1
|
Shaikh S, Chary PS, Mehra NK. Tyrosine Kinase Inhibitor Lenvatinib Based Nano Formulations and Cutting-Edge Scale-Up Technologies in revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025; 8:1749-1784. [PMID: 40091597 DOI: 10.1021/acsabm.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lenvatinib (LEN), a tyrosine kinase inhibitor, has emerged as a promising therapeutic agent for various solid tumors. Nevertheless, a number of constraints, including diminished bioavailability, incapacity to elicit localized inflammation, and inability to selectively accumulate at the tumor site, may impede the comprehensive exploitation of its versatile tyrosine kinase inhibitory capabilities. In order to achieve targeted delivery of LEN while also reducing its high dose used in conventional therapeutics, nanoformulation approaches can be adopted. The integration of LEN into various nanoformulations, such as nanoparticles, nanocrystals, high density lipoproteins (HDLs), liposomes, and micelles, is discussed, highlighting the advantages of these innovative approaches in a comparative manner; however, given that the current methods of nanoformulation synthesis employ toxic organic solvents and chemicals, there is an imperative need for exploring alternative, environmentally friendly approaches. The multifaceted effects of nanocarriers have rendered them profoundly applicable within the biomedical domain, serving as instrumental entities in various capacities such as vehicles for drug delivery and genetic material, diagnostic agents, facilitators of photothermal therapy, and radiotherapy. However, the scalability of these nanotechnological methodologies must be rigorously investigated and addressed to refine drug delivery mechanisms. This endeavor offers promising prospects for revolutionizing strategies in cancer therapeutics, thereby laying the foundation for future research in scale-up techniques in the pursuit of more effective and less toxic therapies for cancer.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| |
Collapse
|
2
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Yu LJ, Koh KS, Tarawneh MA, Tan MC, Guo Y, Wang J, Ren Y. Microfluidic systems and ultrasonics for emulsion-based biopolymers: A comprehensive review of techniques, challenges, and future directions. ULTRASONICS SONOCHEMISTRY 2025; 114:107217. [PMID: 39952167 PMCID: PMC11874545 DOI: 10.1016/j.ultsonch.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Over the past decade, the advancement of microfluidic technology associated with ultrasonics had received a considerate impact across the field, especially in biomedical and polymer synthesis applications. Nevertheless, there are much hindrance remained unsolved, to achieve simple processing, high scalability and high yield biopolymer products that stabilize during the process. In this review, we discuss the underlying physics for both microfluidic and ultrasonic integration in the synthesis of emulsion-based biopolymer and application. The current progress was outlined, focus on its related applications. We also summarized the current strengths and weakness of the microfluidic-ultrasonic integrated technology, aiming to contribute into SDG 12 for responsible consumption and production.
Collapse
Affiliation(s)
- Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, UCSI University 56100 Kuala Lumpur, Malaysia; UCSI-Cheras Low Carbon Innovation Hub Research Consortium 56100 Kuala Lumpur, Malaysia.
| | - Kai Seng Koh
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya 62200 Malaysia.
| | - Mou'ad A Tarawneh
- Department of Physics, College of Science, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan
| | - Mei Ching Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 Sepang, Malaysia.
| | - Yanhong Guo
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
5
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Firuzpour F, Saleki K, Aram C, Rezaei N. Nanocarriers in glioblastoma treatment: a neuroimmunological perspective. Rev Neurosci 2024:revneuro-2024-0097. [PMID: 39733347 DOI: 10.1515/revneuro-2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/08/2024] [Indexed: 12/31/2024]
Abstract
Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60-75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6-14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood-brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.
Collapse
Affiliation(s)
- Faezeh Firuzpour
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
| | - Kiarash Saleki
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Cena Aram
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| |
Collapse
|
7
|
Khalaf MM, Gouda M, Abou Taleb MF, Heakal FET, Abd El-Lateef HM. Fabrication of smart nanogel based on carrageenan and green coffee extract as a long-term antifouling agent to improve biofilm prevention in food production. Food Chem 2024; 461:140719. [PMID: 39146677 DOI: 10.1016/j.foodchem.2024.140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study investigates the extract of the bioactive compounds from green coffee extract (GCE) and the loading of two different concentrations of GCE (1% and 2%) onto carrageenan nanogels (CAR NGs) to compare their antibacterial and antibiofilm effects with unloaded nanogels (NGs). The bioactive compounds of GCE were characterized using GC-MS analysis. The GCE1 and GCE2 were successfully deposited onto the surface of CAR NGs. The antibacterial and antibiofilm potential of prepared NGs were conducted against some foodborne pathogens (E. coli O157, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes). The results of GC-MS analysis indicated that there were identified 16 bioactive compounds in GCE, including caffeine (36.27%), Dodemorph (9.04%), and D-Glycero-d-ido-heptose (2.44%), contributing to its antimicrobial properties. The antibacterial coatings demonstrated a notable antimicrobial effect, showing zone of inhibition (ZOI) diameters of up to 37 mm for GCE2 loaded CAR NGs. The minimum inhibitory concentration (MIC) values for GCE2 loaded CAR NGs were 80 ppm for E. coli O157, and 120 ppm for S. enterica, S. aureus, and L. monocytogenes, achieving complete bacterial inactivation within 10-15 min of exposure. Both GCE1 and GCE2 loaded CAR NGs significantly reduced biofilm cell densities on stainless steel (SS) materials for E. coli O157, S. enterica, S. aureus, and L. monocytogenes, with reductions ranging from 60% to 95%. Specifically, biofilm densities were reduced by up to 95% for E. coli O157, 89% for S. enterica, 85% for S. aureus, and 80% for L. monocytogenes. Results of the toxicity evaluation indicated that the NGs were non-toxic and biocompatible, with predicted EC50 values proved their biocompatibility and safety. These results recommended that GCE loaded CAR NGs are promising as natural antimicrobial agents for enhancing food safety and extending shelf life. Further, the study concluded that incorporating GCE into CAR NGs is an effective strategy for developing sustainable antimicrobial coatings for the food industry and manufacturing.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
8
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
9
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
10
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
11
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Gouda M, Khalaf MM, Abou Taleb MF, Abd El-Lateef HM. Fabrication of silver nanoparticles loaded acacia gum/chitosan nanogel to coat the pipe surface for sustainable inhibiting microbial adhesion and biofilm growth in water distribution systems. Int J Biol Macromol 2024; 262:130085. [PMID: 38346613 DOI: 10.1016/j.ijbiomac.2024.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Biofilm formation on the inner surfaces of pipes poses significant threats to water distribution systems, increasing maintenance costs and public health risks. To address this immense issue, we synthesized a nanogel formulation comprising acacia gum (AG) and chitosan (Cs), loaded with varying concentrations of silver nanoparticles (AgNPs), for using as an antimicrobial coating material. AgNPs were synthesized using AG as a reducing and stabilizing agent, exhibiting absorbance at 414 nm. The preparation of AgNPs was proved using TEM. Bactericidal efficacy was assessed against E. coli, Klebsiella pneumoniae, Enterococcus faecalis, and Bacillus subtilis. Using the dipping coating method, two pipe materials (polypropylene (PP) and ductile iron (DI)) were successfully coated. Notably, AgNPs2@AGCsNG nanogel exhibited potent antibacterial action against a wide range of pathogenic bacteria. Toxicity tests confirmed nanogel safety, suggesting broad applications. High EC50% values underscored their non-toxic nature. This research proposes an effective strategy for biofilm prevention in water systems, offering excellent antibacterial properties and biocompatibility. AG and Cs nanogels loaded with AgNPs promise to enhance water quality, reduce maintenance prices, and protect human public health in water distribution networks.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
13
|
Gülyüz S, Sessevmez M, Ukuser G, Khalily MP, Tiryaki S, Sipahioglu T, Birgül K, Ömeroğlu İ, Özçubukçu S, Telci D, Küçükgüzel ŞG, Durmuş M, Cevher E, Yılmaz Ö. A Novel PEtOx-Based Nanogel Targeting Prostate Cancer Cells for Drug Delivery. Macromol Biosci 2024; 24:e2300324. [PMID: 37827519 DOI: 10.1002/mabi.202300324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
This study focuses on creating a specialized nanogel for targeted drug delivery in cancer treatment, specifically targeting prostate cancer. This nanogel (referred to as SGK 636/Peptide 563/PEtOx nanogel) is created using hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) through a combination of living/cationic ring-opening polymerization (CROP) and alkyne-azide cycloaddition (CuAAC) "click" chemical reactions. A fluorescent probe (BODIPY) is also conjugated with the nanogel to monitor drug delivery. The characterizations through 1 H-NMR, and FT-IR, SEM, TEM, and DLS confirm the successful production of uniform, and spherical nanogels with controllable sizes (100 to 296 nm) and stability in physiological conditions. The biocompatibility of nanogels is evaluated using MTT cytotoxicity assays, revealing dose-dependent cytotoxicity. Drug-loaded nanogels exhibited significantly higher cytotoxicity against cancer cells in vitro compared to drug-free nanogels. Targeting efficiency is examined using both peptide-conjugated and peptide-free nanogels, with the intracellular uptake of peptide 563-conjugated nanogels by tumor cells being 60-fold higher than that of nanogels without the peptide. The findings suggest that the prepared nanogel holds great potential for various drug delivery applications due to its ease of synthesis, tunable functionality, non-toxicity, and enhanced intracellular uptake in the tumor region.
Collapse
Affiliation(s)
- Sevgi Gülyüz
- Material Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli, 41470, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, 34116, Turkey
| | - Gokcen Ukuser
- Material Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli, 41470, Turkey
| | - Melek Parlak Khalily
- Department of Basic Science and Health, Cannabis Research Institute, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Selen Tiryaki
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Tarik Sipahioglu
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Kaan Birgül
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, Beşiktaş, Istanbul, 34353, Turkey
| | - İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Fenerbahçe University, Ataşehir, Istanbul, 34758, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, 34116, Turkey
| | - Özgür Yılmaz
- Material Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli, 41470, Turkey
| |
Collapse
|
14
|
Li S, Wang Q, Duan X, Pei Z, He Z, Guo W, Han L. A glutathione-responsive PEGylated nanogel with doxorubicin-conjugation for cancer therapy. J Mater Chem B 2023; 11:11612-11619. [PMID: 38038224 DOI: 10.1039/d3tb01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.
Collapse
Affiliation(s)
- Shufen Li
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Qiang Wang
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, 046000, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Zhipeng He
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
15
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
16
|
Picot-Allain MCN, Neergheen VS. Pectin a multifaceted biopolymer in the management of cancer: A review. Heliyon 2023; 9:e22236. [PMID: 38058641 PMCID: PMC10696011 DOI: 10.1016/j.heliyon.2023.e22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
This review article focuses on the multifaceted roles of pectin in cancer management, namely as an oncotherapeutic delivery vehicle and a pharmacological agent. Over the past decades, the potential of pectin as a novel therapeutical agent for the prevention and/or management of cancer has gained increasing interest. Pectin has been found to modulate different mechanisms involved in the onset and progression of carcinogenesis, such as galectin-3 inhibition, caspase-3-induced apoptosis, and autophagy. Elucidating the structure-activity relationship provides insight into the relationship between the structure of pectin and different mechanism/s. The bioactivity of pectin, with respect to its structure, was critically discussed to give a better insight of the relationship between the structure of the extracted pectin and the observed bioactive effects. The rhamnogalacturonan I part of the pectin chain was found to bind to galectin-3, associated with several cancer hallmarks. The anti-inflammatory and antioxidant potential of pectin were also described. The roles of pectin as a treatment enhancer and a drug delivery vehicle for oncotherapeutics were critically defined. The scientific findings presented in this paper are expected to highlight the potential and role of pectin recovered from various plant sources in preventing and managing cancer.
Collapse
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
- Future Africa, University of Pretoria, South Africa
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
17
|
Ashwani PV, Gopika G, Arun Krishna KV, Jose J, John F, George J. Stimuli-Responsive and Multifunctional Nanogels in Drug Delivery. Chem Biodivers 2023; 20:e202301009. [PMID: 37718283 DOI: 10.1002/cbdv.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Nanogels represent promising drug delivery systems in the biomedical field, designed to overcome challenges associated with standard treatment approaches. Stimuli-responsive nanogels, often referred to as intelligent materials, have garnered significant attention for their potential to enhance control over properties such as drug release and targeting. Furthermore, researchers have recently explored the application of nanogels in diverse sectors beyond biomedicine including sensing materials, catalysts, or adsorbents for environmental applications. However, to fully harness their potential as practical delivery systems, further research is required to better understand their pharmacokinetic behaviour, interactions between nanogels and bio distributions, as well as toxicities. One promising future application of stimuli-responsive multifunctional nanogels is their use as delivery agents in cancer treatment, offering an alternative to overcome the challenges with conventional approaches. This review discusses various synthetic methods employed in developing nanogels as efficient carriers for drug delivery in cancer treatment. The investigations explore, the key aspects of nanogels, including their multifunctionality and stimuli-responsive properties, as well as associated toxicity concerns. The discussions presented herein aim to provide the readers a comprehensive understanding of the potential of nanogels as smart drug delivery systems in the context of cancer therapy.
Collapse
Affiliation(s)
- P V Ashwani
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - G Gopika
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - K V Arun Krishna
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Josena Jose
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
18
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|