1
|
Srivastava AK, Kumari S, Singh RP, Khan M, Mishra P, Xie X. Harnessing the interplay of protein posttranslational modifications: Enhancing plant resilience to heavy metal toxicity. Microbiol Res 2025; 295:128112. [PMID: 40015082 DOI: 10.1016/j.micres.2025.128112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Heavy metals (HMs) toxicity finds substantial plant health risk, affecting germination, growth, productivity, and survival. HMs exposure can interrupt cellular function, increase oxidative stress and affect physiological processes. Plants have developed array of adaptive responses, with proteins playing key role in detecting, signalling, and mitigating metal-induced stress. Under stress, posttranslational modifications, including phosphorylation, ubiquitination, glycosylation and acetylation, are essential regulators of protein stability, localization, and function. This review examines the comprehensive profiling of PTMs in HMs stress responses, including how PTMs regulate the signalling pathways, degradation pathways, and TFs modulation. Specifically, discuss the role of phosphorylation, ubiquitination, and sumoylation, neddylation, lipidation, and S-nitrosylation in specifically under HMs stress with PTMs regulation of antioxidant enzymes, stress proteins, metal transporters and chelators of detoxification. This review illustrates the crosstalk of PTMs to show how synergistic interactions regulate protein stability, activity, and localization upon HMs stress. In cross talk, ubiquitination often starts from phosphorylation to subsequent degradation of proteins in a timely and reversible way to trigger stress responses. However, sumoylation stabilizes key transcription factors that are rapidly dephosphorylated and integral in metal detoxification, form a synergistic combination with phosphorylation to maintain their activity. It explains the future research directions, focusing on PTM engineering to generate stress tolerant plant varieties. By studying the response of plants to HMs stress through PTMs, emphasizes the relevance of PTMs towards plant resilience and advocates for systems biology integrative approach to advancing plant stress biology.
Collapse
Affiliation(s)
- Atul Kumar Srivastava
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Simpal Kumari
- Department of Microbiology, Faculty of Science and Technology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow 226017, India
| | - Raghvendra Pratap Singh
- Department of Biotechnology, R&I, Uttaranchal University, Dehradun 48007, India; Azoth Biotech Pvt. Ltd., Noida 201306, India
| | - Mehran Khan
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Pooja Mishra
- Crop Protection Division, CSIR-Central Institute of Medicinal Aromatic Plants, Lucknow 226015, India
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Arif M, Ilyas M, Adnan M, Kalsoom R, Ren M, Xu R, Li L. Molecular mechanisms and breeding strategies for enhancing wheat resilience to environmental stresses: The role of heat shock proteins and implications for food security. Int J Biol Macromol 2025; 308:142468. [PMID: 40154715 DOI: 10.1016/j.ijbiomac.2025.142468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Wheat is a major staple crop that plays a pivotal role in global food security. However, its productivity is increasingly compromised by environmental stresses such as heat, drought, salinity and heavy metal toxicity. The broad understanding of molecular mechanisms responsible for wheat resilience is reviewed, with a particular focus on heat shock proteins (HSPs) as key mediators of stress adjustment. HSPs play the role of molecular chaperones, whereby they stabilize proteins and prevent aggregation and oxidative stress to maintain the homeostatic function of cells in the most extreme conditions. We trained omics technologies such as genomics, transcriptomics, proteomics, and metabolomics to identify genes responsive to stress, thus boosting the breeding approach for better resilience in wheat. Now, genome editing tools such as CRISPR/Cas9 have hastened the development of climate-resilient wheat varieties, complementing traditional breeding strategies. Heavy metal toxicity disturbs the metabolic pathways; however, certain metals are micronutrients, and a balanced approach is essential to improve tolerance. Molecular breeding, precision agriculture, and sustainable soil management should be integrated into future studies to mitigate stress impacts and ensure stable yields. Our interdisciplinary approaches will drive sustainable agri-ecosystems for global food security amid climate change and degradation.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Muhammad Ilyas
- Department of Botany, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rabia Kalsoom
- Plant Virology Section, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Sub-center of National Wheat Improvement Center, Guiyang 550025, China.
| |
Collapse
|
3
|
Rajbongshi BL, Mukherjee AK. Drugs from poisonous plants: Ethnopharmacological relevance to modern perspectives. Toxicon X 2025; 25:100215. [PMID: 39990776 PMCID: PMC11847069 DOI: 10.1016/j.toxcx.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The world of plant diversity is endlessly fascinating and essential for life on Earth. Since the inception of early civilization, humans have utilized plants for several purposes, particularly for their medicinal value. While some plants are known for their toxicity, they also contain beneficial phytochemicals that are important for both plants and humans, indicating their dual nature. This study aims to explore and synthesize the existing knowledge on various poisonous plant species found worldwide. It primarily focuses on the therapeutic potential of specific types of phytochemicals responsible for treating multiple diseases. This review includes a list of 70 poisonous plants with medicinal properties for treating various ailments, as well as some of their traditional uses. A few of these plants are emphasized, which have been tremendously explored and studied, hold significant potential to contribute to modern drug discovery. Furthermore, it addresses the possible prospects and challenges of using poisonous plants and their phytochemicals as therapeutic agents. Although the therapeutic potential of poisonous plants is substantial, many toxins remain unexplored. This review accentuates the need for rigorous scientific investigations, prior to clinical trials to validate their traditional uses, which would reveal the pharmacological interventions that will eventually advance human health and well-being.
Collapse
Affiliation(s)
- Bhagya Lakhmi Rajbongshi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashis K. Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
4
|
Shahzad M, Bibi A, Khan A, Shahzad A, Xu Z, Maruza TM, Zhang G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:707. [PMID: 40094627 PMCID: PMC11901666 DOI: 10.3390/plants14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The presence of cadmium (Cd) in agricultural soils poses a serious risk to crop growth and food safety. Cadmium uptake and transport in plants occur through the various transporters of nutrient ions that have similar physical and chemical properties to Cd, indicating that the genetic manipulation of these transporters and agronomic improvement in the Cd-antagonistic nutrients could be a good approach for reducing Cd uptake and accumulation in crops. In this review, we discuss the interactions between Cd and some micronutrients, including zinc (Zn) and manganese (Mn), focusing on their influence on the expression of genes encoding Cd-related transporters, including ZIP7, NRAMP3, and NRAMP4. Genetic improvements in enhancing the specificity and efficiency of transporters and agronomic improvements in optimizing micronutrient nutrition can inhibit the Cd uptake and transport by these transporters. This comprehensive review provides a deep insight into genetic and agronomic improvement for fighting against Cd contamination and enhancing sustainable agricultural production.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ayesha Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ali Shahzad
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhengyuan Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Tagarika Munyaradzi Maruza
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Tsivileva O. Selenium-Containing Nanoformulations Capable of Alleviating Abiotic Stress in Plants. Int J Mol Sci 2025; 26:1697. [PMID: 40004160 PMCID: PMC11855452 DOI: 10.3390/ijms26041697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Climate changes cause various types of abiotic stress in plants, thus affecting plant growth and causing decline in yield. An urgent need exists to develop an environmentally friendly attitude based on principles of sustainable agriculture. Nanomaterials may improve plant growth and enhance crop productivity by handling the conditions considered stressful for plants in a sustainable and ecofriendly manner. Selenium (Se) has been put into the category of beneficial elements in plants. Se-enriched crops present a successful choice of dietary resource for Se-supplemented food and feed owing to their high bioavailability and accessibility. Researchers from distinct areas, including both nanoscience and plant science, should encourage emerging innovations that are linked with abiotic stress in crop production. The implementation of Se nanoparticles (SeNPs) is considered one of the predominating mechanisms by plants to ameliorate stressful conditions. Increasing evidence of earlier research revealed that SeNPs could enhance plant growth and development, nutrient bioavailability, soil fertility, and stress response while maintaining environmental safety. Meanwhile, some earlier studies reported that SeNPs might have a multilateral influence on plants dependent on diverse Se nanomaterial traits, doses, and plant species. More efforts are required to enhance the knowledge of how SeNPs impact crops exposed to different abiotic detrimental factors. In light of contemporary research challenges linked to SeNPs and the prolonged application of Se nanomaterials to plants, the aim of this review is elucidating the principal fruitful areas of SeNP exploration, comparisons with bulk Se, insights into mechanisms of abiotic stress alleviation in plants, existing research uncertainties, and practical challenges for SeNP applications under varying environments.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
6
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
7
|
Shar AG, Zhang L, Lu A, Ahmad M, Saqib M, Hussain S, Zulfiqar U, Wang P, Zhang L, Rahimi M. Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants. SCIENTIFICA 2025; 2025:6302968. [PMID: 39816728 PMCID: PMC11729516 DOI: 10.1155/sci5/6302968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025]
Abstract
Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum. The uptake of Cd by plants from the soil is influenced by several factors, including soil type, pH, irrigation water quality, and the chemical composition of the metal involved. Different techniques, such as bioremediation, phytoremediation, and mycoremediation, have been employed to tackle the issue of HMs. The use of biochar offers a practical solution to mitigate this problem. With its large surface area and porous nature, biochar can effectively alleviate HMs contamination. Under biochar application, metal adsorption primarily occurs through physical adsorption, where metal ions are trapped within the pores of the biochar. Additionally, electrostatic attraction, in which negatively charged biochar surfaces attract positively charged metal ions, is another major mechanism of metal remediation facilitated by biochar. In this review, we documented, compiled, and interpreted novel and recent information on HMs stress on tobacco plants and explored biochar's role in alleviating HMs toxicity. By providing a comprehensive review of the persistent threat posed by Cd to tobacco crops and exploring biochar's potential as a remediation measure, this work aims to enhance our understanding of HMs stress in tobacco and contribute to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Abdul Ghaffar Shar
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leyi Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Anzhi Lu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Munib Ahmad
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Muhammad Saqib
- Barani Agricultural Research Station, Fateh Jang, Attock 43350, Punjab, Pakistan
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Pingping Wang
- Shaanxi Tobacco Scientific Institution, Xi'an 710000, Shaanxi, China
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
- Department of Medical Microbiology, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| |
Collapse
|
8
|
Hernández-Maravilla S, Castrejón-Godínez ML, Tovar-Sánchez E, Saldarriaga-Noreña HA, Rodríguez A, Rosas-Ramírez ME, Mussali-Galante P. Metal Biomonitoring Through Arboreal Species in Riparian Ecosystems: Pithecellobium dulce as a Bioindicator Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:118. [PMID: 39795378 PMCID: PMC11722643 DOI: 10.3390/plants14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Water pollution by metals is a global environmental problem. In riparian ecosystems, metal pollution generates adverse effects on organisms and reduces water quality. The Cuautla River is of great ecological relevance and an important water supplier. However, it is polluted by multiple wastewater discharges from different origins, with toxic metals being the main pollutants. Therefore, environmental monitoring strategies based on bioindicator species are necessary to evaluate the ecosystem health of riparian ecosystems. Pithecellobium dulce (Roxb.) Benth is a tree species native to Mexico, widely distributed including in riparian ecosystems, and it is also established in contaminated sites. In this study, Cd, Cu, Pb, and Zn concentrations in water and sediment and in leaf and bark of adult P. dulce trees established in six sampling sites along the Cuautla's riverbed were determined. Likewise, the genotoxic damage derived from metal exposure to leaves was evaluated. The results evidenced the presence of Cd and Pb in water and Cd, Cu, Pb, and Zn in sediment. P. dulce registered high levels of Cu, Pb, and Zn in both leaf and bark, showing higher concentrations in leaf than in bark. In addition, the greater the concentration of Pb in leaves, the greater the genotoxic damage observed, while the concentration of Cu and Zn did not show a relationship with the genotoxic damage in leaves. Overall, Cu and Pb concentrations in leaves enabled us to detect pollution gradients for these metals in water and sediment from the sampling sites. Due to its wide geographic distribution, establishment in polluted sites, and metal absorption capacity, P. dulce can be considered a bioindicator species for environmental health studies in riparian ecosystems contaminated with metals.
Collapse
Affiliation(s)
- Sayuri Hernández-Maravilla
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (S.H.-M.); (A.R.); (M.E.R.-R.)
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Alexis Rodríguez
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (S.H.-M.); (A.R.); (M.E.R.-R.)
| | - Marcos Eduardo Rosas-Ramírez
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (S.H.-M.); (A.R.); (M.E.R.-R.)
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico; (S.H.-M.); (A.R.); (M.E.R.-R.)
| |
Collapse
|
9
|
Senthamizh R, Vishwakarma P, Sinharoy A, Sinha R, Sharma S, Mal J. Biogenic nanoparticles and its application in crop protection against abiotic stress: A new dimension in agri-nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177884. [PMID: 39647194 DOI: 10.1016/j.scitotenv.2024.177884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The food demand to support the growing population worldwide is expected to increase up to 60 % by 2050. But, various abiotic stress including heat, drought, salinity, and heavy metal stress are becoming more prevalent due to global warming and seriously affecting the crop productivity. Nanotechnology has a great potential to solve this issue, as various nanoparticles (NPs) with their unique physical and chemical characteristics, have shown promising ability to enhance the stress tolerance and subsequently, improving the plant growth and development. Although NPs can be synthesized either via physically or chemically or biologically, application of biogenic NPs in agriculture are gaining strong attention due to their economic, environmental friendly, and sustainable benefits. The implementations of biogenic NPs have been reported to be enhancing both the quantitative and qualitative properties of crop production significantly by mitigating abiotic stress. Hence, this review paper critically discussed the application of biogenic NPs, synthesized using various biological methods i.e. bacteria, fungi, algae, and plant-based, in enhancing the abiotic stress resilience and crop production. Adverse effects of the major abiotic stresses on crops have also been highlighted in the paper. The paper also focused on the mechanistic insights of plant-NPs interactions, uptake, translocation and NPs-induced biochemical and molecular changes in plants to help mitigating the abiotic stress. The potential challenges and environmental implications of extensive use of biogenic NPs in agriculture compared to the chemogenic NPs has also been critically assessed. Future research direction is provided to delve into the potential of biogenic NPs as promising tools for mitigating abiotic stress, and improving plant growth and development for a sustainable agriculture via nanotechnology.
Collapse
Affiliation(s)
- R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arindam Sinharoy
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
10
|
Elsharawy H, Refat M. SAL1 gene: a promising target for improving abiotic stress tolerance in plants a mini review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:1-9. [PMID: 39901960 PMCID: PMC11787127 DOI: 10.1007/s12298-025-01549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
Global climate change poses a significant risk to agricultural productivity due to its diverse impacts on agricultural ecosystems, such as increased temperatures and altered precipitation patterns, all of which can adversely affect crop productivity. To overcome these challenges, plants have evolved intricate mechanisms to regulate stress responses and enhance stress tolerance. The SAL1 gene, which encodes a phosphatase enzyme, has emerged as a key player in plant stress responses. In this review, we provide an overview of the SAL1 gene, its functional significance, and its potential applications for improving stress tolerance in crops. To address the escalating global food demand amidst climate change challenges, it is imperative to pursue innovative strategies aimed at enhancing crop tolerance against abiotic stress.
Collapse
Affiliation(s)
- Hany Elsharawy
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
11
|
Acosta-Núñez LF, Mussali-Galante P, Castrejón-Godínez ML, Rodríguez-Solís A, Castañeda-Espinoza JD, Tovar-Sánchez E. In Situ Phytoremediation of Mine Tailings with High Concentrations of Cadmium and Lead Using Dodonaea viscosa (Sapindaceae). PLANTS (BASEL, SWITZERLAND) 2024; 14:69. [PMID: 39795329 PMCID: PMC11723420 DOI: 10.3390/plants14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. Dodonaea viscosa (L.) Jacq. is a shrub with wide geographical distribution and the ability to establish itself in mine tailings. The Sierra de Huautla Biosphere Reserve in Mexico contains a metallurgic district where mining activities have generated 780 million kg of waste with large concentrations of toxic heavy metals, mainly cadmium and lead. The present study evaluated the phytoremediation potential of D. viscosa in in situ conditions on soils contaminated with HMs (exposed) and reference sites (non-exposed) for one year. Also, the effects of cadmium (Cd) and lead (Pb) exposure in D. viscosa were analyzed via DNA damage (comet assay) morphological and physiological characters in exposed vs non-exposed individuals. The concentration of Cd and Pb was measured through atomic absorption spectrophotometry in the roots and leaves of plants. In total, 120 D. viscosa individuals were established, 60 growing in exposed and 60 in non-exposed soils. Exposed individuals of D. viscosa hyperaccumulated Cd and Pb in roots and leaves. At the end of the experiment, eight out of twelve characters under evaluation decreased significantly in HM-exposed plants in relation to individuals growing in non-exposed soils, except for stomatal index, stomatal coverage, and fresh leaf biomass. The micro-morphological and physiological traits of D. viscosa were not influenced by Cd and Pb bioaccumulation. In contrast, the bioaccumulation of Cd and Pb significantly influenced the macro-morphological characters and genetic damage; this last biomarker was 3.2 times higher in plants growing in exposed sites. The bioconcentration factor (BCF) of Cd and Pb in root and leaf tissue increased significantly over time. The mean BCF in root and leaf tissue was higher for Pb (877.58 and 798.77) than for Cd (50.86 and 23.02). After 12 months of exposure, D. viscosa individuals growing on mine tailing substrate showed that the total HM phytoextraction capacity was 7.56 kg∙ha-1 for Pb and 0.307 kg∙ha-1 for Cd. D. viscosa shows potential for phytoremediation of soils contaminated with Cd and Pb, given its capacity for establishing and developing naturally in contaminated soils with HM. Along with its bioaccumulation, biomass production, abundance, and high levels of bioconcentration factors, but without affecting plant development and not registering associated herbivores, it may incorporate HM into the trophic chain.
Collapse
Affiliation(s)
- Luis Fernando Acosta-Núñez
- Maestría en Manejo de Recursos Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Alexis Rodríguez-Solís
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Joel Daniel Castañeda-Espinoza
- Departamento de Interacción Planta-Insecto, Laboratorio de Entomología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla Km 6, Calle Ceprobi No. 8, Col. San Isidro, Yautepec 62731, Morelos, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
12
|
Nedelyaeva OI, Khramov DE, Balnokin YV, Volkov VS. Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily. Int J Mol Sci 2024; 25:13648. [PMID: 39769409 PMCID: PMC11677463 DOI: 10.3390/ijms252413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea. The phylogenetic analysis of the plant NPF family is based on the amino acid sequences present in databases; an analysis identified a separate NPF6 clade (subfamily) with the first plant nitrate transporters studied at the molecular level. The available information proves that proteins of the NPF6 clade play key roles not only in the supply of nitrate and its allocation within different parts of plants but also in the transport of chloride, amino acids, ammonium, and plant hormones such as auxins and ABA. Moreover, members of the NPF6 family participate in the perception of nitrate and ammonium, signaling, plant responses to different abiotic stresses, and the development of tolerance to these stresses and contribute to the structure of the root-soil microbiome composition. The available information allows us to conclude that NPF6 genes are among the promising targets for engineering/editing to increase the productivity of crops and their tolerance to stresses. The present review summarizes the available published data and our own results on members of the NPF6 clade of nitrate transporters, especially under salinity; we outline their molecular, structural, and functional characteristics and suggest potential lines for future research.
Collapse
Affiliation(s)
| | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.E.K.); (Y.V.B.)
| |
Collapse
|
13
|
Sánchez-Thomas R, Hernández-Garnica M, Granados-Rivas JC, Saavedra E, Peñalosa-Castro I, Rodríguez-Enríquez S, Moreno-Sánchez R. Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation. Mol Biotechnol 2024:10.1007/s12033-024-01351-y. [PMID: 39690277 DOI: 10.1007/s12033-024-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
Collapse
Affiliation(s)
- Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | | | - Juan Carlos Granados-Rivas
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | - Ignacio Peñalosa-Castro
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Carrera de Medico Cirujano, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| | - Rafael Moreno-Sánchez
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
14
|
Md Nasir NAN, Zakarya IA, Kamaruddin SA. Azolla pinnata and Lemna minor as comparative hyperaccumulators for livestock wastewater treatment: morpho-physiological and genetic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66360-66371. [PMID: 39625624 DOI: 10.1007/s11356-024-35598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
The potential of two different aquatic macrophytes, Azolla pinnata R.Br. and Lemna minor L., to treat livestock wastewater through phytoremediation was investigated. The physiological analysis includes the removal efficiency of manganese (Mn) from livestock wastewater by AAS. Morphological observation was performed by using a scanning electron microscope (SEM) and visual observation. RAPD analysis was applied to observe the DNA profile. It was observed that the removal efficiency of Mn was higher in L. minor with a 92% removal rate, while in A. pinnata RE, it was at a 77% rate. The higher removal rate of Mn by L. minor showed that plants had a significant impact on the removal of heavy metals, with a p ≤ 0.05. Retention time and the removal of heavy metals were found to be positively correlated. As early as 24 h after exposure to livestock wastewater (LW), the stomata on the leaves of A. pinnata and L. minor have both shrunk, and the root surfaces have shortened. According to the RAPD analysis, A. pinnata only shows an increase in band intensities and no polymorphism, whereas L. minor has 19% polymorphisms that indicate higher tolerance as hyperaccumulators. As a conclusion, L. minor showed no signs of necrosis and performed more efficiently as a hyperaccumulator in LW, with a higher removal efficiency.
Collapse
Affiliation(s)
| | - Irnis Azura Zakarya
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technologies (CEGeoGTech), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Saadi Ahmad Kamaruddin
- School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia
| |
Collapse
|
15
|
Khan AHA, Velasco-Arroyo B, Rad C, Curiel-Alegre S, Rumbo C, de Wilde H, Pérez-de-Mora A, Martel-Martín S, Barros R. Metal(loid) tolerance, accumulation, and phytoremediation potential of wetland macrophytes for multi-metal(loid)s polluted water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65724-65740. [PMID: 39601950 PMCID: PMC11631999 DOI: 10.1007/s11356-024-35519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Natural based solutions, notably constructed/artificial wetland treatment systems, rely heavily on identification and use of macrophytes with the ability to tolerate multiple contaminants and grow for an extended period to reduce contamination. The potential to tolerate and remediate metal(loid) contaminated groundwater from an industrial site located in Flanders (Belgium) was assessed for 10 wetland macrophytes (including Carex riparia Curtis, Cyperus longus Baker, Cyperus rotundus L., Iris pseudacorus L., Juncus effusus L., Lythrum salicaria L., Mentha aquatica L., Phragmites australis Trin. ex Steud., Scirpus holoschoenus L., and Typha angustifolia L.). The experiment was conducted under static conditions, where plants were exposed to polluted acidic (pH ~ 4) water, having high level of metal(loid)s for 15 days. Plant biomass, morphology, and metal uptake by roots and shoots were analysed every 5 days for all species. Typha angustifolia and Scirpus holoschoenus produced ~ 3 and ~ 1.1 times more dried biomass than the controls, respectively. For S. holoschoenus, P. australis, and T. angustifolia, no apparent morphological stress symptoms were observed, and plant heights were similar between control and plants exposed to polluted groundwater. Higher concentrations of all metal(loid)s were detected in the roots indicating a potential for phytostabilization of metal(loid)s below the water column. For J. effusus and T. angustifolia, Cd, Ni, and Zn accumulation was observed higher in the shoots. S. holoschoenus, P. australis, and T. angustifolia are proposed for restoration and phytostabilization strategies in natural and/or constructed wetland and aquatic ecosystems affected by metal(loid) inputs.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, s/n., 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Herwig de Wilde
- Department of Soil and Groundwater, TAUW België nv, Waaslandlaan 8A3, 9160, Lokeren, Belgium
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsberger Str. 290, Munich, 80687, Germany
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain.
| |
Collapse
|
16
|
Gruszka D, Gruss I, Szopka K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. TOXICS 2024; 12:873. [PMID: 39771088 PMCID: PMC11679028 DOI: 10.3390/toxics12120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal soil contamination in urban areas poses a significant environmental hazard, particularly in regions with historical or ongoing industrial activities. These areas are often polluted with metals such as Pb, Cu, Cd, and Zn, which can be absorbed by plants and pose risks to both ecosystems and human health. This study investigates soil contamination in urban gardens in Wroclaw, Poland, where elevated levels of trace elements were detected. Standard soil analyses, including macroelement content, granulometry, and trace element concentrations, were performed alongside an ecotoxicological evaluation using an Ostracodtoxkit test. The test evaluates the impact of contaminants on organism growth. An uncontaminated urban garden soil served as a reference. This study revealed that Zn, Cu, Pb, and Cd concentrations in soils exceeded limits permitted by Polish regulations in several soil samples. Despite the high concentrations of total metals, the bioavailable forms of these metals (measured by extraction of 1 M NH4NO3 extraction) were significantly lower, highlighting that the total metal content may not fully reflect the environmental risk. Pb was identified as the primary contributor to growth inhibition of test organisms, showing a particularly strong correlation with ecotoxicity. These findings underscore the importance of using ecotoxicological tests to evaluate soil contamination risks.
Collapse
Affiliation(s)
- Dariusz Gruszka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Iwona Gruss
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Katarzyna Szopka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
17
|
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce ( Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3222. [PMID: 39599431 PMCID: PMC11598719 DOI: 10.3390/plants13223222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study focuses on the physiological response of lettuce grown on Technosols designed for the remediation of soils polluted by potentially harmful elements (PHEs: As, Cd, Cu, Fe, Pb, and Zn). Lettuce plants were grown in five treatments: recovered (RS) and polluted soil (PS) as controls, and three Technosols (TO, TS, and TV) consisting of 60% PS mixed with 2% iron sludge, 20% marble sludge, and 18% organic wastes (TO: composted olive waste, TS: composted sewage sludge, and TV: vermicompost of garden waste). The main soil properties and PHE solubility were measured, together with physiological parameters related to phytotoxicity in lettuce such as growth, photosynthetic capacity, oxidative stress, and antioxidant defence. All Technosols improved unfavourable conditions of PS (i.e., neutralised acidity and enhanced OC content), leading to a significant decrease in Cd, Cu, and Zn mobility. Nevertheless, TV was the most effective as the reduction in PHEs mobility was higher. Furthermore, lettuce grown on TV and TO showed higher growth (+90% and +41%) than PS, while no increase in TS. However, lower oxidative stress and impact on photosynthetic rate occurred in all Technosols compared to PS (+344% TV, +157% TO, and +194% TS). This physiological response of lettuce proves that PHE phytotoxicity is reduced by Technosols. Thus, this ecotechnology constitutes a potential solution for soil remediation, with effectiveness of Technosols depending largely on its components.
Collapse
Affiliation(s)
- Mateo González-Quero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Antonio Aguilar-Garrido
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Mario Paniagua-López
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Manuel Sierra-Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| |
Collapse
|
18
|
Ucar S, Yaprak E, Yigider E, Kasapoglu AG, Oner BM, Ilhan E, Ciltas A, Yildirim E, Aydin M. Genome-wide analysis of miR172-mediated response to heavy metal stress in chickpea (Cicer arietinum L.): physiological, biochemical, and molecular insights. BMC PLANT BIOLOGY 2024; 24:1063. [PMID: 39528933 PMCID: PMC11555882 DOI: 10.1186/s12870-024-05786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.), a critical diploid legume in the Fabaceae family, is a rich source of protein, vitamins, and minerals. However, heavy metal toxicity severely affects its growth, yield, and quality. MicroRNAs (miRNAs) play a crucial role in regulating plant responses to both abiotic and biotic stress, including heavy metal exposure, by suppressing the expression of target genes. Plants respond to heavy metal stress through miRNA-mediated regulatory mechanisms at multiple physiological, biochemical, and molecular levels. Although the Fabaceae family is well represented in miRNA studies, chickpeas have been notably underrepresented. This study aimed to investigate the effects of heavy metal-induced stress, particularly from 100 µM concentrations of cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and 30 µM arsenic (As), on two chickpea varieties: ILC 482 (sensitive) and Azkan (tolerant). The assessment focused on physiological, biochemical, and molecular parameters. Furthermore, a systematic characterization of the miR172 gene family in the chickpea genome was conducted to better understand the plant's molecular response to heavy metal stress. RESULTS Variance analysis indicated significant effects of genotype (G), treatment (T), and genotype-by-treatment (GxT) interactions on plant growth, physiological, and biochemical parameters. Heavy metal stress negatively impacted plant growth in chickpea genotypes ILC 482 and Azkan. A reduction in chlorophyll content and relative leaf water content was observed, along with increased cell membrane damage. In ILC 482, the highest hydrogen peroxide (H₂O₂) levels in shoot tissue were recorded under As, Cd, and Ni treatments, while in Azkan, peak levels were observed with Pb treatment. Malondialdehyde (MDA) levels in root tissue were highest in ILC 482 under Cd and Ni exposure and in Azkan under As, Cr, and Cd treatments. Antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), were significantly elevated under heavy metal stress in both genotypes. Gene expression analysis revealed upregulation of essential antioxidant enzyme genes, such as SOD, CAT, and APX, with APX showing notable increases in both shoot and root tissues compared to the control. Additionally, seven miR172 genes (miR172a, miR172b, miR172c, miR172d, miR172e, miR172f, and miR172g) were identified in the chickpea genome, distributed across five chromosomes. All genes exhibited conserved hairpin structures essential for miRNA functionality. Phylogenetic analysis grouped these miR172 genes into three clades, suggesting strong evolutionary conservation with other plant species. The expression analysis of miR172 and its target genes under heavy metal stress showed varied expression patterns, indicating their role in enhancing heavy metal tolerance in chickpea. CONCLUSIONS Heavy metal stress significantly impaired plant growth and physiological and biochemical parameters in chickpea genotypes, except for cell membrane damage. The findings underscore the critical role of miR172 and its target genes in modulating chickpea's response to heavy metal stress. These insights provide a foundational understanding for developing stress-tolerant chickpea varieties through miRNA-based genetic engineering approaches.
Collapse
Affiliation(s)
- Sumeyra Ucar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esra Yaprak
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| | - Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Burak Muhammed Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
19
|
Faseela P, Veena M, Sen A, Anjitha KS, Aswathi KPR, Sruthi P, Puthur JT. Elicitors fortifies the plant resilience against metal and metalloid stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:372-389. [PMID: 39491331 DOI: 10.1080/15226514.2024.2420328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This review addresses plant interactions with HMs, emphasizing defence mechanisms and the role of chelating agents, antioxidants and various elicitor molecules in mitigating metal toxicity in plants. To combat soil contamination with HMs, chelate assisted phytoextraction using application of natural or synthetic aminopolycarboxylic acids is an effective strategy. Plants also employ diverse signaling pathways, including hormones, calcium, reactive oxygen species, nitric oxide, and Mitogen-Activated Protein Kinases influencing gene expression and defence mechanisms to counter HM stress. Phytohormones enhance the enzymatic and non-enzymatic antioxidant defence mechanism and the level of secondary metabolites in plants when exposed to HM stress. Also it activates genes responsible for DNA repair mechanism. In addition, the plant hormones can also regulate the activity of several transporters of HMs, thereby preventing their entry into the cell. Elicitor molecules regulate metal and metalloid absorption, sequestration and transport in plants. Combining of different elicitors like jasmonic acid, calcium, salicylic acid etc. effectively mitigates metal and metalloid stress in plants. Moreover, microbes including bacteria and fungi, offer eco-friendly and efficient solution for HM remediation. Understanding these elicitors, microbes and various signaling pathways is crucial for developing strategies to enhance plant resilience to metal and metalloid stress.
Collapse
Affiliation(s)
- Parammal Faseela
- Department of Botany, Korambayil Ahamed Haji Memorial Unity Women's College, Malappuram, Kerala, India
| | - Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - Akhila Sen
- Department of Botany, Mar Athanasius College, Ernakulam, Kerala, India
| | - K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | - K P Raj Aswathi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| | | | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Malappuram, Kerala, India
| |
Collapse
|
20
|
Cheng L, Yue B, Meng B, Wang T, Liang Y. Simulation study on heavy metals, phthalate esters, and organic halogens: Content and distribution characteristics during waste paper recycling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63834-63846. [PMID: 39508947 DOI: 10.1007/s11356-024-35184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Imported waste paper and recycled pulp may contain pollutants, posing potential environmental risks to the ecosystem of China. This study examined the presence and distribution patterns of heavy metals, phthalate esters (PAEs), and adsorbable organic halogens (AOX) in recycled pulp and production wastewater after various recycling processes of three typical restricted types of imported waste paper. The results indicated that the concentration ranges of heavy metals, PAEs, and AOX in the three types of imported recycled waste paper were 21.61-40.38 mg/kg, 15.35-27.88 mg/kg, and 19.21-57.72 mg/kg, respectively. The comparative analysis with the initial waste paper demonstrated a reduction in heavy metal content in the recycled pulp by 17.80-49.75%, PAEs by 65.42-90.55%, and AOX by 32.80-42.34%. The average concentrations of these pollutants in wastewater were 0.85-1.66 mg/L, 27.28-59.86 mg/L, and 1.15-3.34 mg/L, respectively. Chromium and lead were identified as the primary heavy metals present in the waste paper. Following pulping, No. 1 and No. 2 met the arsenic and lead levels specified in the "Reuse Fiber Pulp" standard (GB/T24320-2021), whereas No. 3 met these criteria after de-inking only. The main PAEs detected in the waste paper were dibutyl phthalate and di(2-ethylhexyl) phthalate, most of which were removed during the pulping stage. Significantly higher levels of AOX were observed in No. 2 and No. 3 than in No. 1, with a minimal impact on AOX removal from the pulp during the recycling process.
Collapse
Affiliation(s)
- Lingyun Cheng
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Yue
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bangbang Meng
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tao Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuting Liang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
21
|
Timko MT, Woodard TM, Graham AE, Bennett JA, Krueger R, Panahi A, Rahbar N, Walters J, Dunn D. Thinking globally, acting locally in the 21 st century: Bamboo to bioproducts and cleaned mine sites. iScience 2024; 27:110763. [PMID: 39381743 PMCID: PMC11458977 DOI: 10.1016/j.isci.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Current solutions to global challenges place tension between global benefits and local impacts. The result is increasing opposition to implementation of beneficial climate policies. Prioritizing investment in projects with tangible local benefits that also contribute to global climate change can resolve this tension and make local communities' partners instead of antagonists to change; the approach advocated is a new take on "thinking globally, acting locally". This approach is a departure from the usual strategy of focusing resources on solutions perceived to have the largest potential global impact, without regards to local concerns. Reclamation of polluted mine sites by using fast growing bamboo to remove heavy metals provides a case study to show what is possible. Effective implementation of thinking globally while acting locally will require increased coordination between different types of researchers, new educational models, and greater stakeholder participation in problem identification and solution development.
Collapse
Affiliation(s)
- Michael T. Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Timothy M. Woodard
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aubrey E. Graham
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Chemistry & Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Julian A. Bennett
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Robert Krueger
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Institute of Science & Technology for Development, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aidin Panahi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - James Walters
- Avos Bioenergy, 3187 Danmark Dr, West Friendship, MD 21794, USA
| | - Darnell Dunn
- School of Business, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
22
|
Karcz W, Burdach Z. The Complexity of the Influence of Growth Substances, Heavy Metals, and Their Combination on the Volume Dynamics of Vacuoles Isolated from Red Beet ( Beta vulgaris L.) Taproot Cells. Int J Mol Sci 2024; 25:10842. [PMID: 39409172 PMCID: PMC11476917 DOI: 10.3390/ijms251910842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The plant vacuole is a very dynamic organelle that can occupy more than 90% of the cell volume and is essential to plant cell growth and development, the processes in which auxin (indole-3-acetic acid, IAA) is a central player. It was found that when IAA or FC (fusicoccin) was present in the control medium of vacuoles isolated from red beet taproots at a final concentration of 1 µM, it increased their volume to a level that was 26% or 36% higher than that observed in the control medium without growth regulators, respectively. In the presence of IAA and FC, the time after which most vacuoles ruptured was about 10 min longer for IAA than for FC. However, when cadmium (Cd) or lead (Pb) was present in the control medium at a final concentration of 100 µM, it increased the volume of the vacuoles by about 26% or 80% compared to the control, respectively. The time after which the vacuoles ruptured was similar for both metals. The combined effect of IAA and Pb on the volume of the vacuoles was comparable with that observed in the presence of Pb only, while for FC combined with Pb, it was additive. The use of IAA or FC together with Cd caused in both cases a decrease in the vacuole volumes by about 50%. The data presented in this study are discussed, taking into account the structure and function of the vacuolar membrane (tonoplast) and their changes in the presence of growth substances, heavy metals, and their combination.
Collapse
Affiliation(s)
- Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| | | |
Collapse
|
23
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
24
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
25
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
26
|
Shahzad A, Zahra A, Li HY, Qin M, Wu H, Wen MQ, Ali M, Iqbal Y, Xie SH, Sattar S, Zafar S. Modern perspectives of heavy metals alleviation from oil contaminated soil: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116698. [PMID: 38991309 DOI: 10.1016/j.ecoenv.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.
Collapse
Affiliation(s)
- Asim Shahzad
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, AJK, Pakistan.
| | - Hao Yang Li
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Hao Wu
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mei Qi Wen
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mushtaque Ali
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Younas Iqbal
- National Demonstration Centre for Environmental and Planning, College of Geography and Environmental Sciences, Henan University, Kaifeng, China.
| | - Shao Hua Xie
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Shehla Sattar
- Department of environmental sciences, University of Swabi, Pakistan.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab 54770, Pakistan.
| |
Collapse
|
27
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
El-Samad LM, Arafat EA, Nour OM, Kheirallah N, Gad ME, Hagar M, El-Moaty ZA, Hassan MA. Biomonitoring of Heavy Metal Toxicity in Freshwater Canals in Egypt Using Creeping Water Bugs ( Ilyocoris cimicoides): Oxidative Stress, Histopathological, and Ultrastructural Investigations. Antioxidants (Basel) 2024; 13:1039. [PMID: 39334698 PMCID: PMC11428737 DOI: 10.3390/antiox13091039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug (Ilyocoris cimicoides) as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization's (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of I. cimicoides from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of I. cimicoides, emphasizing our findings. Overall, our findings emphasize the potential use of I. cimicoides as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt.
Collapse
Affiliation(s)
- Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Esraa A. Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Ola Mohamed Nour
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 21526, Egypt;
| | - Nessrin Kheirallah
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Mohammed E. Gad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Zeinab A. El-Moaty
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
29
|
Khokhar AA, Hui L, Khan D, You Z, Zaman QU, Usman B, Wang HF. Transcriptome Profiles Reveal Key Regulatory Networks during Single and Multifactorial Stresses Coupled with Melatonin Treatment in Pitaya ( Selenicereus undatus L.). Int J Mol Sci 2024; 25:8901. [PMID: 39201587 PMCID: PMC11354645 DOI: 10.3390/ijms25168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
In response to evolving climatic conditions, plants frequently confront multiple abiotic stresses, necessitating robust adaptive mechanisms. This study focuses on the responses of Selenicereus undatus L. to both individual stresses (cadmium; Cd, salt; S, and drought; D) and their combined applications, with an emphasis on evaluating the mitigating effects of (M) melatonin. Through transcriptome analysis, this study identifies significant gene expression changes and regulatory network activations. The results show that stress decreases pitaya growth rates by 30%, reduces stem and cladode development by 40%, and increases Cd uptake under single and combined stresses by 50% and 70%, respectively. Under stress conditions, enhanced activities of H2O2, POD, CAT, APX, and SOD and elevated proline content indicate strong antioxidant defenses. We identified 141 common DEGs related to stress tolerance, most of which were related to AtCBP, ALA, and CBP pathways. Interestingly, the production of genes related to signal transduction and hormones, including abscisic acid and auxin, was also significantly induced. Several calcium-dependent protein kinase genes were regulated during M and stress treatments. Functional enrichment analysis showed that most of the DEGs were enriched during metabolism, MAPK signaling, and photosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified critical transcription factors (WRKYs, MYBs, bZIPs, bHLHs, and NACs) associated with antioxidant activities, particularly within the salmon module. This study provides morpho-physiological and transcriptome insights into pitaya's stress responses and suggests molecular breeding techniques with which to enhance plant resistance.
Collapse
Affiliation(s)
- Aamir Ali Khokhar
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Liu Hui
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Darya Khan
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Zhang You
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Qamar U Zaman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Babar Usman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Hua-Feng Wang
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
30
|
Gonnuri B, Guo L. Metal accumulation in cattails cultured in soils flooded with artificial wastewater of varying pH and different levels of metals (Cr, Cd and Zn). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2290-2300. [PMID: 39120440 DOI: 10.1080/15226514.2024.2389184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Toxic metals cause risks to the ecological environment. Typha latifolia L. is a good candidate to clean potentially toxic metals contaminated water or soil. However, limited research investigated the impact of environmental factors (e.g., pH, soil substrate, flood duration) on metal accumulations in cattails. In this study, cattails were cultured in soils flooded with artificial wastewater with varying pH (5, 7 or 9) and different levels of Cr, Cd and Zn for four weeks to investigate the interactions between environmental conditions and metal uptake in cattails. The metal content in biomass were measured by an inductively coupled plasma-optical emission spectrometer. More Zn (>10,000 mg/kg dry biomass) entered plants compared to Cd and Cr (<1,000 mg/kg dry biomass). Approximately 80% of Zn from solutions with 50 mg/L Cd, 25 mg/L Cr, 250 mg/L Zn were removed by cattails. Most Cd and Cr were sorbed onto soils. Cattails exhibited relatively consistent performance in removing metals from wastewater with initial pH of 5, 7 or 9. The pH of all the solutions ended close to neutral after 4 weeks. More research is needed to further understand the influence of environmental conditions on metal uptakes in plants to improve phytoremediation efficiency.
Collapse
Affiliation(s)
- Bhavya Gonnuri
- Department of Biological and Environmental Sciences, TX A&M University-Commerce, Commerce, TX, USA
| | - Lin Guo
- Department of Biological and Environmental Sciences, TX A&M University-Commerce, Commerce, TX, USA
| |
Collapse
|
31
|
Shearston JA, Upson K, Gordon M, Do V, Balac O, Nguyen K, Yan B, Kioumourtzoglou MA, Schilling K. Tampons as a source of exposure to metal(loid)s. ENVIRONMENT INTERNATIONAL 2024; 190:108849. [PMID: 38963987 PMCID: PMC11913127 DOI: 10.1016/j.envint.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Between 52-86% of people who menstruate in the United States use tampons-cotton and/or rayon/viscose 'plugs'-to absorb menstrual blood in the vagina. Tampons may contain metals from agricultural or manufacturing processes, which could be absorbed by the vagina's highly absorptive tissue, resulting in systemic exposure. To our knowledge, no previous studies have measured metals in tampons. OBJECTIVES We evaluated the concentrations of 16 metal(loid)s in 30 tampons from 14 tampon brands and 18 product lines and compared the concentrations by tampon characteristics. METHODS About 0.2 - 0.3 g from each tampon (n = 60 samples) were microwave-acid digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine concentrations of arsenic, barium, calcium, cadmium, cobalt, chromium, copper, iron, manganese, mercury, nickel, lead, selenium, strontium, vanadium, and zinc. We compared concentrations by several tampon characteristics (region of purchase, organic material, brand type) using median quantile mixed models. RESULTS We found measurable concentrations of all 16 metals assessed. We detected concentrations of several toxic metals, including elevated mean concentrations of lead (geometric mean [GM] = 120 ng/g), cadmium (GM = 6.74 ng/g), and arsenic (GM = 2.56 ng/g). Metal concentrations differed by region of tampon purchase (US versus European Union/United Kingdom), by organic versus non-organic material, and for store- versus name-brand tampons. Most metals differed by organic status; lead concentrations were higher in non-organic tampons while arsenic was higher in organic tampons. No categoriy had consistently lower concentrations of all or most metals. DISCUSSION Tampon use is a potential source of metal exposure. We detected all 16 metals in at least one sampled tampon, including some toxic metals like lead that has no "safe" exposure level. Future research is needed to replicate our findings and determine whether metals can leach out of tampons and cross the vaginal epithelium into systemic circulation.
Collapse
Affiliation(s)
- Jenni A Shearston
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Science, Policy, & Management and the School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Kristen Upson
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Milo Gordon
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Vivian Do
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Khue Nguyen
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | | | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
32
|
Dogan M, Ugur K. Enhancing the phytoremediation efficiency of Bacopa monnieri (L.) Wettst. using LED lights: a sustainable approach for heavy metal pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53270-53290. [PMID: 39183254 DOI: 10.1007/s11356-024-34748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impacts of LEDs on the phytoremediation of arsenic (As) and mercury (Hg) by Bacopa monnieri (L.) Wettst. were investigated, along with the examination of the biochemical characteristics of plants exposed to metal-induced toxicity. In vitro multiple and rapid plant propagations were successfully achieved by adding 1.0 mg/L 6-Benzyl amino purine (BAP) to the Murashige and Skoog (MS) basal salt and vitamin culture medium. For plant-based remediation experiments, different concentrations of As (0-1.0 mg/L) and Hg (0-0.2 mg/L) were added to the water environment, and trials were conducted for four different application periods (1-21 days). White, red, and blue LEDs, as well as white fluorescent light, were preferred as the light environment. The results revealed that LED lights were more effective for heavy metal accumulation, with red LED light significantly enhancing the plant's phytoremediation capacity compared to other LED applications. Moreover, when examining biochemical stress parameters such as levels of photosynthetic pigments, protein concentrations, and lipid peroxidation, plants under red LED light showed better results. Generally, the lowest results were obtained under white fluorescent light. These findings contribute to phytoremediation studies by highlighting the integration of LED lights, thereby enabling the development of a more effective, cost-efficient, and environmentally sustainable remediation system compared to other treatment methods.
Collapse
Affiliation(s)
- Muhammet Dogan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| | - Kubra Ugur
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, Yunus Emre Campus, 70200, Karaman, Turkey
| |
Collapse
|
33
|
Yadav P, Ansari MW, Gill R, Tuteja N, Gill SS. Arsenic transport, detoxification, and recent technologies for mitigation: A systemic review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108848. [PMID: 38908350 DOI: 10.1016/j.plaphy.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Arsenic (As) is an acute toxic metalloid that affects plant growth and development. As is found in the environment in organic and inorganic forms, but arsenite As(III) and arsenate As(V) are the most prevalent forms that negatively impact the plants. Roots exposed to As can easily absorb it mainly through transporters that carry vital mineral nutrients. As reach the food chain via crops irrigated with As-polluted water and exerts a negative impact. Even at low levels, As exposure disrupts the regular functioning of plants by generating a high level of reactive oxygen species (ROS) results into oxidative damage, and disruption of redox system. Plants have built-in defence mechanisms to combat this oxidative damage. The development of a food crop with lower As levels is dependent upon understanding the molecular process of As detoxification in plants, which will help reduce the consumption of As-contaminated food. Numerous genes in plants that may provide tolerance under hazardous conditions have been examined using genetic engineering techniques. The suppression of genes by RNA interference (RNAi) and CRISPR-Cas 9 (CRISPR associated protein 9) technology revealed an intriguing approach for developing a crop that has minimal As levels in consumable portions. This study aims to present current information on the biochemical and molecular networks associated with As uptake, as well as recent advances in the field of As mitigation using exogenous salicylic acid (SA), Serendipita indica and biotechnological tools in terms of generating As-tolerant plants with low As accumulation.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
34
|
Mutyavaviri LC, Chihobo CH, Makepa DC. The ecological effects and valorization of coal fines-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51045-51063. [PMID: 39107638 DOI: 10.1007/s11356-024-34620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
The beneficiation and valorization of coal fines is an important element that has to be considered in coal waste management. This review aims to assess the potential ecological impacts that arise due to coal fines dumping and the various methods that can be used for value addition and beneficiation of the coal fines for domestic and industrial use. The PRISMA method was used for the identification and inclusion of studies in the review and studies which focused on coal fines production, utilization, and their effects on the environment which were included in the review. The review showed that several technologies such as briquetting, pelletization, coal-water slurry, brickmaking, and fluidized bed technology have been developed in an effort to reduce the quantities of coal fines in the environment as they are an ecological threat through air, water, and soil pollution. These methods have the potential to be scaled up to the industrial level as there are vast quantities of coal fines to support the industry.
Collapse
Affiliation(s)
- Lesley Chioneso Mutyavaviri
- Department of Environmental Science and Technology, Chinhoyi University of Technology, 72 Harare-Chirundu Road, Chinhoyi, Zimbabwe.
| | - Chido Hermes Chihobo
- Department of Fuels and Energy, Chinhoyi University of Technology, 72 Harare-Chirundu Road, Chinhoyi, Zimbabwe
| | - Denzel Christopher Makepa
- Department of Fuels and Energy, Chinhoyi University of Technology, 72 Harare-Chirundu Road, Chinhoyi, Zimbabwe
| |
Collapse
|
35
|
Zacchini M. Bismuth interaction with plants: Uptake and transport, toxic effects, tolerance mechanisms - A review. CHEMOSPHERE 2024; 360:142414. [PMID: 38789054 DOI: 10.1016/j.chemosphere.2024.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Bismuth (Bi) is a minor metal whose abundance on Earth is estimated at 0.025 ppm. Known since ancient times for its medical properties, its use in many industrial applications has increased significantly in recent years due to its physical and chemical properties. Considered less toxic than other metals, Bi has been defined as a "green metal" and has been suggested as a replacement for lead in many industrial processes. Although the occurrence of Bi in the environment is predicted to increase, there is still a lack of information on its interaction with biota. Even though it is absorbed by many organisms, Bi has not been directly implicated in the regulation of fundamental metabolic processes. This review summarises the fragmentary knowledge on the interaction between Bi and plants. Toxic effects at the growth, physiological and biochemical levels have been described in Bi-treated plants, with varying degrees and consequences for plant vitality, mostly depending on the chemical formulation of Bi, the concentration of Bi, the growth medium, the time of exposure, and the experimental conditions (laboratory or outdoor conditions). Bismuth has been shown to be readily absorbed and translocated in plants, interfering with plant growth and development, photosynthetic processes, nutrient uptake and accumulation, and metal (especially iron) homeostasis. Like other metals, Bi can induce an oxidative stress state in plant cells, and genotoxic effects have been reported in Bi-treated plants. Tolerance responses to the excess presence of Bi have been poorly described and are mostly referred to as the activation of antioxidant defences involving enzymatic and non-enzymatic molecules. The goal of this review is to offer an overview of the present knowledge on the interaction of Bi and plants, highlighting the gaps to be filled to better understand the role of Bi in affecting key physiological processes in plants. This will help to assess the potential harm of this metal in the environment, where its occurrence is predicted to increase due to the growing demand for medicinal and industrial applications.
Collapse
Affiliation(s)
- Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria Km 29.300, 00015, Monterotondo Scalo Roma, Italy; NBFC, National Biodiversity Future Center S.c.a.r.l., Piazza Marina 61 (c/o Palazzo Steri), 90133, Palermo, Italy.
| |
Collapse
|
36
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Lahori AH, Ahmed SR, Mierzwa-Hersztek M, Afzal M, Afzal A, Bano S, Muhammad MT, Aqsa A, Vambol V, Vambol S. Comparative role of charcoal, biochar, hydrochar and modified biochar on bioavailability of heavy metal(loid)s and machine learning regression analysis in alkaline polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172810. [PMID: 38679082 DOI: 10.1016/j.scitotenv.2024.172810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Pot experiment was performed aimed to assess the comparative role of charcoal, biochar, hydrochar and thiourea-vegetable modified biochar at 1 and 2 % doses, and <1 mm particle size on the bioavailability of Cd, Pb, As, Ni, Cu and Zn, and enhance NPK, and mustard growth in a slightly alkaline polluted soil. Furthermore, machine learning method was used to examine the systematic evaluation of the impact of feature selection based on Pearson's correlation on the performance of the linear regression model. The results revealed that maximum fresh and dry biomass of mustard was observed by 26.38 and 38.18 % with hydrochar 1 %, whereas lemon biochar at 2 % reduced fresh and dry biomass up to 34.0 and 53.0 % than control. The immobilization of Cd and Pb was observed by 83.70 and 71.15 % with thiourea-vegetable modified biochar at 2 %, As 71.62 % with hydrochar 2 %, Ni 80.84 % with thiourea-vegetable modified biochar 2 %, Cu 66.32 % with and Zn 36.30 % with thiourea-vegetable modified biochar at 2 % than control. However, the maximum mobilization of Cu in soil was observed by 30.3 % with lemon biochar 2 %, similarly for Zn 37.36 % with hydrochar 2 % as compared with other treatments. The phyto-availability of Cd, Pb, As and Cu in the mustard shoot and root biomass was reduced except Ni and Zn in soil than control. It was observed that using the machine learning regression analysis approach, variability in treatments effectiveness is evident across different feature correlation thresholds. This study clearly shows that the beneficial role of studied amendments on mustard growth and reduced bioavailability of heavy metal(loid)s and enhance primary macronutrients in alkaline polluted soil. It is suggested that future studies may be conducted on combined application of studies amendments on plant growth, immobilization of heavy metal(loid)s in multi-metal polluted soil under different field conditions.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan.
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Madiha Afzal
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Ambreen Afzal
- National Institute of Maritime Affairs, Bahria University Karachi Campus, 75260, Pakistan
| | - Shella Bano
- Department of Geology, University of Karachi, Pakistan
| | | | - Aqsa Aqsa
- Department of Computer Science, Sindh Madressatul Islam University Karachi, Pakistan
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Lublin, Poland; Department of Applied Ecology and Environmental Sciences, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine
| | - Sergij Vambol
- Department of "Labour & Environment Protection", National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| |
Collapse
|
38
|
Huang S, Jin S. Melatonin Interaction with Other Phytohormones in the Regulation of Abiotic Stresses in Horticultural Plants. Antioxidants (Basel) 2024; 13:663. [PMID: 38929102 PMCID: PMC11201163 DOI: 10.3390/antiox13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Horticultural crops play a vital role in global food production, nutrition, and the economy. Horticultural crops are highly vulnerable to abiotic stresses. These abiotic stresses hinder plant growth and development by affecting seed germination, impairing photosynthetic activity, and damaging root development, thus leading to a decrease in fruit yield, quality, and productivity. Scientists have conducted extensive research to investigate the mechanisms of resilience and the ability to cope with environmental stresses. In contrast, the use of phytohormones to alleviate the detrimental impacts of abiotic stresses on horticulture plants has been generally recognized as an effective method. Among phytohormones, melatonin (MT) is a novel plant hormone that regulates various plants' physiological functions such as seedling development, root system architecture, photosynthetic efficiency, balanced redox homeostasis, secondary metabolites production, accumulation of mineral nutrient uptake, and activated antioxidant defense system. Importantly, MT application significantly restricted heavy metals (HMs) uptake and increased mineral nutrient accumulation by modifying the root architecture system. In addition, MT is a naturally occurring, multifunctional, nontoxic biomolecule having antioxidant properties. Furthermore, this review described the hormonal interaction between MT and other signaling molecules in order to enhance abiotic stress tolerance in horticulture crops. This review focuses on current research advancements and prospective approaches for enhancing crop tolerance to abiotic stress.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China;
| |
Collapse
|
39
|
Labulo AH, David OA, Hassan I, Oseghale CO, Terna AD, Olawuni I, Ndamadu DT, Ajewole TO. Mobility inhibition of arsenic in the soil: the role of green synthesized silica nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1683-1690. [PMID: 38712857 DOI: 10.1080/15226514.2024.2348044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The studies showed the effectiveness of green-synthesized SiO2NPs in mitigating the toxicity of Arsenic. Density Functional Theory (DFT) is a computational method used to determine electronic structure, energy gap, and toxicity prediction. Experimentally, silicon nanoparticles of 0 (S0) and 100% v/v (S100) were applied to the surface of the soil. 150 mL of Arsenic trioxide was applied twice at a rate of 0 (As0) and 3.2 g/mL (As3.2) at an interval of three weeks. Green synthesized SiO2NPs possessed a higher chemical potential (µ) and electrophilicity index; consequently, charges could be transferred and easily polarized. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the green synthesized SiO2NPs enable them to donate electrons and complex with arsenic, reducing their bioavailability and toxicity. Evidence from the studies further showed that SiO2NPs had buffered the soil acidity and electric conductivity, posing a high binding site and reactivity with exchangeable cations and micronutrients due to their smaller energy gap. Furthermore, the catalytic activities of the soil enzymes dehydrogenase (DHA) and peroxidase (POD) were greatly increased, which enhanced the electrostatic interaction between the SiO2NPs and As.
Collapse
Affiliation(s)
- Ayomide H Labulo
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | - Oyinade A David
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg, Germany
- CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany
| | - Ibrahim Hassan
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | | | - Augustine D Terna
- Department of Chemistry, Federal University of Technology Owerri, Owerri, Nigeria
| | - Idowu Olawuni
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Divine T Ndamadu
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Tolulope O Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| |
Collapse
|
40
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
41
|
Khan S, Akhtar N, Rehman SU, Shujah S, Jamil M. Iron oxide nanoparticle (Fe 3O 4 NPs) synthesized from B. subtilis reduced arsenic (as) toxicity in rice ( Oryza sativa L.) plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1676-1682. [PMID: 38702891 DOI: 10.1080/15226514.2024.2346904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Arsenic (As) is one of the most important water pollutant of global concern due to its extreme hazard. In the present study, B. subtilis synthesized iron oxide nanoparticles (Fe3O4 NPs) were used for mitigation of harmful metalloid As from the aqueous solution. Initially, the arsenic removal efficiency was tested in a batch culture experiment across various concentrations (5, 10 and 15 ppm) of B. subtilis synthesized Fe3O4 NPs at different pH, time interval and agitation speed. Optimal removal efficiency of As by using B. subtilis synthesized Fe3O4 NPs was observed at pH 7, after 80 min, and with agitation at 200 rpm. Additionally, hydroponic culture experiment was designed to assess B. subtilis synthesized Fe3O4 NPs efficiency in removal of As from As-contaminated water used to irrigate rice plants. Results revealed that B. subtilis synthesized Fe3O4 NPs effectively removed As from the contiminated water and reduced its uptake by the different parts of rice plants (root, shoot and leaf). Furthermore, these B. subtilis synthesized Fe3O4 NPs also reduced the bioaccumulation and enhanced plant tolerance to As, suggesting their potential in mitigating heavy metal toxicity, especially As and promoting plant growth. Thus, this study proposes B. subtilis synthesized Fe3O4 NPs as nano-adsorbents in reducing arsenic toxicity in rice plants.
Collapse
Affiliation(s)
- Sehresh Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Nazneen Akhtar
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | | | - Shaukat Shujah
- Department of Chemistry, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Pakistan
| |
Collapse
|
42
|
Budzyńska S, Izdebska A, Bierła K, Budka A, Niedzielski P, Mocek-Płóciniak A, Starzyk J, Mleczek M. Temporal arsenic form changes dynamics and accumulation patterns in Tilia cordata Mill. seedlings: Insights into metalloid transformation and tolerance mechanisms in trees. CHEMOSPHERE 2024; 356:141925. [PMID: 38588898 DOI: 10.1016/j.chemosphere.2024.141925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Arsenic (As) remediation is challenging due to the complex nature and the persistence of these metalloid compounds. While it may seem that differences between As forms influence have been extensively described, new findings challenge the previously accepted knowledge, particularly for woody plants. Therefore, this study focused on 2-year-old Tilia cordata Mill. seedlings early (0, 2, 4, 12, 24 h) and late (3, 7, 12, 18, 25, 33 days) responses during growth under: As(III), As(V) or dimethylarsinic acid (DMA) (0.3 mM). Time-dependent transformations of As forms, distribution in plants, and microbiological characteristics (actinobacteria, bacteria, fungi, enzyme activity) were investigated. The highest increase in total As content was observed in plants exposed to As(V) and As(III). Dynamic metalloid form changes in the solution and tree organs were indicated. The most phytotoxic was DMA. This form was the main factor limiting the growth and effective accumulation of As. Despite experimenting in hydroponics, microorganisms played an important role in As form transformations, suggesting the potential for microbial-assisted dendroremediation strategies. The study confirmed that trees can convert more toxic forms into less toxic ones (e.g. As(III) to phytochelatins - As(III)-(PC3)), whose presence in roots seedlings exposed to As(III) and As(V) has been identified. The formation of hydrophobic forms (e.g. dimethylarsinoyl lipid) in the roots of seedlings grown under As(V) was confirmed. It is the first discovery for trees, previously observed only in bacteria and algae. The dynamics of metalloid form changes indicated that T. cordata transforms As forms according to their needs, which may give tree species an advantage in phytoremediation techniques. It holds great promise for the potential of dendroremediation.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Aleksandra Izdebska
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, UMR 5254, IPREM, 64053, Pau, France
| | - Katarzyna Bierła
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, UMR 5254, IPREM, 64053, Pau, France
| | - Anna Budka
- Poznań University of Life Sciences, Faculty of Environmental and Mechanical Engineering, Department of Construction and Geoengineering, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Agnieszka Mocek-Płóciniak
- Poznań University of Life Sciences, Faculty of Agriculture, Horticulture and Bioengineering, Department of Soil Science and Microbiology, Szydłowska 50, 60-637, Poznań, Poland
| | - Justyna Starzyk
- Poznań University of Life Sciences, Faculty of Agriculture, Horticulture and Bioengineering, Department of Soil Science and Microbiology, Szydłowska 50, 60-637, Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
43
|
Liu W, Yang Y, Hu Y, Peng X, He L, Ma T, Zhu S, Xiang L, Chen N. Overexpression of SQUAMOSA promoter binding protein-like 4a (NtSPL4a) alleviates Cd toxicity in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108656. [PMID: 38685151 DOI: 10.1016/j.plaphy.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ya Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
44
|
Biswas A, Pal S. Plant-nano interactions: A new insight of nano-phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108646. [PMID: 38657549 DOI: 10.1016/j.plaphy.2024.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.
Collapse
Affiliation(s)
- Ankita Biswas
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India
| | - Suparna Pal
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India.
| |
Collapse
|
45
|
Sorour AA, Badr R, Mahmoud N, Abdel-Latif A. Cadmium and zinc accumulation and tolerance in two Egyptian cultivars (S53 and V120) of Helianthus annuus L. as potential phytoremediator. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1643-1654. [PMID: 38644603 DOI: 10.1080/15226514.2024.2343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Reem Badr
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermen Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amani Abdel-Latif
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Yurkevich M, Kurbatov A, Ikkonen E. Effect of Secondary Paper Sludge on Physiological Traits of Lactuca sativa L. under Heavy-Metal Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1098. [PMID: 38674506 PMCID: PMC11053480 DOI: 10.3390/plants13081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
To eliminate the negative effect of soil contamination with heavy metals on plant growth and crop yield, different methods and techniques are the subject of discussion and study. In this study, we aimed to evaluate the effect of secondary pulp and paper-mill sludge application to soil on the response of the main physiological processes such as the growth, photosynthesis, and respiration of lettuce (Lactuca sativa L.) plants to soil contamination with Pb. For the pot experiment, Pb was added to sandy loam soil at concentrations of 0, 50, and 250 mg Pb(NO3)2 per kg of the soil, and secondary sludge was added to a 0, 20, or 40% sludge solution during each plant watering. The Pb-mediated change in plant biomass allocation, decrease in the photosynthetic rate, increase in leaf respiration rate, and the degree of light inhibition of respiration were closely associated with increases in both root and shoot Pb content. For the Pb-free soil condition, secondary sludge application contributed to the allocation of plant biomass towards a greater accumulation in the shoots than in the roots. Although stomatal opening was not affected by either Pb or sludge, sludge application increased photosynthetic CO2 assimilation regardless of soil Pb content, which was associated with an increase in the electron-transport rate and carboxylase activity of Rubisco. Soil contamination with Pb significantly increased the ratio of respiration to photosynthesis, reflecting a shift in the carbon balance toward carbon losses in the leaves, but sludge application modified the coupling between the processes with a decrease in the proportion of respiratory carbon losses. The sludge-mediated recovery of the physiological processes of L. sativa reflected an increase in plant tolerance to soil contamination with heavy metals, the formation of which is associated with plant and soil adjustments initiated by secondary sludge application.
Collapse
Affiliation(s)
| | | | - Elena Ikkonen
- Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, 185910 Petrozavodsk, Russia; (M.Y.); (A.K.)
| |
Collapse
|
47
|
Sun X, Zhou Y, Jia S, Shao H, Liu M, Tao S, Dai X. Impacts of mining on vegetation phenology and sensitivity assessment of spectral vegetation indices to mining activities in arid/semi-arid areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120678. [PMID: 38503228 DOI: 10.1016/j.jenvman.2024.120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Measuring the impact of mining activities on vegetation phenology and assessing the sensitivity of vegetation indices (VIs) to it are crucial for understanding land degradation in mining areas and enhancing the carbon sink capacity following the ecological restoration of mines. To this end, we have developed a novel technical framework to quantify the impact of mining activities on vegetation, and applied it to the Bainaimiao copper mining area in Inner Mongolia. Phenological indices are extracted based on the VI time series data of Sentinel-2, and changes in phenological differences in various directions are used to quantify the impact of mining activities on vegetation. Finally, indicators such as mean difference, standard deviation, index value distribution interval, and concentration of index value distribution were selected to assess the sensitivity of the Enhanced Vegetation Index (EVI), Green Chlorophyll Index (GCI), Global Environmental Monitoring Index (GEMI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI), Red-Edge Chlorophyll Index (RECI), and Soil-Adjusted Vegetation Index (SAVI) to mining activities. The results of the study show that the impact of mining activities on surrounding vegetation extends to an area three times larger than the actual mining activity area. When compared with the reference and unaffected areas, the affected area experienced a delay of approximately 10 days in seasonal vegetation development. Environmental pollution caused by the tailings pond was identified as the primary factor influencing this delay. Significant variations in the sensitivity of each VI to assess mining activities in arid/semi-arid areas were observed. Notably, GCI, GNDVI and RDVI displayed relatively high sensitivity to discrepancies in the spectral attributes of vegetation within the affected area, while SAVI reflected the overall spectral stability of the vegetation in the affected area. The research findings have the potential to provide valuable technical guidance for holistic environmental management in mining areas and hold great significance in preventing further land degradation and supporting ecological restoration in mining areas.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| | - Yingzhi Zhou
- Forest and Grassland Fire Monitoring Center of Sichuan Province, Sichuan Forestry and Grassland Bureau, Chengdu, 610081, China
| | - Songsong Jia
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huaiyong Shao
- College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China; Key Laboratory of Earth Exploration and Information Technology, Ministry of Education, Chengdu 610059, China.
| | - Meng Liu
- Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shiqi Tao
- Graduate School of Geography, Clark University, Worcester, 01610, USA
| | - Xiaoai Dai
- College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
48
|
Juárez ID, Dou T, Biswas S, Septiningsih EM, Kurouski D. Diagnosing arsenic-mediated biochemical responses in rice cultivars using Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2024; 15:1371748. [PMID: 38590750 PMCID: PMC10999542 DOI: 10.3389/fpls.2024.1371748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Rice (Oryza sativa) is the primary crop for nearly half of the world's population. Groundwater in many rice-growing parts of the world often has elevated levels of arsenite and arsenate. At the same time, rice can accumulate up to 20 times more arsenic compared to other staple crops. This places an enormous amount of people at risk of chronic arsenic poisoning. In this study, we investigated whether Raman spectroscopy (RS) could be used to diagnose arsenic toxicity in rice based on biochemical changes that were induced by arsenic accumulation. We modeled arsenite and arsenate stresses in four different rice cultivars grown in hydroponics over a nine-day window. Our results demonstrate that Raman spectra acquired from rice leaves, coupled with partial least squares-discriminant analysis, enabled accurate detection and identification of arsenic stress with approximately 89% accuracy. We also performed high-performance liquid chromatography (HPLC)-analysis of rice leaves to identify the key molecular analytes sensed by RS in confirming arsenic poisoning. We found that RS primarily detected a decrease in the concentration of lutein and an increase in the concentration of vanillic and ferulic acids due to the accumulation of arsenite and arsenate in rice. This showed that these molecules are detectable indicators of biochemical response to arsenic accumulation. Finally, a cross-correlation of RS with HPLC and ICP-MS demonstrated RS's potential for a label-free, non-invasive, and non-destructive quantification of arsenic accumulation in rice.
Collapse
Affiliation(s)
- Isaac D. Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
49
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
50
|
Pinna MV, Diquattro S, Garau M, Grottola CM, Giudicianni P, Roggero PP, Castaldi P, Garau G. Combining biochar and grass-legume mixture to improve the phytoremediation of soils contaminated with potentially toxic elements (PTEs). Heliyon 2024; 10:e26478. [PMID: 38455572 PMCID: PMC10918015 DOI: 10.1016/j.heliyon.2024.e26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
The combination of soil amendments with plants can be a viable option for restoring the functionality of PTEs-contaminated soils. Soil recovery could be further optimized through the mixed cropping of plant species (e.g. legumes and grasses) with different physiological characteristics. The aim of this study was to assess the phytoremediation ability of Vicia villosa Roth. And Lolium rigidum Gaud. Grown alone or in mixture in a soil contaminated with PTEs (C), i.e. Cd (23 mg kg-1), Pb (4473 mg kg-1) and Zn (3147 mg kg-1), and amended with 3% biochar (C + B). Biochar improved soil fertility and changed PTEs distribution, reducing soluble fractions and increasing the more stable ones. The addition of biochar increased the plant biomass of hairy vetch and annual ryegrass, both in monoculture and when in mixture. For example, shoot and root biomass of the C + B intercropped hairy vetch and annual ryegrass increased 9- and 7-fold, and ∼3-fold respectively, compared to the respective C plants. The biochar addition decreased PTE-uptake by both plants, while mixed cropping increased the uptake of PTEs by shoots of hairy vetch grown in C and C + B. The bioaccumulation, translocation factors, and mineralomass showed that hairy vetch and annual ryegrass behaved as phytostabilising plants. PTE mineralomasses proved that mixed cropping in C + B increased the overall capacity of PTE accumulation by plant tissues, particularly the root system. Therefore, the combination of biochar and legumes/grasses mixed cropping could be an effective solution for the recovery of PTEs-contaminated soils and the mitigation of their environmental hazard.
Collapse
Affiliation(s)
- Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Corinna Maria Grottola
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Paola Giudicianni
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS) of the National Research Council (CNR), Naples, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|