1
|
Huanhong K, Lumsangkul C, Arjin C, Sirilun S, Tangpao T, Wang YL, Mektrirat R, Lin CS, Sommano SR, Sringarm K. Dietary supplementation of coffee pulp extract enhances growth performance and intestinal morphology in broiler chicken. Poult Sci 2025; 104:104873. [PMID: 39952143 PMCID: PMC12011096 DOI: 10.1016/j.psj.2025.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Coffee is a renowned beverage derived from plants globally. In the coffee production process, coffee pulp is a by-product that is abundant in phenolic compounds. Therefore, this study aimed to assess the effect of coffee pulp extract (CPE) on growth performance, blood biochemistry, intestinal morphology, carcass characteristics, and meat quality of broiler chickens. A total of 160 one-day-old male Ross 308 broilers were randomly allocated to four treatments with five replicates and eight chicks per replicate in a completely randomized design. These four dietary treatments included a basal diet with CPE of 0 (Control), 250 (CPE250), 500 (CPE500), and 1,000 (CPE1000) mg/kg diet for 35 days. The results showed that the body weight (BW) of the CPE500 group was significantly higher (P < 0.01) compared to the other groups at 35 days. Moreover, CPE500 increased the average daily gain (ADG) (P = 0.004) and reduced the feed conversion ratio (FCR) (P = 0.008). No significant differences (P > 0.05) were observed in the blood biochemistry profile. In addition, the investigation on intestinal morphology showed that CPE supplementation enhanced villus height (VH) (P = 0.004), crypt depth (CD) (P < 0.05), and ratio of VH:CD (P < 0.05) in the duodenum. Dietary supplementation with CPE significantly increased the percentage of neck weight (P < 0.05) compared to the control groups. However, no significant effects of CPE supplementation were observed on the meat quality parameters of breast and thigh muscles, including pH, color, water-holding capacity, and tenderness (P > 0.05). A significant increase (P < 0.05) in thigh fat content was observed with CPE supplementation. In conclusion, CPE500 can improve the growth performance and intestinal morphology of broiler chickens despite the presence of antioxidants and anti-inflammatory agents. This suggests that coffee pulp biomass could potentially be used as an alternative feed additive from agricultural biomass in broiler production.
Collapse
Affiliation(s)
- Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tibet Tangpao
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yu-Lei Wang
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Raktham Mektrirat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand; Chinese-Thai Cooperation Laboratory of Traditional Chinese Veterinary Medicine and Techniques, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 s.4 Roosevelt Rd, Taipei 10617, Taiwan
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Castro-Díaz R, Silva-Beltrán NP, Gámez-Meza N, Calderón K. The Antimicrobial Effects of Coffee and By-Products and Their Potential Applications in Healthcare and Agricultural Sectors: A State-of-Art Review. Microorganisms 2025; 13:215. [PMID: 40005582 PMCID: PMC11857841 DOI: 10.3390/microorganisms13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/27/2025] Open
Abstract
Coffee is one of the most consumed beverages around the world. Its production is dominated by the species Coffea arabica and Coffea canephora. However, the coffee elaboration process leads to generating a significant amount of waste, which arises in various stages of coffee bean processing and is rich in natural bioactive compounds such as phenolic compounds and alkaloids. Particularly, chlorogenic and caffeic acids have a high antimicrobial potential and have been demonstrated to be effective against bacteria and viruses of healthcare and food relevance, including multi-resistant pathogens. However, the production and accumulation of coffee waste have a negative environmental impact since they can contaminate the surrounding environment due to the presence of organic molecules such as caffeine and tannins. In this context, exploiting natural resources as a source of compounds with the antimicrobial potential of, for example, the bioactive compounds obtained from coffee, has been evaluated in previous works. This review aims to summarize the current knowledge on the antimicrobial properties of coffee and its by-products and their potential application in the healthcare sector and disease control in agricultural crops, with particular emphasis on improving sustainability and efficiency in agriculture through making use of waste, which carries high importance in today's society.
Collapse
Affiliation(s)
- Rosa Castro-Díaz
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico;
| | - Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, USA;
| | - Nohemi Gámez-Meza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico;
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo C.P. 83000, Sonora, Mexico;
| |
Collapse
|
3
|
Lertlakkanawat P, Sommano SR, Danmek K, Hongsibsong S, Jung C, Namin SM, Wongkaew M, Chuttong B. The Phytochemical Properties of Low-Grade Longan Syrup and Its Potential Use as a Dietary Supplement for Honey Bees. INSECTS 2024; 15:946. [PMID: 39769548 PMCID: PMC11678857 DOI: 10.3390/insects15120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Climate change significantly affects honey bee populations and their access to natural food sources, demanding alternative economic feed sources. Longan stands out as the most important fruit crop in Southeast Asia, but with a surplus of low-grade fruit that is not suitable for the market. This study investigates the potential of longan syrup as an alternative carbohydrate source for honey bees by measuring sugar composition, phytochemical profiles, feed, and survival, as well as the resulting gut microbial changes. Processed longan syrup contains 8.2, 85.1, and 33.1 mg/g of sucrose, glucose, and fructose. Total phenolic and flavonoid contents were 24.94 and 129.78 mg/g, respectively, showing a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition rate of 26.78% and an 87.82% antiradical activity rate via 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In vitro supplementation studies indicated that survival was highest in the 50% w/v sucrose syrup condition (control), followed by honey bees fed with 10%, 20%, and 30% longan syrup concentrations, respectively. Analyses of honey bee gut microbiomes revealed that longan syrup supplementation increased fermentative microorganisms such as Lactobacillus and Fructobacillus, which are beneficial for honey bees' health. Even though the addition of higher amounts of longan syrup would not be recommended, a 10% addition would be beneficial to honey bees' health through the modulation of gut microbiomes, demonstrating its potential as a dietary supplement that is a cost-effective and sustainable alternative to sugar syrup during shortages of natural carbohydrate sources.
Collapse
Affiliation(s)
- Phurichaya Lertlakkanawat
- Multidisciplinary Program in Biotechnology, Division of Plant Biotechnology, The Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (M.W.)
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chuleui Jung
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Saeed Mohamadzade Namin
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea;
- Department of Horticulture, College of Agricultural Science, Oregon State University, Corvallis, OR 97331, USA
| | - Malaiporn Wongkaew
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (M.W.)
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Muangsanguan A, Ruksiriwanich W, Arjin C, Jamjod S, Prom-u-Thai C, Jantrawut P, Rachtanapun P, Hnorkaew P, Satsook A, Sainakham M, Castagnini JM, Sringarm K. Comparison of In Vitro Hair Growth Promotion and Anti-Hair Loss Potential of Thai Rice By-Product from Oryza sativa L. cv. Buebang 3 CMU and Sanpatong. PLANTS (BASEL, SWITZERLAND) 2024; 13:3079. [PMID: 39519997 PMCID: PMC11548315 DOI: 10.3390/plants13213079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The bioactive compounds in herbal extracts may provide effective hair loss treatments with fewer side effects compared to synthetic medicines. This study evaluated the effects of Buebang 3 CMU and Sanpatong rice bran extracts, macerated with dichloromethane or 95% ethanol, on hair growth promotion and hair loss prevention. Overall, Buebang 3 CMU extracts contained significantly higher levels of bioactive compounds, including γ-oryzanol, tocopherols, and various polyphenols such as phytic acid, ferulic acid, and chlorogenic acid, compared to Sanpatong extracts. Additionally, ethanolic extracts demonstrated greater bioactive content and antioxidant activities than those extracted with dichloromethane. These compounds enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) by 124.28 ± 1.08% (p < 0.05) and modulated anti-inflammatory pathways by reducing nitrite production to 3.20 ± 0.36 µM (p < 0.05). Key hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), were activated by approximately 1.5-fold to 2.5-fold compared to minoxidil. Also, in both human prostate cancer (DU-145) and HFDPC cells, the ethanolic Buebang 3 CMU extract (Et-BB3-CMU) suppressed SRD5A1, SRD5A2, and SRD5A3 expression-key pathways in hair loss-by 2-fold and 1.5-fold more than minoxidil and finasteride, respectively. These findings suggest that Et-BB3-CMU holds promise for promoting hair growth and preventing hair loss.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sansanee Jamjod
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanakan Prom-u-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patipan Hnorkaew
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Apinya Satsook
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Korawan Sringarm
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
5
|
Bojórquez-Quintal E, Xotlanihua-Flores D, Bacchetta L, Diretto G, Maccioni O, Frusciante S, Rojas-Abarca LM, Sánchez-Rodríguez E. Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico. PLANTS (BASEL, SWITZERLAND) 2024; 13:2741. [PMID: 39409611 PMCID: PMC11478550 DOI: 10.3390/plants13192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community's experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers' work, in accordance with the principles of circular economy and bioeconomy.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONAHCYT, Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico
| | - Damián Xotlanihua-Flores
- Ingeniería en Desarrollo Comunitario, Instituto Tecnológico Superior de Zongolica, Km 4 Carretera a la Compañía S/N, Tepetlitlanapa, Zongolica 95005, Veracruz, Mexico;
| | - Loretta Bacchetta
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Gianfranco Diretto
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Oliviero Maccioni
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Sarah Frusciante
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Luis M. Rojas-Abarca
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| | - Esteban Sánchez-Rodríguez
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| |
Collapse
|
6
|
Gil-Ramírez A, Rebollo-Hernanz M, Cañas S, Monedero Cobeta I, Rodríguez-Rodríguez P, Gila-Díaz A, Benítez V, Arribas SM, Aguilera Y, Martín-Cabrejas MA. Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods 2024; 13:3006. [PMID: 39335934 PMCID: PMC11431805 DOI: 10.3390/foods13183006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The coffee pulp, a significant by-product of coffee processing, is often discarded but has potential for recycling and high-value uses. This study aimed to investigate the chemical composition of two coffee pulp ingredients, a flour (CPF) and an aqueous extract (CPE), and conducted acute and sub-chronic toxicity assays to determine their safety. The proximate composition revealed the high fiber content of both ingredients; the CPF mainly contained insoluble fiber, while CPE consisted exclusively of soluble pectic polysaccharides. The CPF had higher concentrations of amino acids and a better balance of essential/non-essential amino acids, whereas the CPE exhibited higher concentrations of free amino acids, ensuring higher bioavailability. Both ingredients showed elevated mineral content, while heavy-metal concentrations remained within acceptable limits. This study established the bioactive potential of the CPF and the CPE, demonstrating the high content of caffeine and gallic, protocatechuic, and 4-caffeoylquinic acids. The toxicity studies revealed that the CPF and the CPE exhibited safety when orally administered to mice. Administered doses were non-toxic, as they did not induce lethality or adverse effects in the mice or produce significant histopathological or biochemical adverse changes. This study represents a first step in valorizing the CPF and the CPE as safe novel food ingredients with health benefits for functional and nutritional foods.
Collapse
Affiliation(s)
- Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Ignacio Monedero Cobeta
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Andrea Gila-Díaz
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Silvia M. Arribas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| |
Collapse
|
7
|
Charoimek N, Sunanta P, Tangpao T, Suksathan R, Chanmahasathien W, Sirilun S, Hua KF, Chung HH, Sommano SR, Junmahasathien T. Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction. PLANTS (BASEL, SWITZERLAND) 2024; 13:1605. [PMID: 38931037 PMCID: PMC11207781 DOI: 10.3390/plants13121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Despite its well-known fragrance in cosmetics and medicine, a complete understanding of the phytochemical properties within by-products generated during commercial extraction of Damask rose remains elusive. Cultivated in Thailand for their essential oil, Damask rose varieties, including Mon Dang Prasert, Mon Klai Kangwon, and Bishop's Castle, share phenylethyl alcohol (57.62-61.11%) as the dominant component, which is responsible for their characteristic floral, sweet, rosy, and bready aroma. Through a circular hydro-distillation process, three different by-product fractions, including distilled water (D), hydrosol (H), and rose dreg (R), were recovered. Subsequently, we assessed their pharmaceutical potential, including the antioxidant, antimicrobial, anti-inflammatory, and anti-melanogenesis properties of these residual substances. The H fraction displayed the highest total phenolics (10.56 mgGAE/g) and flavonoids (6.93 mgCE/g) and significant antioxidant activity (IC50, 0.67-0.97 µg/mL). While the H fraction inhibited melanin formation at 50 μg/mL, the R fraction of MK (100 μg/mL) surprisingly promoted melanin production in B16-F10 cells. Nevertheless, the antimicrobial assay against Staphylococcus aureus, Cutibacterium acnes, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans revealed no antimicrobial activity in any fraction. Murine macrophage stimulation (J774A.1) with lipopolysaccharide revealed no anti-inflammatory effects from the by-products, as measured by IL-1β production. In summary, the H fraction exhibited the highest level of phenolic and flavonoid contents, as well as antioxidant and anti-melanogenesis activities. Therefore, this by-product is a desirable choice for the development of value-added products such as functional food, cosmetics, and pharmaceutical products.
Collapse
Affiliation(s)
- Nutthawut Charoimek
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (W.C.); (S.S.)
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
- Research Unit for Innovation in Responsible Food Production for Consumption of the Future (RIFF), Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tibet Tangpao
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchuporn Suksathan
- Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand;
| | - Wisinee Chanmahasathien
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (W.C.); (S.S.)
| | - Sasithorn Sirilun
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (W.C.); (S.S.)
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City 260, Taiwan;
| | - Hsiao-Hang Chung
- Department of Horticulture, National Ilan University, Yilan City 260, Taiwan;
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Taepin Junmahasathien
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (W.C.); (S.S.)
| |
Collapse
|
8
|
Sangta J, Ruksiriwanich W, Chittasupho C, Sringarm K, Rachtanapun P, Bakshani C, Willats W, Sommano S. Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte. Prep Biochem Biotechnol 2024; 54:587-596. [PMID: 37747818 DOI: 10.1080/10826068.2023.2258195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.
Collapse
Affiliation(s)
- Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Korawan Sringarm
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Division of Packaging Technology, Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Cassie Bakshani
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarana Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Khamsaw P, Sommano SR, Wongkaew M, Willats WGT, Bakshani CR, Sirilun S, Sunanta P. Banana Peel ( Musa ABB cv. Nam Wa Mali-Ong) as a Source of Value-Adding Components and the Functional Properties of Its Bioactive Ingredients. PLANTS (BASEL, SWITZERLAND) 2024; 13:593. [PMID: 38475439 DOI: 10.3390/plants13050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Banana peel (BP) is the primary by-product generated during banana processing which causes numerous environmental issues. This study examines the physical attributes, proximate analysis, glycoarray profiling, antioxidant abilities, and prebiotic activity of BP. The analysis demonstrated that carbohydrates constituted the primary components of BP and the glycoarray profiling indicated that BP contains multiple pectin and hemicellulose structures. BP also contained phenolic compounds, including (+)-catechin and gallic acid, flavonoid compounds, and antioxidant activities. BP demonstrated prebiotic effects by promoting the proliferation of advantageous gut bacteria while inhibiting the growth of harmful bacteria. The prebiotic index scores demonstrated that BP exhibited a greater capacity to promote the growth of beneficial bacteria in comparison to regular sugar. The study demonstrated the potential of the BP as a valuable source of dietary fibre, bioactive compounds, and prebiotics. These components have beneficial characteristics and can be utilised in the production of food, feed additives, and functional food.
Collapse
Affiliation(s)
- Pattarapol Khamsaw
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Malaiporn Wongkaew
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Program in Food Production and Innovation, College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50220, Thailand
| | - William G T Willats
- Department of Biology, School of Natural and Environmental Sciences, Newcastle University, Tyne NE1 7RU, UK
| | - Cassie R Bakshani
- Department of Biology, School of Natural and Environmental Sciences, Newcastle University, Tyne NE1 7RU, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SQ, UK
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Innovation in Responsible Food Production for Consumption of the Future (RIFF), Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Teniente SL, Esparza-González SC, Ascacio-Valdés JA, Campos-Múzquiz LG, Nery-Flores SD, Onofre-Rentería K, Rodríguez-Herrera R. Antiproliferative and cytotoxic effects of polyphenols from pomegranate peel and coffee pulp on cancer cells. Nat Prod Res 2024:1-7. [PMID: 38315566 DOI: 10.1080/14786419.2024.2310669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Pomegranate peel (PP) and coffee pulp (CP) are by-products of the food industry that can cause environmental pollution if not handled adequately. These by-products contain a significant amount of polyphenolic compounds which have antioxidant and possibly anticancer properties. We investigated the antiproliferative and cytotoxic activities of polyphenols from PP, CP and a 50-50% mixture of both against HeLa, A549, MDA-MB and Hek-293 cells. The total phenolic content of the PP and CP extracts was determined by high performance liquid chromatography/electrospray ionisation/mass spectrometry, and the antiproliferative and cytotoxic potentials were evaluated by MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) and Lactate Dehydogenase assays, respectively. Results showed antiproliferative and cytotoxic effects of polyphenols from PP and CP when administered at different concentrations or mixtures on HeLa, A549 and MDA-MB cells. No significant antiproliferative effects were observed on Hek-293 cells treated under similar conditions. These results suggest the potential of PP and CP polyphenols, individually or in combination, to modulate biological mechanisms involved in cervical, breast and lung cancer.
Collapse
Affiliation(s)
- Sandra Lucía Teniente
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| | | | | | | | | | - Karen Onofre-Rentería
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| |
Collapse
|
11
|
Muangsanguan A, Linsaenkart P, Chaitep T, Sangta J, Sommano SR, Sringarm K, Arjin C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Castagnini JM, Ruksiriwanich W. Hair Growth Promotion and Anti-Hair Loss Effects of By-Products Arabica Coffee Pulp Extracts Using Supercritical Fluid Extraction. Foods 2023; 12:4116. [PMID: 38002174 PMCID: PMC10670875 DOI: 10.3390/foods12224116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Coffee has been a common ingredient in many traditional hair loss remedies, but limited scientific evidence supports its use, particularly in coffee pulp. Androgenetic alopecia (AGA) is caused by androgens, inflammation, and oxidative stress. In the present study, supercritical fluid extraction (SFE) was used under various conditions to obtain six coffee pulp extracts. The SFE-4 extract, using 50% (v/v) ethanol as a co-solvent at conditions of 100 °C and 500 bars for 30 min, exhibited the highest phenolic, flavonoid, and caffeine contents. Additionally, the SFE-4 extract increased the migration and cell proliferation of HFDPCs (human hair follicle dermal papilla cells), which control hair cycle regulation, and had scavenging effects on ABTS and DPPH radicals. Additionally, the SFE-4 extract showed potassium ion channel opener activity in HFDPCs, as well as a stimulation effect on the enzyme matrix metalloproteinase-2 (MMP-2) (28.53 ± 1.08% of control), which may be related to the vascular endothelial growth factor (VEGF) gene upregulation. In human prostate cancer cells (DU-145) and HFDPC cells, the SFE-4 extract significantly decreased the expression of SRD5A1, SRD5A2, and SRD5A3, an essential pathway involved in AGA. Hair growth factor genes in the Wnt/-catenin (CTNNB1) and Sonic Hedgehog (SHH, SMO, and GLI1) pathways could be significantly activated by the SFE-4 extract. These results imply that employing SFE in coffee pulp extraction could help AGA treatment by preventing hair loss and promoting hair growth pathways. This would help small coffee producers gain economic empowerment and ensure the long-term sustainability of agricultural waste utilization.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
- Master of Science Program in Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
| | - Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (T.C.)
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| |
Collapse
|
12
|
Cañas S, Rebollo-Hernanz M, Martín-Trueba M, Braojos C, Gil-Ramírez A, Benítez V, Martín-Cabrejas MA, Aguilera Y. Exploring the potential of phenolic compounds from the coffee pulp in preventing cellular oxidative stress after in vitro digestion. Food Res Int 2023; 172:113116. [PMID: 37689881 DOI: 10.1016/j.foodres.2023.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The coffee pulp, a by-product of the coffee industry, contains a high concentration of phenolic compounds and caffeine. Simulated gastrointestinal digestion may influence these active compounds' bioaccessibility, bioavailability, and bioactivity. Understanding the impact of the digestive metabolism on the coffee pulp's phenolic composition and its effect on cellular oxidative stress biomarkers is essential. In this study, we evaluated the influence of in vitro gastrointestinal digestion of the coffee pulp flour (CPF) and extract (CPE) on their phenolic profile, radical scavenging capacity, cellular antioxidant activity, and cytoprotective properties in intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CPF and the CPE contained a high amount of caffeine and phenolic compounds, predominantly phenolic acids (3',4'-dihydroxycinnamoylquinic and 3,4-dihydroxybenzoic acids) and flavonoids (3,3',4',5,7-pentahydroxyflavone derivatives). Simulated digestion resulted in increased antioxidant capacity, and both the CPF and the CPE demonstrated free radical scavenging abilities even after in vitro digestion. The CPF and the CPE did not induce cytotoxicity in intestinal and hepatic cells, and both matrices exhibited the ability to scavenge intracellular reactive oxygen species. The coffee pulp treatments prevented the decrease of glutathione, thiol groups, and superoxide dismutase and catalase enzymatic activities evoked by tert-butyl hydroperoxide elicitation in IEC-6 and HepG2 cells. Our findings suggest that the coffee pulp could be used as a potent food ingredient for preventing cellular oxidative stress due to its high content of antioxidant compounds.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Martín-Trueba
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Rojas-Orduña E, Hernández-Carrión M, Gómez-Franco JD, Narváez-Cuenca CE, Sánchez-Camargo ADP. Utilization of red and yellow Coffea arabica var. Caturra pulp: macronutrient analysis, carotenoid extraction, and encapsulation for dairy product enrichment. Front Nutr 2023; 10:1231049. [PMID: 37720375 PMCID: PMC10501141 DOI: 10.3389/fnut.2023.1231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.
Collapse
Affiliation(s)
- Elkin Rojas-Orduña
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - María Hernández-Carrión
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Gómez-Franco
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Eduardo Narváez-Cuenca
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
14
|
Le PH, Ho LTT, Le DHT, Nguyen V. Purification of Coffee Polyphenols Extracted from Coffee Pulps ( Coffee arabica L.) Using Aqueous Two-Phase System. Molecules 2023; 28:5922. [PMID: 37570892 PMCID: PMC10420632 DOI: 10.3390/molecules28155922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Coffee pulp is an abundant residue from the coffee industry, but it still contains large amounts of valuable compounds such as polyphenols. The extraction of polyphenols from coffee pulp by the conventional method is accompanied by contaminated compounds. This study, therefore, applied an aqueous two-phase system consisting of different ratios of ethanol/ammonium sulfate to eliminate impurities from coffee-pulp crude extract. The purification efficiency was evaluated via total polyphenol content, antioxidant activity and two major polyphenols in coffee pulps including chlorogenic acid and caffeic acid. Results showed that phenolic compounds mostly predominated in the alcohol-rich phase in which the antioxidant activity was greatly increased after the purification process. Compared to un-purified crude-coffee extract, the antioxidant activity of the purified samples increased approximately 34%, which was assumed to occur due to the slight increase of chlorogenic acid and caffeic acid. Fourier-transform infrared spectroscopy supported the effectiveness of the purification process by eliminating some impurities.
Collapse
Affiliation(s)
- Phuong Hong Le
- Department of Chemical Engineering, Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 70000, Vietnam; (L.T.T.H.); (D.H.T.L.); (V.N.)
| | | | | | | |
Collapse
|
15
|
Prasad SK, Bhat SS, Koskowska O, Sangta J, Ahmad SF, Nadeem A, Sommano SR. Naringin from Coffee Inhibits Foodborne Aspergillus fumigatus via the NDK Pathway: Evidence from an In Silico Study. Molecules 2023; 28:5189. [PMID: 37446851 DOI: 10.3390/molecules28135189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus of great public health importance. As determined by the molecular docking interactions of the library compounds indicated, the best interactions were found to occur between the nucleoside-diphosphate kinase protein 6XP7 and the test molecules Naringin (-6.771 kcal/mol), followed by Epigallocatechin gallate (-5.687 kcal/mol). Therefore, Naringin was opted for further validation with molecular dynamic simulations. The ligand-protein complex RMSD indicated a fairly stable Naringin-NDK ligand-protein complex throughout the simulation period (2-16 Å). In ADME and gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure. We found that naringin could be harmful only when swallowed at a median lethal dose between 2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus treatments and food packaging materials. Thus, this study addresses the simultaneous problems of discarded coffee waste management and antifungal resistance to available medications.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Smitha S Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Olga Koskowska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences-SGGW, 16602-787 Warsaw, Poland
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
16
|
Hu S, Gil-Ramírez A, Martín-Trueba M, Benítez V, Aguilera Y, Martín-Cabrejas MA. Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Curr Res Food Sci 2023; 6:100475. [PMID: 36935849 PMCID: PMC10017359 DOI: 10.1016/j.crfs.2023.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Coffee pulp is an underutilized by-product of coffee industrial production rich in bioactive compounds such as phenolic compounds, caffeine, and dietary fiber. The widely known antioxidant, anti-inflammatory, anti-aging, antimicrobial and hepatoprotective health-promoting properties attributed to mentioned compounds enhance the use of coffee pulp as a bioactive food ingredient. Furthermore, the application of green sustainable extraction techniques pursuing highly efficient and selective extraction processes promotes this by-product exploitation in food science. Hence, this review gathers the available information relative to the impact of the extraction processes on the bioactive compound's recovery from coffee pulp, providing an overview of the most recent advances. An in-depth comparison workout between conventional and alternative extraction methods was performed to identify the most suitable techniques for coffee pulp valorization as functional ingredient until date. A critical discussion focused on advantages and drawbacks of the extraction methods applied to coffee pulp was included together a prospective of emerging extraction techniques.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Martín-Trueba
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
17
|
Antifungal Activity of Spent Coffee Ground Extracts. Microorganisms 2023; 11:microorganisms11020242. [PMID: 36838208 PMCID: PMC9963196 DOI: 10.3390/microorganisms11020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and β-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.
Collapse
|
18
|
Eckhardt S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules 2022; 27:8435. [PMID: 36500526 PMCID: PMC9740254 DOI: 10.3390/molecules27238435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee bean harvesting incurs various by-products known for their long traditional use. However, they often still end up being a waste instead of being used to their full potential. On the European market, coffee cherry (cascara) products are not yet common, and a novel food approval for beverages made from coffee cherry pulp was issued only recently. In this article, exposure and risk assessment of various products such as juice, jam, jelly, puree, and flour made from coffee cherry pulp and husk are reviewed. Since caffeine in particular, as a bioactive ingredient, is considered a limiting factor, safe intake will be derived for different age groups, showing that even adolescents could consume limited quantities without adverse health effects. Moreover, the composition can be influenced by harvesting methods and processing steps. Most interestingly, dried and powdered coffee cherry can substitute the flour in bakery products by up to 15% without losing baking properties and sensory qualities. In particular, this use as a partial flour substitute is a possible approach to counteract rising grain prices, transport costs, and disrupted supply chains, which are caused by the Russia-Ukraine war and changing climatic conditions. Thus, the supply of affordable staple foods could be partially ensured for the inhabitants of countries that depend on imported wheat and cultivate coffee locally by harvesting both beans and by-products.
Collapse
Affiliation(s)
- Sara Eckhardt
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
19
|
Cañas S, Rebollo-Hernanz M, Braojos C, Benítez V, Ferreras-Charro R, Dueñas M, Aguilera Y, Martín-Cabrejas MA. Understanding the Gastrointestinal Behavior of the Coffee Pulp Phenolic Compounds under Simulated Conditions. Antioxidants (Basel) 2022; 11:antiox11091818. [PMID: 36139892 PMCID: PMC9495553 DOI: 10.3390/antiox11091818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous residues, such as the coffee pulp, are generated throughout coffee processing. This by-product is a source of antioxidant phytochemicals, including phenolic compounds and caffeine. However, the antioxidant properties of the phenolic compounds from the coffee pulp are physiologically limited to their bioaccessibility, bioavailability, and biotransformation occurring during gastrointestinal digestion. Hence, this study explored the phenolic and caffeine profile in the coffee pulp flour (CPF) and extract (CPE), their intestinal bioaccessibility through in vitro digestion, and their potential bioavailability and colonic metabolism using in silico models. The CPE exhibited a higher concentration of phenolic compounds than the CPF, mainly phenolic acids (protocatechuic, chlorogenic, and gallic acids), followed by flavonoids, particularly quercetin derivatives. Caffeine was found in higher concentrations than phenolic compounds. The antioxidant capacity was increased throughout the digestive process. The coffee pulp matrix influenced phytochemicals’ behavior during gastrointestinal digestion. Whereas individual phenolic compounds generally decreased during digestion, caffeine remained stable. Then, phenolic acids and caffeine were highly bioaccessible, while flavonoids were mainly degraded. As a result, caffeine and protocatechuic acid were the main compounds absorbed in the intestine after digestion. Non-absorbed phenolic compounds might undergo colonic biotransformation yielding small and potentially more adsorbable phenolic metabolites. These results contribute to establishing the coffee pulp as an antioxidant food ingredient since it contains bioaccessible and potentially bioavailable phytochemicals with potential health-promoting properties.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Rebeca Ferreras-Charro
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Montserrat Dueñas
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
20
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Development of Cascara Tea from Coffee Cherry Pulp. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
21
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
22
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|
23
|
Production of Non-Volatile Metabolites from Sooty Molds and Their Bio-Functionalities. Processes (Basel) 2022. [DOI: 10.3390/pr10020329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the current study, eleven sooty mold isolates were collected from different tropical host plants. The isolates were identified under Capnodium, Leptoxyphium and Trichomerium, based on morphology and phylogeny. For the secondary metabolite analysis, the isolates were grown on Potato Dextrose Broth (PDB). The well-grown mycelia were filtered and extracted over methanol (MeOH). The metabolites in the growth medium (or filtrate) were extracted over ethyl acetate (EtOAc). The antifungal activities of each crude extract were tested over Alternaria sp., Colletotrichum sp., Curvularia sp., Fusarium sp. and Pestalotiopsis sp. The metabolites were further tested for their total phenolic, flavonoid and protein content prior to their antioxidant and anti-fungal potential evaluation. The MeOH extracts of sooty molds were enriched with proteins and specifically inhibited Curvularia sp. The total phenolic content and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity was largely recovered from the filtrate corresponding to the inhibition of Alternaria sp.; while the flavonoid and free radical reduction suggested a relative induction of growth of the Fusarium sp., Colletotrichum sp. and Pestalotiopsis sp. Hence, this study reveals the diversity of sooty molds in Thailand by a modern phylogenetic approach. Furthermore, the preliminary screening of the isolates reveals the potential of finding novel compounds and providing insights for the future research on secondary metabolites of bio-trophic fungi and their potential usage on sustainable agriculture.
Collapse
|
24
|
Ruksiriwanich W, Khantham C, Linsaenkart P, Chaitep T, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Režek Jambrak A, Nazir Y, Yooin W, Sommano SR, Jantrawut P, Sainakham M, Tocharus J, Mingmalairak S, Sringarm K. Anti‐inflammation of bioactive compounds from ethanolic extracts of edible bamboo mushroom (
Dictyophora indusiata
) as functional health promoting food ingredients. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 1000 Croatia
| | - Yasir Nazir
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | | | | | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Department of Animal and Aquatic Sciences Faculty of Agriculture Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
25
|
Kinetic Study of Fungal Growth of Several Tanninolytic Strains Using Coffee Pulp Procyanidins. FERMENTATION 2021. [DOI: 10.3390/fermentation8010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Procyanidins are bioactive molecules with industrial and pharmaceutical relevance, they are present in recalcitrant agro-industrial wastes that are difficult to degrade. In this study, we evaluated the potential consumption of procyanidins from Aspergillus niger and Trichoderma harzianum strains in submerged fermentations. For this purpose, a culture medium containing salts, glucose, and procyanidins was formulated, where procyanidins were added to the medium after the near-total consumption of glucose. The submerged cultures were carried out in amber flasks at 30 °C and 120 rpm. The addition of procyanidins to the culture medium increased the formation of micellar biomass for all the strains used. The use of glucose affected the growth of A. niger GH1 and A. niger HS1, however, in these assays, a total consumption of procyanidins was obtained. These results show that the consumption of procyanidins by fungal strains in submerged fermentations was influenced by the pH, the use of glucose as the first source of carbon, and the delayed addition of procyanidins to the medium. The study showed that A. niger and T. harzianum strains can be used as a natural strategy for the consumption or removal of procyanidins present in recalcitrant residues of risk to the environment and human health.
Collapse
|
26
|
Nazir Y, Linsaenkart P, Khantham C, Chaitep T, Jantrawut P, Chittasupho C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Sommano SR, Tocharus J, Mingmalairak S, Wongsa A, Arjin C, Sringarm K, Berrada H, Barba FJ, Ruksiriwanich W. High Efficiency In Vitro Wound Healing of Dictyophora indusiata Extracts via Anti-Inflammatory and Collagen Stimulating (MMP-2 Inhibition) Mechanisms. J Fungi (Basel) 2021; 7:jof7121100. [PMID: 34947082 PMCID: PMC8708927 DOI: 10.3390/jof7121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dictyophora indusiata or Phallus indusiatus is widely used as not only traditional medicine, functional foods, but also, skin care agents. Biological activities of the fruiting body from D. indusiata were widely reported, while the studies on the application of immature bamboo mushroom extracts were limited especially in the wound healing effect. Wound healing process composed of 4 stages including hemostasis, inflammation, proliferation, and remodelling. This study divided the egg stage of bamboo mushroom into 3 parts: peel and green mixture (PGW), core (CW), and whole mushroom (WW). Then, aqueous extracts were investigated for their nucleotide sequencing, biological compound contents, and wound healing effect. The anti-inflammatory determination via the levels of cytokine releasing from macrophages, and the collagen stimulation activity on fibroblasts by matrix metalloproteinase-2 (MMP-2) inhibitory activity were determined to serve for the wound healing process promotion in the stage 2–4 (wound inflammation, proliferation, and remodelling of the skin). All D. indusiata extracts showed good antioxidant potential, significantly anti-inflammatory activity in the decreasing of the nitric oxide (NO), interleukin-1 (IL-1), interleukin-1 (IL-6), and tumour necrosis factor-α (TNF-α) secretion from macrophage cells (p < 0.05), and the effective collagen stimulation via MMP-2 inhibition. In particular, CW extract containing high content of catechin (68.761 ± 0.010 mg/g extract) which could significantly suppress NO secretion (0.06 ± 0.02 µmol/L) better than the standard anti-inflammatory drug diclofenac (0.12 ± 0.02 µmol/L) and their MMP-2 inhibition (41.33 ± 9.44%) was comparable to L-ascorbic acid (50.65 ± 2.53%). These findings support that CW of D. indusiata could be an essential natural active ingredient for skin wound healing pharmaceutical products.
Collapse
Affiliation(s)
- Yasir Nazir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
| | - Jiraporn Tocharus
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.T.); (S.M.)
| | - Salin Mingmalairak
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.T.); (S.M.)
| | - Anchali Wongsa
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (C.A.)
| | - Houda Berrada
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (H.B.); (F.J.B.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (H.B.); (F.J.B.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.N.); (P.L.); (C.K.); (T.C.); (P.J.); (C.C.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.); (Y.P.)
- Correspondence: ; Tel.: +66-96269-5354
| |
Collapse
|
27
|
Khanzada B, Akhtar N, Okla MK, Alamri SA, Al-Hashimi A, Baig MW, Rubnawaz S, AbdElgawad H, Hirad AH, Haq IU, Mirza B. Profiling of Antifungal Activities and In Silico Studies of Natural Polyphenols from Some Plants. Molecules 2021; 26:7164. [PMID: 34885744 PMCID: PMC8659076 DOI: 10.3390/molecules26237164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.
Collapse
Affiliation(s)
- Beenish Khanzada
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan;
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Samina Rubnawaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Abdurahman H. Hirad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|