1
|
Santhamoorthy M, Kim SC. A Review of the Development of Biopolymer Hydrogel-Based Scaffold Materials for Drug Delivery and Tissue Engineering Applications. Gels 2025; 11:178. [PMID: 40136883 PMCID: PMC11942562 DOI: 10.3390/gels11030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Biopolymer hydrogel-based scaffold materials have received a lot of interest in tissue engineering and regenerative medicine because of their unique characteristics, which include biocompatibility, biodegradability, and the ability to replicate the natural extracellular matrix (ECM). These hydrogels are three-dimensional biopolymer networks that are highly hydrated and provide a supportive, wet environment conducive to cell growth, migration, and differentiation. They are especially useful in applications involving wound healing, cartilage, bone, and soft tissue regeneration. Natural biopolymers such as collagen, chitosan, hyaluronic acid, and alginate are frequently employed as the foundation for hydrogel fabrication, providing benefits such as low toxicity and improved cell adherence. Despite their potential, biopolymer hydrogel scaffolds have various difficulties that prevent broad clinical implementation. Key difficulties include the challenge of balancing mechanical strength and flexibility to meet the needs of various tissues, managing degradation rates to line up with tissue regeneration, and assuring large-scale manufacturing while retaining scaffold uniformity and quality. Furthermore, fostering appropriate vascularization and cell infiltration in larger tissues remains a significant challenge for optimal tissue integration and function. Future developments in biopolymer hydrogel-based scaffolds are likely to concentrate on addressing these obstacles. Strategies such as the creation of hybrid hydrogels that combine natural and synthetic materials, smart hydrogels with stimulus-responsive features, and 3D bioprinting technologies for accurate scaffold production show significant potential. Furthermore, integrating bioactive compounds and growth factors into hydrogel matrices to promote tissue regeneration is critical for enhancing therapeutic results.
Collapse
Affiliation(s)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
2
|
Kovtareva SY, Kopishev EE, Zhang H, Filippov SK. Exploring the physicochemical interactions and loading strategies of mesoporous silicon dioxide nanoparticles for drug delivery. Eur J Pharm Biopharm 2025; 208:114654. [PMID: 39909321 DOI: 10.1016/j.ejpb.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Mesoporous silica nanoparticles play an important role in drug delivery due to their high surface area, porous structure, tunable pore size, chemical stability and functionalization capability. Such properties make them a good candidate for drug encapsulation. However, molecular binding is another parameter that govern drug loading apart of pores' structure and size. There is a lack of comprehensive reviews on that topic nowadays. This paper overviews the latest publications on the physicochemical aspects of the interaction of mesoporous silica nanoparticles with drugs. The review is focused primarily on a such parameters of the intermolecular binding between a drug and silica nanoparticle as a binding constant, enthalpy and entropy changes and experimental methods with the emphasis on the principles of thermodynamic parameters characterization. Such information would be very important for the development and optimization of drug delivery strategies based on mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Svetlana Yu Kovtareva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian University National University 010008 Astana, Kazakhstan
| | - Eldar E Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian University National University 010008 Astana, Kazakhstan
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Sergey K Filippov
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50 52056 Aachen, Germany.
| |
Collapse
|
3
|
Tian L, Han S, Wu W, Li Z, He Z, Liu C, Xue H, Zhou F, Liu W, Liu J. Dose-effect relationship of copolymer on enhancing aqueous lubrication of a hybrid osteoarthritis drug delivery nanocarrier. J Colloid Interface Sci 2025; 679:788-797. [PMID: 39481353 DOI: 10.1016/j.jcis.2024.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Developing stimulus-responsive properties of drug delivery nanocarriers combined with enhanced joint lubrication is an effective synergistic strategy for treating osteoarthritis. Poly(N-isopropylacrylamide) (PNIPAm) is a typical thermo-responsive polymer, which can achieve drug delivery by transition from swollen state to collapsed state. However, undesired transition temperature, limited drug loading capacity, and weakened mechanical properties in joint present obstacles to use as drug delivery nanocarriers. In this work, we demonstrate dose-effect relationship between the PNIPAm-based copolymer and nanoscale metal-organic frameworks on enhancing both aqueous lubrication and drug delivery performance of a hybrid osteoarthritis (OA) nanocarrier. A series of NIPAm and poly(ethylene glycol)methacrylate (PEGMa) copolymer microgels with different feeding content are optimized to grow on the surface of MIL-101(Cr) nanoparticles via one-pot soap-free emulsion copolymerization method. By changing the feeding mass ratio of NIPAm and PEGMa, MIL-101(Cr)@P(NIPAm-g-PEGMax) (x = 0, 1, 2, 3, and 4, named MPNPx) hybrids can ameliorate the lower critical solution temperature to match with OA and enhance the aqueous lubrication performance. Among the as-synthesized hybrids, MPNP3 hybrids manifested the notable enhanced thermo-responsive tribological performance due to the synergistic effect of "hydration lubrication" and "ball-bearing" function of the optimized copolymer microgel layer on the surface of metal-organic frameworks (MOFs). Anti-inflammatory drug loading is enabled by the high surface area and porosity of the MOFs, and the MPNP3 drug delivery nanocarriers achieve thermo-responsive release in vitro. Our work establishes the dose-effect relationship between thermo-responsive NIPAm and hydrophilic PEGMa of the copolymer grown on the surface of MOFs, providing valuable insights for improving the versatility of stimuli-responsive for biomedical application.
Collapse
Affiliation(s)
- Lejie Tian
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sirui Han
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhengze He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
4
|
Darvishi A, Ansari M. Thermoresponsive and Supramolecular Polymers: Interesting Biomaterials for Drug Delivery. Biotechnol J 2024; 19:e202400379. [PMID: 39380492 DOI: 10.1002/biot.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
How to use and deliver drugs to diseased and damaged areas has been one of the main concerns of pharmacologists and doctors for a long time. With the efforts of researchers, the advancement of technology, and the involvement of engineering in the health field, diverse and promising approaches have been studied and used to achieve this goal. A better understanding of biomaterials and the ability of production equipment led researchers to offer new drug delivery systems to the world. In recent decades, responsive polymers (exclusively to temperature and pH) and supramolecular polymers have received much attention due to their unique capabilities. Although this field of research still needs to be scrutinized and studied more, their recognition, examination, and use as drug delivery systems is a start for a promising future. This review study, focusing on temperature-responsive and supramolecular biomaterials and their application as drug delivery systems, deals with their structure, properties, and role in the noninvasive and effective delivery of medicinal agents.
Collapse
Affiliation(s)
- Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
5
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
6
|
Cheng C, Williamson EJ, Chiu GTC, Han B. Engineering biomaterials by inkjet printing of hydrogels with functional particulates. MED-X 2024; 2:9. [PMID: 38975024 PMCID: PMC11222244 DOI: 10.1007/s44258-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Hydrogels with particulates, including proteins, drugs, nanoparticles, and cells, enable the development of new and innovative biomaterials. Precise control of the spatial distribution of these particulates is crucial to produce advanced biomaterials. Thus, there is a high demand for manufacturing methods for particle-laden hydrogels. In this context, 3D printing of hydrogels is emerging as a promising method to create numerous innovative biomaterials. Among the 3D printing methods, inkjet printing, so-called drop-on-demand (DOD) printing, stands out for its ability to construct biomaterials with superior spatial resolutions. However, its printing processes are still designed by trial and error due to a limited understanding of the ink behavior during the printing processes. This review discusses the current understanding of transport processes and hydrogel behaviors during inkjet printing for particulate-laden hydrogels. Specifically, we review the transport processes of water and particulates within hydrogel during ink formulation, jetting, and curing. Additionally, we examine current inkjet printing applications in fabricating engineered tissues, drug delivery devices, and advanced bioelectronics components. Finally, the challenges and opportunities for next-generation inkjet printing are also discussed. Graphical Abstract
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Eric J Williamson
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - George T.-C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Mechanical Science and Engineering, Materials Research Laboratory and Cancer Center at Illinois, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801 USA
| |
Collapse
|
7
|
He L, Jiang C, Ren J, Pan X, Qiu Z, Xia Y, Wang T, Guo J, Li J, Li W. Enhanced drug resistance suppression by serum-stable micelles from multi-arm amphiphilic block copolymers and tocopheryl polyethylene glycol 1000 succinate. Nanomedicine (Lond) 2024; 19:1297-1311. [PMID: 39046514 PMCID: PMC11285239 DOI: 10.1080/17435889.2024.2347197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To develop a robust drug-delivery system using multi-arm amphiphilic block copolymers for enhanced efficacy in cancer therapy. Materials & methods: Two series of amphiphilic polymer micelles, PEG-b-PCLm and PEG-b-PCLm/TPGS, were synthesized. Doxorubicin (DOX) loading into the micelles was achieved via solvent dialysis. Results: The micelles displayed excellent biocompatibility, narrow size distribution, and uniform morphology. DOX-loaded micelles exhibited enhanced antitumor efficacy and increased drug accumulation at tumor sites compared with free DOX. Additionally, 4A-PEG47-b-PCL21/TPGS micelles effectively suppressed drug-resistant MCF-7/ADR cells. Conclusion: This study introduces a novel micelle formulation with exceptional serum stability and efficacy against drug resistance, promising for cancer therapy. It highlights innovative strategies for refining clinical translation and ensuring sustained efficacy and safety in vivo.
Collapse
Affiliation(s)
- Lei He
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Cheng Jiang
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Jing Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 lingling Lu, Shanghai, 200032, China
| | - Xiaoling Pan
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Zhiwen Qiu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Yening Xia
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Tian Wang
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Jiahao Guo
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Junfang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 lingling Lu, Shanghai, 200032, China
| | - Wei Li
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
8
|
Kovtareva S, Kusepova L, Tazhkenova G, Mashan T, Bazarbaeva K, Kopishev E. Surface Modification of Mesoporous Silica Nanoparticles for Application in Targeted Delivery Systems of Antitumour Drugs. Polymers (Basel) 2024; 16:1105. [PMID: 38675024 PMCID: PMC11054758 DOI: 10.3390/polym16081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of tumour therapy has attracted the attention of many researchers for many decades. One of the promising strategies for the development of new dosage forms to improve oncology treatment efficacy and minimise side effects is the development of nanoparticle-based targeted transport systems for anticancer drugs. Among inorganic nanoparticles, mesoporous silica deserves special attention due to its outstanding surface properties and drug-loading capability. This review analyses the various factors affecting the cytotoxicity, cellular uptake, and biocompatibility of mesoporous silica nanoparticles (MSNs), constituting a key aspect in the development of safe and effective drug delivery systems. Special attention is paid to technological approaches to chemically modifying MSNs to alter their surface properties. The stimuli that regulate drug release from nanoparticles are also discussed, contributing to the effective control of the delivery process in the body. The findings emphasise the importance of modifying MSNs with different surface functional groups, bio-recognisable molecules, and polymers for their potential use in anticancer drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (S.K.); (L.K.); (G.T.); (T.M.); (K.B.)
| |
Collapse
|
9
|
Negut I, Bita B. Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy. Pharmaceutics 2024; 16:463. [PMID: 38675124 PMCID: PMC11053450 DOI: 10.3390/pharmaceutics16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses the urgent need for more targeted and less toxic cancer treatments by exploring the potential of multi-responsive polymersomes. These advanced nanocarriers are engineered to deliver drugs precisely to tumor sites by responding to specific stimuli such as pH, temperature, light, hypoxia, and redox conditions, thereby minimizing the side effects associated with traditional chemotherapy. We discuss the design, synthesis, and recent applications of polymersomes, emphasizing their ability to improve therapeutic outcomes through controlled drug release and targeted delivery. Moreover, we highlight the critical areas for future research, including the optimization of polymersome-biological interactions and biocompatibility, to facilitate their clinical adoption. Multi-responsive polymersomes emerge as a promising development in nanomedicine, offering a pathway to safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Irina Negut
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
| | - Bogdan Bita
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
10
|
Mohan A, Santhamoorthy M, Phan TTV, Kim SC. pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels 2024; 10:184. [PMID: 38534602 DOI: 10.3390/gels10030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, melamine functionalized poly-N-isopropyl acrylamide-co-glycidyl methacrylate copolymer has been developed by copolymerizing glycidyl methacrylate (GMA) monomer with N-isopropyl acrylamide (NIPAm) and further functionalized with melamine units (pNIPAm-co-pGMA-Mela). The prepared pNIPAm-co-pGMA-Mela copolymer hydrogel was characterized using various characterization techniques, including 1H NMR, FTIR, SEM, zeta potential, and particle size analysis. A hydrophobic drug (ibuprofen, Ibu) and hydrophilic drug (5-fluorouracil, 5-Fu) were selected as model drugs. Dual pH and temperature stimuli-responsive drug release behavior of the pNIPAm-co-pGMA-Mela hydrogel was evaluated under different pH (pH 7.4 and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions. Furthermore, the in vitro biocompatibility of the developed pNIPAm-co-pGMA-Mela copolymer hydrogel was determined on MDA-MB-231 cells. The pH and temperature-responsive drug delivery study results reveal that the pNIPAm-co-pGMA-Mela hydrogel system is responsive to both pH and temperature stimuli and exhibits about ~100% of Ibu and 5-Fu, respectively, released at pH 4.0/45 °C. Moreover, the MTT assay and hemocompatibility analysis results proved that the pNIPAm-co-pGMA-Mela hydrogel system is biocompatible and hemocompatible, suggesting that that it could be used for drug delivery applications. The experimental results suggest that the proposed pNIPAm-co-pGMA-Mela hydrogel system is responsive to dual pH and temperature stimuli, and could be a promising drug carrier system for both hydrophilic and hydrophobic drug delivery applications.
Collapse
Affiliation(s)
- Anandhu Mohan
- Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
11
|
Santhamoorthy M, Mohan A, Mani KS, Devendhiran T, Periyasami G, Kim SC, Lin MC, Kumarasamy K, Huang PJ, Ali A. Synthesis of functionalized mesoporous silica nanoparticles for colorimetric and fluorescence sensing of selective metal (Fe 3+) ions in aqueous solution. Methods 2024; 223:26-34. [PMID: 38266951 DOI: 10.1016/j.ymeth.2024.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.
Collapse
Affiliation(s)
| | - Anandhu Mohan
- Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kailasam Saravana Mani
- Centre for Material Chemistry, Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Tamiloli Devendhiran
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, ROC
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC.
| | - Po-Jui Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan, ROC
| |
Collapse
|
12
|
Mainuddin, Kumar A, Sharma A, Sharma N. Anti-cancer Drug Targeting using Stimuli Sensitive Mesoporous Silica Nanoparticle in Colorectal Cancer. Curr Pharm Des 2024; 30:3071-3073. [PMID: 39234908 DOI: 10.2174/0113816128321020240903100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Mainuddin
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anjana Sharma
- Department of Pharmaceutical Technology, Lloyd Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, 201306, India
| | - Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
13
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
14
|
Santhamoorthy M, Kim SC. Dual pH- and Thermo-Sensitive Poly(N-isopropylacrylamide-co-allylamine) Nanogels for Curcumin Delivery: Swelling-Deswelling Behavior and Phase Transition Mechanism. Gels 2023; 9:536. [PMID: 37504415 PMCID: PMC10379092 DOI: 10.3390/gels9070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a beneficial ingredient with numerous bioactivities. However, due to its low solubility and poor bioavailability, its therapeutic application is limited. In this work, we prepared poly-N-isopropylacrylamide p(NIPAm) and polyallylamine p(Am)-based nanogel (p(NIPAm-co-Am)) NG for a dual pH- and temperature-sensitive copolymer system for drug delivery application. In this copolymer system, the p(NIPAm) segment was incorporated to introduce thermoresponsive behavior and the p(Am) segment was incorporated to introduce drug binding sites (amine groups) in the resulting (p(NIPAm-co-Am)) NG system. Various instrumental characterizations including 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), zeta potential, and particle size analysis were performed to confirm the copolymer synthesis. Curcumin (Cur), an anticancer bioactive substance, was employed to assess the in vitro drug loading and release performance of the resulting copolymer nanogels system at varied pH levels (pH 7.2, 6.5, and 4.0) and temperatures (25 °C, 37 °C, and 42 °C). The cytocompatibility of the p(NIPAm-co-Am) NG sample was also tested on MDA-MB-231 cells at various sample concentrations. All the study results indicate that the p(NIPAm-co-Am) NG produced might be effective for drug loading and release under pH and temperature dual-stimuli conditions. As a result, the p(NIPAm-co-Am) NG system has the potential to be beneficial in the use of drug delivery applications in cancer therapy.
Collapse
Affiliation(s)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
15
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|