1
|
Al-Naqeb G, Zorzi G, Oldani A, Azzalin A, Avesani L, Guzzo F, Pascale A, De Giuseppe R, Cena H. Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. Int J Mol Sci 2024; 25:13707. [PMID: 39769467 PMCID: PMC11676674 DOI: 10.3390/ijms252413707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Cistus monspeliensis L. (C. monspeliensis) is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of C. monspeliensis leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line. The phytochemical composition of C. monspeliensis extract was evaluated using an untargeted metabolomic approach by employing UPLC-PDA-ESI/MS. The automated in vitro CBMN assay was carried out using image analysis systems with a widefield fluorescence microscope and the ImageStreamX imaging flow cytometer. The phytochemical profile of C. monspeliensis extract showed, as the most abundant metabolites, punicalagin, myricetin, gallocathechin, and a labdane-type diterpene. C. monspeliensis, at the tested concentrations of 50, 100, and 200 μg/mL, did not induce significant micronuclei frequency, thus indicating the absence of a genotoxic potential. When testing the C. monspeliensis extract for antigenotoxicity in the presence of MMC, we observed a hormetic concentration-dependent effect, where low concentrations resulted in a significant protective effect against MMC-induced micronuclei frequency, and higher concentrations resulted in no effect. In conclusion, our findings demonstrate that C. monspeliensis extract is not genotoxic and, at low concentration, exhibits an antigenotoxic effect. In relation to this final point, C. monspeliensis may act as a potential chemo-preventive against genotoxic agents.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
| | - Gianluca Zorzi
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Amanda Oldani
- PASS-Bio Med, Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy;
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (R.D.G.); (H.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (G.Z.); (L.A.); (F.G.)
- Clinical Nutrition Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
2
|
Węgier A, Kaźmierczyk F, Efenberger-Szmechtyk M, Rosiak A, Kałużna-Czaplińska J, Masek A. Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4666. [PMID: 39336407 PMCID: PMC11433591 DOI: 10.3390/ma17184666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The aim of this research was to explore the innovative use of natural additives, containing phytochemicals with proven antimicrobial effects, in the production of epoxy-glass composites. This study was based on information regarding the antimicrobial effects of phytochemicals present in Cistus incanus, Zingiber officinale, and Armoracia rusticana. The additives were subjected to a gas chromatography (GC) analysis to determine their composition, and, subsequently, they were used to prepare resin mixtures and to produce epoxy-glass composites. Samples of the modified materials were tested against E. coli, S. aureus, and C. albicans. In addition, flammability and durability tests were also performed. It was found that the strongest biocidal properties were demonstrated by the material with the addition of cistus, which caused a reduction of microorganisms by 2.13 log units (S. aureus), 1.51 log units (E. coli), and 0.81 log units (C. albicans). The same material also achieved the most favorable results of strength tests, with the values of flexural strength and tensile strength reaching 390 MPa and 280 MPa, respectively. Public transport is a place particularly exposed to various types of pathogens. Currently, there are no solutions on the railway market that involve the use of composites modified in this respect.
Collapse
Affiliation(s)
- Aleksandra Węgier
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
- TAPS Maciej Kowalski, Borowa 4, 94-247 Lodz, Poland
| | - Filip Kaźmierczyk
- Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
3
|
Ahmed S, Zengin G, Selvi S, Ak G, Cziáky Z, Jekő J, Rodrigues MJ, Custodio L, Venanzoni R, Flores GA, Cusumano G, Angelini P. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024; 13:795. [PMID: 39338986 PMCID: PMC11435373 DOI: 10.3390/pathogens13090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the biochemical composition and biological properties of different parts (leaves, roots, and twigs) of two Cistus species (Cistus monspeliasis and Cistus parviflorus). The extracts were analysed using UHPLC-MS/MS to determine their chemical profiling. A range of antioxidant assays were performed to evaluate the extract's antioxidant capabilities. The enzyme inhibition studies focused on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase and tyrosinase. In addition, the study examined the antimicrobial effects on different bacteria and yeasts and evaluated the toxicity using the MTT assay. Quinic acid, citric acid, gallic acid, catechin, quercetin derivatives, kaempferol, myricetin, ellagic acid, prodelphinidins, procyanidins, scopoletin, and flavogallonic acid dilactone are the main bioactive compounds found in both species. In enzyme inhibition assays, C. monspeliasis roots exhibited significant activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with the values of 2.58 ± 0.02 mg GALAE/g and 11.37 ± 1.93 mg GALAE/g, respectively. Cytotoxicity studies showed mostly weak toxicity, with some samples moderately reducing viability in RAW and HepG2 cells. These findings underscore the diverse biochemical profiles and bioactive potential of Cistus species, suggesting their utility as natural sources of antioxidants and enzyme inhibitors for pharmaceutical and nutraceutical development.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir 10870, Turkey;
| | - Gunes Ak
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Maria J. Rodrigues
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Luisa Custodio
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| |
Collapse
|
4
|
Mac Sweeney E, Chiocchio I, Mandrone M, Sanna C, Bilo F, Maccarinelli G, Popescu VS, Pucci M, Morandini S, Memo M, Uberti DL, Borgese L, Trincia S, Poli F, Mastinu A, Abate G. Exploring the Anti-Inflammatory and Antioxidant Potential, Metabolite Composition and Inorganic Profile of Cistus monspeliensis L. Aerial Parts and Roots. Antioxidants (Basel) 2024; 13:753. [PMID: 39061822 PMCID: PMC11273841 DOI: 10.3390/antiox13070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
This work focuses on Cistus monspeliensis L. aerial parts (AP) and roots (R) extracts, investigating the anti-inflammatory and antioxidant potential of the two organs in comparison. At dosages between 1.56 and 6.25 µg/mL, both extracts showed a protective effect against LPS inflammatory stimulus on a macrophage cell line (RAW 264.7). Interestingly, only R was able to significantly reduce both IL-1β and IL-6 mRNA gene expression in the presence of LPS. Moreover, the treatment of a neuroblastoma cell line (SH-SY5Y) with AP and R at 6.25 µg/mL increased the cell survival rate by nearly 20% after H2O2 insult. However, only R promoted mitochondria survival, exhibited a significantly higher production of ATP and a higher activity of the enzyme catalase than the control. Both AP and R had similar primary metabolites; in particular, they both contained 1-O-methyl-epi-inositol. Labdane and methoxylated flavonoids were the most characteristic compounds of AP, while R contained mainly catechins, gallic acid, and pyrogallol derivatives. Considering the importance of elemental composition in plants, the inorganic profile of AP and R was also investigated and compared. No potentially toxic elements, such as Pb, were detected in any sample.
Collapse
Affiliation(s)
- Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Fabjola Bilo
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Vlad Sebastian Popescu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Stefania Morandini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Daniela Letizia Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Simona Trincia
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (S.T.); (F.P.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (E.M.S.); (G.M.); (V.S.P.); (M.P.); (S.M.); (M.M.); (D.L.U.); (G.A.)
| |
Collapse
|
5
|
Papanikolaou AS, Papaefthimiou D, Matekalo D, Karakousi CV, Makris AM, Kanellis AK. Chemical and transcriptomic analyses of leaf trichomes from Cistus creticus subsp. creticus reveal the biosynthetic pathways of certain labdane-type diterpenoids and their acetylated forms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3431-3451. [PMID: 38520311 PMCID: PMC11156806 DOI: 10.1093/jxb/erae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.
Collapse
Affiliation(s)
- Antigoni S Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dragana Matekalo
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Christina-Vasiliki Karakousi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 57001 Thessaloniki, Macedonia, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
6
|
Frazão DF, Martins-Gomes C, Díaz TS, Delgado F, Gonçalves JC, Silva AM. Labdanum Resin from Cistus ladanifer L. as a Source of Compounds with Anti-Diabetic, Neuroprotective and Anti-Proliferative Activity. Molecules 2024; 29:2222. [PMID: 38792084 PMCID: PMC11124373 DOI: 10.3390/molecules29102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.
Collapse
Affiliation(s)
- David F. Frazão
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Mediterranean Institute for Agriculture, Environment and Development (MED), Centre of Agronomic and Agro-Industrial Biotechnology of Alentejo (CEBAL), 7801-908 Beja, Portugal
| | - Carlos Martins-Gomes
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
| | - Teresa Sosa Díaz
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain;
| | - Fernanda Delgado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - José C. Gonçalves
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
7
|
De Filippis A, D'Amelia V, Folliero V, Zannella C, Franci G, Galdiero M, Di Loria A, Laezza C, Monti SM, Piccinelli AL, Celano R, Rigano MM. Cistus incanus: a natural source of antimicrobial metabolites. Nat Prod Res 2024:1-14. [PMID: 38557224 DOI: 10.1080/14786419.2024.2335353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The discovery of natural molecules with antimicrobial properties has become an urgent need for the global treatment of bacterium and virus infections. Cistus incanus, a Mediterranean shrub species, represents a valuable source of phytochemicals with an interesting wide-spectrum antimicrobial potential. In this study, we analysed the spectrum of molecules composing a commercial hydroalcoholic extract of C. incanus finding ellagitannins as the most abundant. The effect of the extract and its main constituents (gallic acid, ellagic acid and punicalin) was assessed as co-treatment during viral (HSV-1, HCoV-229E, SARS-CoV-2) and bacterial infection (Staphylococcus aureus and Escherichia coli) of cells and as pre-treatment before virus infections. The results indicated a remarkable antiviral activity of punicalin against SARS-CoV-2 by pre-treating both the viral and the host cells, and a major sensitivity of S. aureus to the C. incanus extract compared to E. coli. The present study highlights broad antimicrobial potential of C. incanus extract.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Experimental Medicine, section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo D'Amelia
- Institute of Bioscience and BioResources, National Research Council, Portici, Italy
- Immunoveg s.r.l. c/o, Portici, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Di Loria
- Immunoveg s.r.l. c/o, Portici, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Carmen Laezza
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Maria Monti
- Immunoveg s.r.l. c/o, Portici, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center, NBFC, Palermo, Italy
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center, NBFC, Palermo, Italy
| | - Maria Manuela Rigano
- Immunoveg s.r.l. c/o, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
8
|
Yazicioglu O, Ucuncu MK, Guven K. Ingredients in Commercially Available Mouthwashes. Int Dent J 2024; 74:223-241. [PMID: 37709645 PMCID: PMC10988267 DOI: 10.1016/j.identj.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Mouthwashes, a cornerstone of oral and dental hygiene, play a pivotal role in combating the formation of dental plaque, a leading cause of periodontal disease and dental caries. This study aimed to review the composition of mouthwashes found on retail shelves in Turkey and evaluate their prevalence and side effects, if any. METHODS The mouthwashes examined were sourced from the 5 largest chain stores in each district of Istanbul. A comprehensive list of the constituents was meticulously recorded. The research was supported by an extensive compilation of references from scholarly databases such as Google Scholar, PubMed, and ScienceDirect. Through rigorous analysis, the relative proportions of mouthwash ingredients and components were determined. RESULTS A total of 45 distinctive variations of mouthwashes, representing 17 prominent brands, were identified. Amongst the 116 ingredients discovered, 70 were evaluated for potential adverse effects and undesirable side effects. The aroma of the mouthwash (n = 45; 100%), as welll as their sodium fluoride (n = 28; 62.22%), sodium saccharin (n = 29; 64.44%), sorbitol (n = 21; 46.6%), and propylene glycol (n = 28; 62.22%) content were the main undesireable features. CONCLUSIONS The limited array of mouthwashes found on store shelves poses a concern for both oral and public health. Furthermore, the intricate composition of these products, consisting of numerous ingredients with the potential for adverse effects, warrants serious attention. Both clinicians and patients should acknowledge the importance and unwarranted side effects of the compnents of the mouthwashes.
Collapse
Affiliation(s)
- Oktay Yazicioglu
- Istanbul University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey
| | - Musa Kazim Ucuncu
- Altinbas University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey.
| | | |
Collapse
|
9
|
Di Minno A, Ullah H, De Lellis LF, Buccato DG, Baldi A, Cuomo P, El-Seedi HR, Khalifa SAM, Xiao X, Piccinocchi R, Piccinocchi G, Sacchi R, Daglia M. Efficacy and Tolerability of a Scutellaria lateriflora L. and Cistus × incanus L.-Based Chewing Gum on the Symptoms of Gingivitis: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:862. [PMID: 38542772 PMCID: PMC10975933 DOI: 10.3390/nu16060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 01/15/2025] Open
Abstract
Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in a double-blind, placebo-controlled clinical trial. Enrolled subjects (n = 60, 18-70 years) were randomized to receive two chewing gums or a placebo daily for 3 months. At baseline (t0) and monthly (t1, t2, and t3) timepoints, the Quantitative Gingival Bleeding Index (QGBI), the Modified Gingival Index (MGI), and the Oral Health 15 items (OH-15)] were employed to assess potential improvements in gingivitis. Pain was self-quantified via the Visual Analogue Scale (VAS), and the Clinical Global Impression Scale for Severity of illness (CGI-S) helped in evaluating the oral general conditions. This study is listed on the ISRCTN registry. At t3, the QGBI, MGI, OH-15, VAS, and CGI-S values decreased in the treated but not in the placebo group (β = 0.6 ± 0.1, t176 = 3.680, p < 0.001; β = 0.87 ± 0.21, t115 = 4.263, p < 0.001; β = 5.3 ± 2.5, t172 = 2.086, p = 0.038; β = 3.16 ± 0.51, t88 = 6.253, p < 0.001; and β = 1.09 ± 0.32, t83 = 3.419, p < 0.001, respectively). A significant improvement in gingival health occurred after a 3-month intervention with the chewing gums containing S. lateriflora and C. incanus extracts.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Hammad Ullah
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Paola Cuomo
- Department of Agriculture, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation Azienda Universitaria Ospedaliera Vanvitelli, Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy;
| | - Gaetano Piccinocchi
- Comegen Azienda Universitaria Ospedaliera Vanvitelli, Società Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin 41, 80125 Naples, Italy;
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Chtioui W, Heleno S, Migheli Q, Rodrigues P. Plant extracts as biocontrol agents against Aspergillus carbonarius growth and ochratoxin A production in grapes. Int J Food Microbiol 2023; 407:110425. [PMID: 37804776 DOI: 10.1016/j.ijfoodmicro.2023.110425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best antifungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concentration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ± 3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it will be necessary to evaluate their effect on the organoleptic properties of the grapes.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Sandrina Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy; Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100, Sassari, Italy
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
11
|
Oppedisano F, De Fazio R, Gugliandolo E, Crupi R, Palma E, Abbas Raza SH, Tilocca B, Merola C, Piras C, Britti D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023; 11:2264. [PMID: 37764109 PMCID: PMC10534841 DOI: 10.3390/microorganisms11092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Fragkouli R, Antonopoulou M, Asimakis E, Spyrou A, Kosma C, Zotos A, Tsiamis G, Patakas A, Triantafyllidis V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites 2023; 13:967. [PMID: 37755247 PMCID: PMC10535963 DOI: 10.3390/metabo13090967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The development and implementation of safe natural alternatives to synthetic pesticides are urgent needs that will provide ecological solutions for the control of plant diseases, bacteria, viruses, nematodes, pests, and weeds to ensure the economic stability of farmers and food security, as well as protection of the environment and human health. Unambiguously, production of botanical pesticides will allow for the sustainable and efficient use of natural resources and finally decrease the use of chemical inputs and burden. This is further underlined by the strict regulations on pesticide residues in agricultural products and is in harmony with the Farm to Fork strategy, which aims to reduce pesticide use by 50% by 2030. Thus, the present work aims to compile the scientific knowledge of the last 5 years (2017-February 2023) regarding the Mediterranean plants that present biopesticidal effects. The literature review revealed 40 families of Mediterranean plants with at least one species that have been investigated as potential biopesticides. However, only six families had the highest number of species, and they were reviewed comprehensively in this study. Following a systematic approach, the extraction methods, chemical composition, biopesticidal activity, and commonly used assays for evaluating the antimicrobial, pesticidal, repellant, and herbicidal activity of plant extracts, as well as the toxicological and safety aspects of biopesticide formulation, are discussed in detail. Finally, the aspects that have not yet been investigated or are under-investigated and future perspectives are highlighted.
Collapse
Affiliation(s)
- Regina Fragkouli
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Elias Asimakis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Chariklia Kosma
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Anastasios Zotos
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - George Tsiamis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Angelos Patakas
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Vassilios Triantafyllidis
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| |
Collapse
|
13
|
Bouabidi M, Salamone FL, Gadhi C, Bouamama H, Speciale A, Ginestra G, Pulvirenti L, Siracusa L, Nostro A, Cristani M. Efficacy of Two Moroccan Cistus Species Extracts against Acne Vulgaris: Phytochemical Profile, Antioxidant, Anti-Inflammatory and Antimicrobial Activities. Molecules 2023; 28:molecules28062797. [PMID: 36985768 PMCID: PMC10054591 DOI: 10.3390/molecules28062797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The genus Cistus L. (Cistaceae) includes several medicinal plants growing wild in the Moroccan area. Acne vulgaris (AV) is a chronic skin disorder treated with topical and systemic therapies that often lead to several side effects in addition to the development of antimicrobial resistance. Our study aimed to investigate the bioactivity of extracts of two Moroccan Cistus species, Cistus laurifolius L. and Cistus salviifolius L., in view of their use as potential coadjuvants in the treatment of mild acne vulgaris. METHODS Targeted phytochemical profiles obtained by HPLC-DAD and HPLC-ESI/MS analyses and biological activities ascertained by several antioxidants in vitro chemical and cell-based assays of the leaf extracts. Moreover, antimicrobial activity against Gram-positive and Gram-negative bacteria, and Candida albicans was evaluated. RESULTS Analyses revealed the presence of several polyphenols in the studied extracts, mainly flavonoids and tannins. Cistus laurifolius L. and Cistus salviifolius L. possessed good biological properties and all extracts showed antibacterial activity, particularly against Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes, identified as the main acne-causing bacteria. CONCLUSION The results suggest that examined extracts are promising agents worthy of further studies to develop coadjuvants/natural remedies for mild acne treatment.
Collapse
Affiliation(s)
- Maryem Bouabidi
- Laboratory of Sustainable Development and Health Research (LRDDS), Faculty of Sciences and Technology, Cadi Ayyad University, 549 Bd Abdelkrim Al Khattabi, Marrakesh 40000, Morocco
| | - Federica Lina Salamone
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Chemseddoha Gadhi
- Laboratory of Agri-Food, Biotechnology and Valorization of Plant Bioresources, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdellah, B.P. 2390, Marrakesh 40000, Morocco
| | - Hafida Bouamama
- Laboratory of Sustainable Development and Health Research (LRDDS), Faculty of Sciences and Technology, Cadi Ayyad University, 549 Bd Abdelkrim Al Khattabi, Marrakesh 40000, Morocco
| | - Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giovanna Ginestra
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Laura Siracusa
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Antonia Nostro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Mariateresa Cristani
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Artificial Intelligence Applied to Improve Scientific Reviews: The Antibacterial Activity of Cistus Plants as Proof of Concept. Antibiotics (Basel) 2023; 12:antibiotics12020327. [PMID: 36830239 PMCID: PMC9952093 DOI: 10.3390/antibiotics12020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Reviews have traditionally been based on extensive searches of the available bibliography on the topic of interest. However, this approach is frequently influenced by the authors' background, leading to possible selection bias. Artificial intelligence applied to natural language processing (NLP) is a powerful tool that can be used for systematic reviews by speeding up the process and providing more objective results, but its use in scientific literature reviews is still scarce. This manuscript addresses this challenge by developing a reproducible tool that can be used to develop objective reviews on almost every topic. This tool has been used to review the antibacterial activity of Cistus genus plant extracts as proof of concept, providing a comprehensive and objective state of the art on this topic based on the analysis of 1601 research manuscripts and 136 patents. Data were processed using a publicly available Jupyter Notebook in Google Collaboratory here. NLP, when applied to the study of antibacterial activity of Cistus plants, is able to recover the main scientific manuscripts and patents related to the topic, avoiding any biases. The NLP-assisted literature review reveals that C. creticus and C. monspeliensis are the first and second most studied Cistus species respectively. Leaves and fruits are the most commonly used plant parts and methanol, followed by butanol and water, the most widely used solvents to prepare plant extracts. Furthermore, Staphylococcus. aureus followed by Bacillus. cereus are the most studied bacterial species, which are also the most susceptible bacteria in all studied assays. This new tool aims to change the actual paradigm of the review of scientific literature to make the process more efficient, reliable, and reproducible, according to Open Science standards.
Collapse
|
15
|
Gadouche L, Alsoufi ASM, Pacholska D, Skotarek A, Pączkowski C, Szakiel A. Triterpenoid and Steroid Content of Lipophilic Extracts of Selected Medicinal Plants of the Mediterranean Region. Molecules 2023; 28:697. [PMID: 36677757 PMCID: PMC9866667 DOI: 10.3390/molecules28020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The available phytochemical characteristics of the medicinal plants and derived herbal material often lack data concerning the content of steroids (including phytosterols) and triterpenoids, that can be responsible for various beneficial properties and therapeutic effects, either directly, or as a result of synergistic action with other bioactive constituents. The aim of the present work was the analysis of the content of these compounds in herbal material (leaves, aerial parts) derived from selected medicinal plants (Cistus ladanifer, Cistus monspeliensis, Erica arborea, Globularia alypum, Pistacia lentiscus, Rhamnus alaternus), widely used in folk medicine in the Mediterranean region. Results obtained by gas chromatography-mass spectrometry (GC-MS)-targeted profiling revealed the diversity in the profiles and contents of steroids and triterpenoids in the analyzed plant material, ranging from 5.7% d.w. in E. arborea to 0.1% in G. alypum. The obtained results supplement the existing phytochemical data of the investigated medicinal plants, pointing to the E. arborea aerial parts and P. lentiscus leaves as valuable resources of phytosterols and bioactive triterpenoids.
Collapse
Affiliation(s)
- Leila Gadouche
- Department of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, P.O. Box 32, El Alia, Bab Ezzouar, Algiers 16111, Algeria
- Laboratory of Natural Bio-Resources, Faculty of Natural and Life Sciences, Hassiba Benbouali University of Chlef, P.O. Box 151, Chlef 02000, Algeria
| | | | - Dominika Pacholska
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Anna Skotarek
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| |
Collapse
|
16
|
Nur Onal F, Ozturk I, Aydin Kose F, Der G, Kilinc E, Baykan S. Comparative Evaluation of Polyphenol Contents and Biological Activities of Five Cistus L. Species Native to Turkey. Chem Biodivers 2023; 20:e202200915. [PMID: 36524294 DOI: 10.1002/cbdv.202200915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this study phytochemical compounds and antioxidant capacity, cytotoxic, antimicrobial and anti-biofilm activities of hydroethanolic extracts of five Cistus species (C. creticus L., C. laurifolius L., C. monspeliensis L., C. parviflorus Lam. and C. salviifolius L.) distributed in Turkey were investigated. (+)-catechin, epigallocatechin gallate, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside, luteolin were detected in different amounts. Strongest antioxidant capacities were observed with C. creticus, and C. parvifolius (0.476 and 0.452, respectively). Minimum inhibitory concentrations (MIC) of the extracts were determined between 32 and 128 μg/mL against different bacteria and Candida strains. C. monspeliensis and C. laurifolius extracts were inhibited the biofilm production levels of three Gram-negative bacteria (E. coli, S. enterica, P. aeruginosa), two Gram-positive bacteria (S. aureus, B. subtilis) and three Candida strains (C. albicans, C. parapsilosis, C. krusei). C. creticus extract showed strongest cytotoxic activity against human breast adenocarcinoma (MCF-7) and prostate cell lines (PC-3) (IC50 : 14.04±2.78 μg/mL and 34.04±2.74 μg/mL, respectively) among all plants tested.
Collapse
Affiliation(s)
- Fatma Nur Onal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Ismail Ozturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Fadime Aydin Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Gulay Der
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Emrah Kilinc
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Sura Baykan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| |
Collapse
|
17
|
A Cistus incanus Extract Blocks Psychological Stress Signaling and Reduces Neurogenic Inflammation and Signs of Aging in Skin, as Shown in In-Vitro Models and a Randomized Clinical Trial. COSMETICS 2022. [DOI: 10.3390/cosmetics10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Psychological stress exerts its effects mainly through the release of corticotropin releasing hormone (CRH), which activates inflammatory pathways in skin (inter alia), resulting in redness, extracellular matrix degradation, loss of skin elasticity and firmness, and the appearance of wrinkles—namely, accelerated skin aging. In order to propose a solution to this neurogenic aging phenomenon, we report here on studies using a myricitrin-rich extract of Cistus incanus, a Mediterranean shrub used in traditional medicine for the treatment of inflammatory and other diseases. These studies include a CRH receptor (CRH-R1) blocking assay; in vitro inflammatory cytokine reduction under CRH stimulation, and ex vivo NF-kB inhibition; and a double-blind clinical trial performed on highly stressed panelists, evaluating skin inflammation and wrinkling (active formulation vs. placebo control, applied split-face following a computer-generated randomization scheme; 36 subjects recruited and randomized, 30 analyzed; no adverse effects recorded; EMA/INFARMED registration #118505, internally funded). The results show that this extract can effectively block the CRH-R1 receptor, preventing NF-κB activation and the production of related pro-inflammatory cytokines. In a clinical setting, this same extract delivered significant anti-inflammatory and anti-aging effects. Taken together, these results demonstrate the value of this extract as a cosmetic active to counter neurogenic inflammation and skin aging.
Collapse
|
18
|
Reyes CP, Sabina SR, López-Cabeza R, Montelongo CG, Giménez C, Jiménez IA, Cabrera R, Bazzochi IL. Antifungal Potential of Canarian Plant Extracts against High-Risk Phytopathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212988. [PMID: 36365441 PMCID: PMC9656886 DOI: 10.3390/plants11212988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/12/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture. In particular, Fusarium, Alternaria and Botrytis are fungal diseases that affect crops worldwide. In the search for eco-friendly solutions to pest control, plants and their chemo-biodiversity are promising sources of biopesticides for integrated pest management. The aim of the present study is to report the evaluation of sixteen plant species from the Canary Islands Archipelago against the phytopathogenic fungi Botrytis cinerea, Fusarium oxysporum, and Alternaria alternata. The plants were selected on the basis of their traditional uses in medicine and/or pest control, as well as on scientific studies reporting their uses in crop protection. Their growth inhibition (% I), in an in vitro test-assay on mycelium, was used to identify six ethanolic plant extracts displaying activity (% I > 30% at 1 mg/mL) against at least one of the assayed fungi. The most effective plant extracts were further fractionated by liquid−liquid partition, using solvents of increasing polarity. This procedure led to an improvement of the bioactivity against the phytopathogens, even affecting the hexane fraction from S. canariensis and achieving an 83.93% of growth inhibition at 0.5 mg/mL on B. cinerea. These findings identified five plant-derived extracts as potential candidates for the future development of new biofungicides, which could be applied in integrated pest management.
Collapse
Affiliation(s)
- Carolina P. Reyes
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Samuel Rodríguez Sabina
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Sección Biología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Rocío López-Cabeza
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Cristina G. Montelongo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Sección Biología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Cristina Giménez
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Sección Biología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Raimundo Cabrera
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Sección Biología, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
| | - Isabel L. Bazzochi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
19
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Molecular Characterization of Gene-Mediated Resistance and Susceptibility of ESKAPE Clinical Isolates to Cistus monspeliensis L. and Cistus salviifolius L. Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7467279. [PMID: 36204117 PMCID: PMC9532067 DOI: 10.1155/2022/7467279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Background Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk medicines around the world, their efficacy against resistant bacteria still needs to be elucidated. We aim to investigate the antibiotic susceptibility profiles of clinical strains Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae (acronym “ESKAPE”), and their resistance mechanisms by PCR, as well as their sensitivity to C. monspeliensis (CM) and C. salviifolius (CS) methanol extracts and their fractions. Methods Antibiotic susceptibility profile and resistance mechanism were done by antibiogram and PCR. Fractions of CM and CS were obtained using maceration and Soxhlet; their antibacterial activities were evaluated by determining inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results Results revealed that all strains were XDR except S. aureus, which was MDR. The PCR indicates the presence of gene-mediated resistance (blaCTX-M, blaSHV, blaOXA-48, blaNDM, blaOXA-51, blaOXA-58, blaIMP, blaVIM, and blamecA). Also, maceration was slightly better for bioactivity preservation. Overall, the extracts of CM (IZD = 20 mm, MIC = 0.01 mg/mL) were more active than those of CS. All extracts inhibited MRSA (methicillin-resistant Staphylococcus aureus) and ERV (Enterococcus faecium Vancomycin-Resistant) with interesting MICs. The ethyl acetate fraction manifested great efficacy against all strains. Monoterpene hydrocarbons and sesquiterpenes oxygenated were the chemical classes of compounds dominating the analyzed fractions. Viridiflorol was the major compound in ethyl acetate fractions of 59.84% and 70.77% for CM and CS, respectively. Conclusions The superior activity of extracts to conventional antibiotics was seen for the first time in the pathogens group, and their bactericidal effect could be a promising alternative for developing clinical antibacterial agents against MDR and XDR ESKAPE bacteria.
Collapse
|
21
|
Piras C, Tilocca B, Castagna F, Roncada P, Britti D, Palma E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics (Basel) 2022; 11:919. [PMID: 35884173 PMCID: PMC9311764 DOI: 10.3390/antibiotics11070919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in small ruminants and for the control of other pests such as varroa in bee farming. As in anthelmintic resistance, antimicrobial resistance (AMR) represents one of the major challenges against the successful treatment of infectious diseases, and antimicrobials use in agriculture contributes to the spread of more AMR bacterial phenotypes, genes, and proteins. With this systematic review, we list Italian plants with documented antimicrobial activity against possible pathogenic microbes. Methods: The literature search included all the manuscripts published since 1990 in PubMed, Web of Science, and Scopus using the keywords (i) "antimicrobial, plants, Italy"; (ii) "antibacterial, plant, Italy"; (iii) "essential oil, antibacterial, Italy"; (iv) "essential oil, antimicrobial, Italy"; (v) "methanol extract, antibacterial, Italy"; (vi) "methanol extract, antimicrobial, Italy". Results: In total, 105 manuscripts that documented the inhibitory effect of plants growing in Italy against bacteria were included. One hundred thirty-five plants were recorded as effective against Gram+ bacteria, and 88 against Gram-. This will provide a ready-to-use comprehensive tool to be further tested against the indicated list of pathogens and will suggest new alternative strategies against bacterial pathogens to be employed in Green Veterinary Pharmacology applications.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
22
|
Roussi Z, Ben Mrid R, Ennoury A, Nhhala N, Zouaoui Z, El Omari R, Nhiri M. Insight into Cistus salviifolius extract for potential biostimulant effects in modulating cadmium-induced stress in sorghum plant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1323-1334. [PMID: 35910448 PMCID: PMC9334477 DOI: 10.1007/s12298-022-01202-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 05/21/2023]
Abstract
The main aim of the current study was to investigate the role of Cistus salviifolius leaves extract (CSE) in alleviating the toxic effect of cadmium (Cd) in sorghum (Sorghum bicolor) plants. The plants exposed to Cd (200 µM) exhibited limited growth, reduced biomass, and chlorophyll content compared to unstressed ones. Nevertheless, supplementation of CSE restored the negative effect of Cd and increased biomass and pigment content. CSE also increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), isocitrate dehydrogenase (ICDH), glutathione peroxidase (GPx), glutathione reductase (GR), and Glutathione-S-Transferase (GST). Furthermore, supplementation of CSE decreased lipid peroxidation and further increased the content of soluble sugar and amino acid. We also found that CSE has a promising effect in modulating the perturbations of carbon and nitrogen metabolism in sorghum plants under Cd stress by examining several carbon-nitrogen enzyme activities: phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (NAD-MDH), glutamine synthase (GS), glutamate dehydrogenase (GDH), and aspartate aminotransferase (AAT). Overall, our results confirm that the application of CSE can be a promising mechanism to overcome the negative effects of Cd stress in sorghum plants.
Collapse
Affiliation(s)
- Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Redouane El Omari
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Higher School of Technology (EST) Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
23
|
Antioxidant and Antimicrobial Potencies of Chemically-Profiled Essential Oil from Asteriscus graveolens against Clinically-Important Pathogenic Microbial Strains. Molecules 2022; 27:molecules27113539. [PMID: 35684475 PMCID: PMC9181963 DOI: 10.3390/molecules27113539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the antimicrobial potential of essential oils extracted from plants has gained extensive research interest, primarily for the development of novel antimicrobial treatments to combat emerging microbial resistance. The current study aims at investigating the antimicrobial activity and chemical composition of essential oil derived from gold coin daisy, which is known as Asteriscus graveolens (EOAG). In this context, a gas chromatography-tandem mass spectrometry (GC-MS) analysis of EOAG was conducted to identify its phytoconstituents. The in vitro antioxidant capacity of EOAG was determined by the use of three tests, namely: 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP), and total antioxidant capacity (TAC). The antimicrobial activity of EOAG against clinically important bacterial (Escherichia coli, K12; Staphylococcus aureus, ATCC 6633; Bacillus subtilis, DSM 6333; and Pseudomonas aeruginosa, CIP A22) and fungal (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913) strains was assessed. Antimicrobial efficacy was determined on solid (inhibition diameter) and liquid media to calculate the minimum inhibitory concentration (MIC). GC/MS profiling of EOAG revealed that 18 compounds were identified, with a dominance of α-Thujone (17.92%) followed by carvacrol (14.14%), with a total identification of about 99. 92%. The antioxidant activity of EOAG was determined to have IC50 values of 34.81 ± 1.12 µg/mL (DPPH), 89.37 ± 5.02 µg/mL (FRAP), and 1048.38 ± 10.23 µg EAA/mg (TAC). The antibacterial activity in a solid medium revealed that the largest diameter was recorded in P. aeruginosa (28.47 ± 1.44 mm) followed by S. aureus (27.41 ± 1.54 mm), and the MIC in S. aureus was 12.18 ± 0.98 µg / mL. For the antifungal activity of EOAG, the largest inhibition diameter was found in F. oxysporum (33.62 ± 2.14 mm) followed by C. albicans (26.41 ± 1.90 mm), and the smallest MIC was found in F. oxysporum (18.29 ± 1.21 µg/mL) followed by C. albicans (19.39 ± 1.0 µg/mL). In conclusion, EOAG can be useful as a natural antimicrobial and antioxidant agent and an alternative to synthetic antibiotics. Hence, they might be utilized to treat a variety of infectious disorders caused by pathogenic microorganisms, particularly those that have gained resistance to standard antibiotics.
Collapse
|
24
|
Essential Oils Derived from Cistus Species Activate Mitochondria by Inducing SIRT1 Expression in Human Keratinocytes, Leading to Senescence Inhibition. Molecules 2022; 27:molecules27072053. [PMID: 35408452 PMCID: PMC9000612 DOI: 10.3390/molecules27072053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022] Open
Abstract
Cistus L. is a genus of dicotyledonous perennial herbaceous plants. Cistus species have been commonly used in folk medicine in the Mediterranean region. In the present study, the biological activities of essential oils derived from Cistus species (Cistus laurifolius, C. monspeliensis, C. creticus, and C. salviifolius) were evaluated. Essential oils derived from C. laurifolius and C. monspeliensis were found to augment the expression of SIRT1, an anti-aging gene, in the normal culture of HaCaT cells. Furthermore, these essential oils increased the number and size of mitochondria and augmented their activity. These effects were thought to be caused by the up- and downregulated expression of MITOL and Drp1 in HaCaT cells, respectively, in response to the essential oil treatment. In addition, these essential oils were found to attenuate ultraviolet-B-induced mitochondrial damage and cellular senescence in HaCaT cells. These findings indicate that essential oils derived from C. laurifolius and C. monspeliensis may inhibit skin aging through mitochondrial regulation via SIRT1 activation.
Collapse
|
25
|
Florkiewicz W, Pluta K, Malina D, Rudnicka K, Żywicka A, Guigou MD, Tyliszczak B, Sobczak-Kupiec A. Investigation on Green Synthesis, Biocompatibility, and Antibacterial Activity of Silver Nanoparticles Prepared Using Cistus incanus. MATERIALS 2021; 14:ma14175028. [PMID: 34501114 PMCID: PMC8433835 DOI: 10.3390/ma14175028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
This paper describes the plant-mediated preparation of silver nanoparticles with aqueous extract and infusion of Cistus incanus leaves. To evaluate aqueous extract and infusion antioxidant capacity and total phenolic content the DPPH and Folin-Ciocalteau methods were utilized. The antioxidant capacity and total phenolic content of extract and infusion were equal to 85.97 ± 6.54 mg gallic acid equivalents per gram of dry weight.; 10.76 ± 0.59 mg/mL and 12.65 ± 1.04 mg gallic acid equivalents per gram of dry weight.; 3.10 ± 0.14 mg/mL, respectively. The formed nanoparticles displayed the characteristic absorption band in the 380-450 nm wavelength range. The average size of particles was in the 68.8-71.2 nm range. Morphology and phase composition analysis revealed the formation of spherical nanoparticles with a face-centred cubic structure. Immune compatibility tests of nanoparticles and plant extracts showed no activation of the THP1-XBlue™ monocyte. Cytotoxicity tests performed with L929 mice fibroblasts showed that nanoparticles should be utilized at a concentration of 16 ppm. The minimum inhibitory concentrations determined with the microdilution method for nanoparticles prepared with plant infusion for S. aureus and S. epidermidis were 2 ppm and 16 ppm, respectively.
Collapse
Affiliation(s)
- Wioletta Florkiewicz
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (B.T.); (A.S.-K.)
- Correspondence:
| | - Klaudia Pluta
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland; (K.P.); (D.M.)
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland; (K.P.); (D.M.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland;
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland;
| | - Martin Duarte Guigou
- Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, B de Octubre 2738, Montevideo CP 11600, Uruguay;
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (B.T.); (A.S.-K.)
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (B.T.); (A.S.-K.)
| |
Collapse
|