), 350025, Fuzhou, China
| | - Meizhu Chen
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of Joint Logistic Support Force of PLA, Dongfang Hospital Affiliated to Xiamen University), 350025, Fuzhou, China
| | - Weiming Yan
- Department of Ophthalmology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of Joint Logistic Support Force of PLA, Dongfang Hospital Affiliated to Xiamen University), 350025, Fuzhou, China
| |
Collapse
|
36
|
Kamde SP, Anjankar A. Retinitis Pigmentosa: Pathogenesis, Diagnostic Findings, and Treatment. Cureus 2023; 15:e48006. [PMID: 38034182 PMCID: PMC10686897 DOI: 10.7759/cureus.48006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Retinitis Pigmentosa (RP) is an inherited retinal dystrophy (IRD) that causes progressive visual loss. Patients suffering from RP have a substantial influence on their everyday activities, social contacts, and jobs, lowering their quality of life. Frequent referral delays, as well as the lack of a standard therapy for the majority of patients, contribute to the significant unmet demand for RP. Any retinal injury has the potential to result in total blindness and visual impairment. Despite the fact that there is no cure for RP, people can manage it using rehabilitation programs and low-vision gadgets. The purpose of this research is to characterize the expanding treatment landscape for RP, as well as the justification for advanced therapy medicinal products (ATMPs). Vitamin A supplements can help prevent the sluggish visual loss caused by a prevalent kind of RP. The presence of visual purple in the rods and the underlying vascular choroid causes the retina to look purplish red. The major portion of the retina damaged is the rod photoreceptor electric cell; the development of diverse diseases is progressive. Because of the retina's accessibility, immunological privilege, and compartmentalization, hereditary retinal diseases are amenable to cell and gene therapy. Therapeutic techniques that attempt to rescue photoreceptors (gene therapies) require the existence of non-functional target cells, but other therapies (cell therapies) do not require the presence of live photoreceptors. To provide successful therapy choices for RP patients at all disease phases, the development pipeline must be continually diversified and advanced, as well as ongoing efforts to encourage early patient identification and quick diagnosis. Future research will focus on avoiding vision loss in genetic eye illnesses and assisting patients in regaining their eyesight. Retinal implants, cell therapies, supplementary medications, and gene therapies may become common treatments for reducing vision loss in the future.
Collapse
Affiliation(s)
- Saakshi P Kamde
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Anjankar
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
37
|
Becherucci V, Bacci GM, Marziali E, Sodi A, Bambi F, Caputo R. The New Era of Therapeutic Strategies for the Treatment of Retinitis Pigmentosa: A Narrative Review of Pathomolecular Mechanisms for the Development of Cell-Based Therapies. Biomedicines 2023; 11:2656. [PMID: 37893030 PMCID: PMC10604477 DOI: 10.3390/biomedicines11102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Retinitis pigmentosa, defined more properly as cone-rod dystrophy, is a paradigm of inherited diffuse retinal dystrophies, one of the rare diseases with the highest prevalence in the worldwide population and one of the main causes of low vision in the pediatric and elderly age groups. Advancements in and the understanding of molecular biology and gene-editing technologies have raised interest in laying the foundation for new therapeutic strategies for rare diseases. As a consequence, new possibilities for clinicians and patients are arising due to the feasibility of treating such a devastating disorder, reducing its complications. The scope of this review focuses on the pathomolecular mechanisms underlying RP better to understand the prospects of its treatment using innovative approaches.
Collapse
Affiliation(s)
- Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|
38
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
39
|
Rosa JGS, Disner GR, Pinto FJ, Lima C, Lopes-Ferreira M. Revisiting Retinal Degeneration Hallmarks: Insights from Molecular Markers and Therapy Perspectives. Int J Mol Sci 2023; 24:13079. [PMID: 37685886 PMCID: PMC10488251 DOI: 10.3390/ijms241713079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil; (J.G.S.R.); (G.R.D.); (F.J.P.); (C.L.)
| |
Collapse
|
40
|
Weh E, Goswami M, Chaudhury S, Fernando R, Miller N, Hager H, Sheskey S, Sharma V, Wubben TJ, Besirli CG. Metabolic Alterations Caused by Simultaneous Loss of HK2 and PKM2 Leads to Photoreceptor Dysfunction and Degeneration. Cells 2023; 12:2043. [PMID: 37626853 PMCID: PMC10453858 DOI: 10.3390/cells12162043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation. We generated double conditional (dcKO) mice lacking HK2 and PKM2 expression in rod PRs. Western blotting, immunofluorescence, optical coherence tomography, and electroretinography were used to characterize the phenotype of dcKO animals. Targeted and stable isotope tracing metabolomics, qRT-PCR, and retinal oxygen consumption were performed. We show that dcKO animals displayed early shortening of PR inner/outer segments, followed by loss of PRs with aging, much more rapidly than either knockout alone without functional loss as measured by ERG. Significant alterations to central glucose metabolism were observed without any apparent changes to mitochondrial function, prior to PR degeneration. Finally, PR survival following experimental retinal detachment was unchanged in dcKO animals as compared to wild-type animals. These data suggest that HK2 and PKM2 have differing roles in promoting PR neuroprotection and identifying them has important implications for developing therapeutic options for combating PR loss during retinal disease.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| | | | | | | | | | | | | | | | | | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| |
Collapse
|
41
|
Zufiaurre-Seijo M, García-Arumí J, Duarri A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int J Mol Sci 2023; 24:10670. [PMID: 37445847 DOI: 10.3390/ijms241310670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.
Collapse
Affiliation(s)
- Maddalen Zufiaurre-Seijo
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| |
Collapse
|