1
|
Elias A, Rosado C, Costa MDC. Study on knowledge and perceptions on the uptake of non-medicinal cannabis-substances and preparations by Portuguese consumers: Borderline issues. Heliyon 2024; 10:e40827. [PMID: 39720062 PMCID: PMC11665625 DOI: 10.1016/j.heliyon.2024.e40827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Cannabis sativa L.-based food supplement products in pharmacies and para pharmacies in Portugal increased by 84 % between 2021 and 2022, arousing consumers' curiosity. However, information about these products is limited, and consumers are not aware of the restrictions in current European regulations. This study aims to understand Portuguese consumers' perceptions of cannabis products and identify the distribution channels and market strategy. A cross-sectional investigation on the consumption of non-medicinal products derived from cannabis occurred using a survey that aimed to collect data covering four main research questions: consumer information, consumed products, level of satisfaction, and used channels for purchasing products. Applying an original questionnaire aimed at the public via email and social networks, 176 responses were collected, where a high degree of satisfaction with taking cannabis-based products was evident, with sleep disorders and the promotion of well-being as the reasons (48,5 %) that led to the majority of respondents to seek out these products. Health professionals are already recommending cannabis-derived products; however, most respondents are unable to differentiate a food supplement from a medicine. Online purchase was the respondents' favourite choice, and respondents (93 %) were unaware of the properties of food supplements in general. Consumers ignore that the parts of the cannabis plant, whose active ingredients they expect to have a greater capacity to promote well-being, namely cannabinoids, are not authorized by the European Food Safety Authority (EFSA) to be marketed in foods or dietary supplements. Results also show that the influence of media in Portugal is significant in the choice of products, together with the lack of information on cannabis-based supplements and medicines, highlighting the need for a pro-consumer review, and promoting conscious and informed choices. Thus, we propose creating a Community Knowledge on Food Supplements linking academics, stakeholders, and authorities.
Collapse
Affiliation(s)
- Alexandre Elias
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Catarina Rosado
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maria do Céu Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
- IPLUSO, ERISA-Escola Superior de Saúde Ribeiro Sanches, Rua do Telhal aos Olivais, 8-8, 1900-693, Lisboa, Portugal
| |
Collapse
|
2
|
Lee S, Kim EJ, Kwon E, Oh SJ, Cho M, Kim CM, Lee W, Hong J. Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules 2023; 28:8082. [PMID: 38138572 PMCID: PMC10745826 DOI: 10.3390/molecules28248082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Although cannabidiol and tetrahydrocannabinol in Cannabis species exert their pharmacological effects via the endocannabinoid system, it is believed that other phytochemicals, particularly terpenes, can modulate therapeutic outcomes through the entourage effect. Therefore, to gain a better understanding of the pharmacological effects of Cannabis, obtaining information on phytochemical compositions, including mono-, di-, and sesqui-terpenes in Cannabis species is essential. Applying a sophisticated analytical method is indispensable. In this study, headspace-gas chromatography/mass spectrometry (HS-GC/MS) was employed to identify major terpenes in the leaves and inflorescences of hybrid Cannabis species. The incubation time and temperature conditions for HS-GC/MS were optimized. This method was successfully applied to the leaves (n = 9) and inflorescences (n = 7) of hybrid Cannabis species. A total of 26 terpenes in Cannabis species were detected, and six major components, such as α-pinene (9.8-2270 μg/g), β-pinene (2.6-930 μg/g), myrcene (0.7-17,400 μg/g), limonene (1.3-300 μg/g), β-caryophyllene (60-3300 μg/g), and α-humulene (40-870 μg/g), were quantified. Each sample showed different terpene compositions, but six major terpenes among all the terpenes detected were consistently found in both the leaves and inflorescences of hybrid Cannabis species. In this study, the six major terpenes' potential in hybrid Cannabis species was evaluated as biomarkers to distinguish hybrid Cannabis species samples. This study contributes to a better understanding of the entourage effect of Cannabis-based botanical drugs.
Collapse
Affiliation(s)
- Sangin Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Eun Jae Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Seo Jeong Oh
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Mansoo Cho
- Graduate School of Techno Design, Kookmin University, Seoul 02707, Republic of Korea;
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Wonwoong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| |
Collapse
|
3
|
Hesami M, Pepe M, Jones AMP. Morphological Characterization of Cannabis sativa L. Throughout Its Complete Life Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:3646. [PMID: 37896109 PMCID: PMC10610221 DOI: 10.3390/plants12203646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
This study extensively characterizes the morphological characteristics, including the leaf morphology, plant structure, flower development, and trichome features throughout the entire life cycle of Cannabis sativa L. cv. White Widow. The developmental responses to photoperiodic variations were investigated from germination to mature plant senescence. The leaf morphology showed a progression of complexity, beginning with serrations in the 1st true leaves, until the emergence of nine leaflets in the 6th true leaves, followed by a distinct shift to eight, then seven leaflets with the 14th and 15th true leaves, respectively. Thereafter, the leaf complexity decreased, culminating in the emergence of a single leaflet from the 25th node. The leaf area peaked with the 12th leaves, which coincided with a change from opposite to alternate phyllotaxy. The stipule development at nodes 5 and 6 signified the vegetative phase, followed by bract and solitary flower development emerging in nodes 7-12, signifying the reproductive phase. The subsequent induction of short-day photoperiod triggered the formation of apical inflorescence. Mature flowers displayed abundant glandular trichomes on perigonal bracts, with stigma color changing from whitish-yellow to reddish-brown. A pronounced increase in trichome density was evident, particularly on the abaxial bract surface, following the onset of flowering. The trichomes exhibited simultaneous growth in stalk length and glandular head diameter and pronounced shifts in color. Hermaphroditism occurred well after the general harvest date. This comprehensive study documents the intricate photoperiod-driven morphological changes throughout the complete lifecycle of Cannabis sativa L. cv. White Widow. The developmental responses characterized provide valuable insights for industrial and research applications.
Collapse
|
4
|
Duvnjak T, Vrandecic K, Sudaric A, Cosic J, Siber T, Matosa Kocar M. First Report of Hemp Fusarium Wilt Caused by Fusarium oxysporum in Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3305. [PMID: 37765469 PMCID: PMC10537888 DOI: 10.3390/plants12183305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Wilted hemp (Cannabis sativa L.) plants were observed in August 2019 in commercial fields around Osijek, Croatia. Plants and roots with disease symptoms were collected. The single-spored isolates produced septate cottony white to light pink aerial mycelium and purple undersurface on potato dextrose agar (PDA). Smooth and hyaline hyphae were branched and septate. Macroconidia were fusiform to sickle-shaped with foot-shaped basal cells, elongated apical cells and three to five septa. Sequencing of the internal transcribed spacer and the partial elongation factor 1-α gene identified the species as Fusarium oxysporum. Artificial infection fulfills Koch's postulates, producing plants which show stunted growth and wilt symptoms similar to those observed in the commercial fields. Control seedlings remained symptomless and healthy. To the best of our knowledge, this is the first report of hemp Fusarium wilt causing F. oxysporum in Croatia. Considering that F. oxysporum has been reported in main field crops in Croatia, the presence of this pathogen could cause economically significant hemp production decreases, especially in humid and cold springs and susceptible varieties.
Collapse
Affiliation(s)
- Tomislav Duvnjak
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| | - Karolina Vrandecic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandra Sudaric
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetosimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jasenka Cosic
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Siber
- Department of Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Maja Matosa Kocar
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Fernandes HP, Choi YH, Vrieling K, de Bresser M, Sewalt B, Tonolo F. Cultivar-dependent phenotypic and chemotypic responses of drug-type Cannabis sativa L. to polyploidization. FRONTIERS IN PLANT SCIENCE 2023; 14:1233191. [PMID: 37636092 PMCID: PMC10455935 DOI: 10.3389/fpls.2023.1233191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Cannabis sativa L. is a plant with a wide range of potential medicinal applications. In recent years, polyploidy has gained attention as a potential strategy for rapidly improving C. sativa, which, unlike other modern crops, has not yet benefitted from this established biotechnological application. Currently, no reports on high THCA and CBDA drug-type polyploid cultivars have been published. Moreover, it still needs to be clarified if different cultivars react similarly to polyploidization. For these reasons, we set out to evaluate and compare the phenotype and chemotype of three high Δ9-tetrahydrocannabinolic acid (THCA) and one high cannabidiolic acid (CBDA) drug-type cultivars in their diploid, triploid and tetraploid state through agronomic and metabolomic approaches. Our observations on plant morphology revealed a significant increase in plant height and leaf size with increasing ploidy levels in a cultivar-dependent manner. In contrast, cannabinoids were negatively affected by polyploidization, with the concentration of total cannabinoids, THCA, CBDA and cannabigerolic acid (CBGA) decreasing significantly in higher ploidy levels across all four cultivars. Headspace analysis of volatiles revealed that total volatile content decreased in triploids. On the other hand, tetraploids reacted differently depending on the cultivars. Two THCA dominant cultivars showed an increase in concentrations, while in the other two cultivars, concentrations decreased. Additionally, several rare compounds not present in diploids appeared in higher ploidy levels. Moreover, in one high THCA cultivar, a couple of elite tetraploid genotypes for cannabinoid and volatile production were identified, highlighting the role of cultivar and genotypic variability as an important factor in Cannabis sativa L. polyploids. Overall, our observations on plant morphology align with the giga phenotype observed in polyploids of other plant species. The decrease in cannabinoids and volatiles production in triploids have relevant implications regarding their commercial use. On the other hand, this study found that tetraploidization is a suitable approach to improve Cannabis sativa L. medicinal potential, although the response is cultivar and genotype-dependent. This work lays the ground for further improving, evaluating and harnessing Cannabis sativa L. chemical diversity by the breeding, biotechnological and pharmaceutical sectors.
Collapse
Affiliation(s)
- Hocelayne Paulino Fernandes
- Aboveground-belowground Interaction Group, Plant Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Klaas Vrieling
- Aboveground-belowground Interaction Group, Plant Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Bobbie Sewalt
- Aboveground-belowground Interaction Group, Plant Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Francesco Tonolo
- Aboveground-belowground Interaction Group, Plant Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
6
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Cielecka-Piontek J. Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties-Unveiling Nature's Treasure Trove. Antioxidants (Basel) 2023; 12:1390. [PMID: 37507928 PMCID: PMC10376652 DOI: 10.3390/antiox12071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Białobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 μg/g antioxidant potential in Białobrzeska leaf extracts.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
8
|
Fernandez I Marti A, Parungao M, Hollin J, Selimotic B, Farrar G, Seyler T, Anand A, Ahmad R. A Novel, Precise and High-Throughput Technology for Viroid Detection in Cannabis (MFDetect TM). Viruses 2023; 15:1487. [PMID: 37515174 PMCID: PMC10385567 DOI: 10.3390/v15071487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Hop latent viroid (HLVd) is a severe disease of cannabis, causing substantial economic losses in plant yield and crop value for growers worldwide. The best way to control the disease is early detection to limit the spread of the viroid in grow facilities. This study describes MFDetectTM as a rapid, highly sensitive, and high-throughput tool for detecting HLVd in the early stages of plant development. Furthermore, in the largest research study conducted so far for HLVd detection in cannabis, we compared MFDetectTM with quantitative RT-PCR in a time course experiment using different plant tissues, leaves, petioles, and roots at different plant developmental stages to demonstrate both technologies are comparable. Our study found leaf tissue is a suitable plant material for HLVd detection, with the viroid titer increasing in the infected leaf tissue with the age of plants. The study showed that other tissue types, including petiole and roots, were equally sensitive to detection via MFDetectTM. The assay developed in this research allows the screening of thousands of plants in a week. The assay can be scaled easily to provide growers with a quick turnaround and a cost-effective diagnostic tool for screening many plants and tissue types at different stages of development.
Collapse
Affiliation(s)
- Angel Fernandez I Marti
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Marcus Parungao
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Jonathan Hollin
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Berin Selimotic
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Graham Farrar
- Glass House Farms, 645 W Laguna Road, Camarillo, CA 93012, USA
| | - Tristan Seyler
- Glass House Farms, 645 W Laguna Road, Camarillo, CA 93012, USA
| | - Ajith Anand
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Riaz Ahmad
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| |
Collapse
|
9
|
Pino S, Espinoza L, Jara-Gutiérrez C, Villena J, Olea AF, Díaz K. Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091772. [PMID: 37176831 PMCID: PMC10180737 DOI: 10.3390/plants12091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils. In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid-liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro. The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent.
Collapse
Affiliation(s)
- Sebastián Pino
- LABSUN (Laboratorio Sustentable Natural), Valparaíso 2340000, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Carlos Jara-Gutiérrez
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Joan Villena
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Andrés F Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| |
Collapse
|
10
|
Wise K, Phan N, Selby-Pham J, Simovich T, Gill H. Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour. PLoS One 2023; 18:e0284842. [PMID: 37098051 PMCID: PMC10128932 DOI: 10.1371/journal.pone.0284842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Cannabis flower odour is an important aspect of product quality as it impacts the sensory experience when administered, which can affect therapeutic outcomes in paediatric patient populations who may reject unpalatable products. However, the cannabis industry has a reputation for having products with inconsistent odour descriptions and misattributed strain names due to the costly and laborious nature of sensory testing. Herein, we evaluate the potential of using odour vector modelling for predicting the odour intensity of cannabis products. Odour vector modelling is proposed as a process for transforming routinely produced volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informative to the overall product odour (sensory descriptor; SD). However, the calculation of OI requires compound odour detection thresholds (ODT), which are not available for many of the compounds present in natural volatile profiles. Accordingly, to apply the odour vector modelling process to cannabis, a QSPR statistical model was first produced to predict ODT from physicochemical properties. The model presented herein was produced by polynomial regression with 10-fold cross-validation from 1,274 median ODT values to produce a model with R2 = 0.6892 and a 10-fold R2 = 0.6484. This model was then applied to terpenes which lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis samples and the accuracy of the predictions across the two datasets was compared. Out of the 13 SD categories modelled, OI profiles performed equally well or better than the volatile profiles for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p = 0.031). The work herein is the first example of the application of odour vector modelling to complex volatile profiles of natural products and demonstrates the utility of OI profiles for the prediction of cannabis odour. These findings advance both the understanding of the odour modelling process which has previously only been applied to simple mixtures, and the cannabis industry which can utilise this process for more accurate prediction of cannabis odour and thereby reduce unpleasant patient experiences.
Collapse
Affiliation(s)
- Kimber Wise
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Nicholas Phan
- Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Jamie Selby-Pham
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Tomer Simovich
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
- PerkinElmer Inc., Glen Waverley, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
Siracusa L, Ruberto G, Cristino L. Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules 2023; 28:molecules28083387. [PMID: 37110621 PMCID: PMC10146690 DOI: 10.3390/molecules28083387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Cannabis sativa L. is a plant that humankind has been using for millennia. The basis of its widespread utilization is its adaptability to so many different climatic conditions, with easy cultivability in numerous diverse environments. Because of its variegate phytochemistry, C. sativa has been used in many sectors, although the discovery of the presence in the plant of several psychotropic substances (e.g., Δ9-tetrahydrocannabinol, THC) caused a drastic reduction of its cultivation and use together with its official ban from pharmacopeias. Fortunately, the discovery of Cannabis varieties with low content of THC as well as the biotechnological development of new clones rich in many phytochemical components endorsed with peculiar and many important bioactivities has demanded the reassessment of these species, the study and use of which are currently experiencing new and important developments. In this review we focus our attention on the phytochemistry, new matrices, suitable agronomic techniques, and new biological activities developed in the five last years.
Collapse
Affiliation(s)
- Laura Siracusa
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Luigia Cristino
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
12
|
Welling MT, Deseo MA, O’Brien M, Clifton J, Bacic A, Doblin MS. Metabolomic analysis of methyl jasmonate treatment on phytocannabinoid production in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1110144. [PMID: 37025140 PMCID: PMC10070988 DOI: 10.3389/fpls.2023.1110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cannabis sativa is a multi-use and chemically complex plant which is utilized for food, fiber, and medicine. Plants produce a class of psychoactive and medicinally important specialized metabolites referred to as phytocannabinoids (PCs). The phytohormone methyl jasmonate (MeJA) is a naturally occurring methyl ester of jasmonic acid and a product of oxylipin biosynthesis which initiates and regulates the biosynthesis of a broad range of specialized metabolites across a number of diverse plant lineages. While the effects of exogenous MeJA application on PC production has been reported, treatments have been constrained to a narrow molar range and to the targeted analysis of a small number of compounds. Using high-resolution mass spectrometry with data-dependent acquisition, we examined the global metabolomic effects of MeJA in C. sativa to explore oxylipin-mediated regulation of PC biosynthesis and accumulation. A dose-response relationship was observed, with an almost two-fold increase in PC content found in inflorescences of female clones treated with 15 mM MeJA compared to the control group. Comparison of the inflorescence metabolome across MeJA treatments coupled with targeted transcript analysis was used to elucidate key regulatory components contributing to PC production and metabolism more broadly. Revealing these biological signatures improves our understanding of the role of the oxylipin pathway in C. sativa and provides putative molecular targets for the metabolic engineering and optimization of chemical phenotype for medicinal and industrial end-uses.
Collapse
|
13
|
Govindarajan RK, Mishra AK, Cho KH, Kim KH, Yoon KM, Baek KH. Biosynthesis of Phytocannabinoids and Structural Insights: A Review. Metabolites 2023; 13:442. [PMID: 36984882 PMCID: PMC10051821 DOI: 10.3390/metabo13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cannabis belongs to the family Cannabaceae, and phytocannabinoids are produced by the Cannabis sativa L. plant. A long-standing debate regarding the plant is whether it contains one or more species. Phytocannabinoids are bioactive natural products found in flowers, seeds, and fruits. They can be beneficial for treating human diseases (such as multiple sclerosis, neurodegenerative diseases, epilepsy, and pain), the cellular metabolic process, and regulating biological function systems. In addition, several phytocannabinoids are used in various therapeutic and pharmaceutical applications. This study provides an overview of the different sources of phytocannabinoids; further, the biosynthesis of bioactive compounds involving various pathways is elucidated. The structural classification of phytocannabinoids is based on their decorated resorcinol core and the bioactivities of naturally occurring cannabinoids. Furthermore, phytocannabinoids have been studied in terms of their role in animal models and antimicrobial activity against bacteria and fungi; further, they show potential for therapeutic applications and are used in treating various human diseases. Overall, this review can help deepen the current understanding of the role of biotechnological approaches and the importance of phytocannabinoids in different industrial applications.
Collapse
Affiliation(s)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Ki-Hyun Kim
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kyoung Mi Yoon
- Gyeongbuk Institute for Bioindustry, Andong 36618, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
14
|
Effect of Explant Source on Phenotypic Changes of In Vitro Grown Cannabis Plantlets over Multiple Subcultures. BIOLOGY 2023; 12:biology12030443. [PMID: 36979133 PMCID: PMC10044989 DOI: 10.3390/biology12030443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Drug-type cannabis is often multiplied using micropropagation methods to produce genetically uniform and disease/insect-free crops. However, micropropagated plantlets often exhibit phenotypic variation, leading to culture decline over time. In cannabis, the source of these changes remains unknown, though several factors (e.g., explant’s sources and prolonged in vitro culture) can result in such phenotypical variations. The study presented herein evaluates the effects of explant sources (i.e., nodal segments derived from the basal, near-basal, middle, and apical parts of the greenhouse-grown mother plant) over multiple subcultures (4 subcultures during 235 days) on multiplication parameters and leaf morphological traits of in vitro cannabis plantlets. While initial in vitro responses were similar among explants sourced from different regions of the plant, there were significant differences in performance over the course of multiple subcultures. Specifically, explant source and/or the number of subcultures significantly impacted plantlet height, number of nodes, and canopy surface area. The explants derived from the basal and near-basal parts of the plant resulted in the tallest shoots with the greatest number of nodes, while the explants derived from the middle and apical regions led to shorter shoots with fewer nodes. Moreover, the basal-derived explants produced cannabis plantlets with shorter but wider leaves which demonstrated the potential of such explants for in vitro rejuvenation practices with minimal culture decline. This study provides new evidence into the long-term impacts of explant source in cannabis micropropagation.
Collapse
|
15
|
Yan B, Chang C, Gu Y, Zheng N, Fang Y, Zhang M, Wang G, Zhang L. Genome-Wide Identification, Classification, and Expression Analyses of the CsDGAT Gene Family in Cannabis sativa L. and Their Response to Cold Treatment. Int J Mol Sci 2023; 24:ijms24044078. [PMID: 36835488 PMCID: PMC9963917 DOI: 10.3390/ijms24044078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Hempseed is a nutrient-rich natural resource, and high levels of hempseed oil accumulate within hemp seeds, consisting primarily of different triglycerides. Members of the diacylglycerol acyltransferase (DGAT) enzyme family play critical roles in catalyzing triacylglycerol biosynthesis in plants, often governing the rate-limiting step in this process. As such, this study was designed to characterize the Cannabis sativa DGAT (CsDGAT) gene family in detail. Genomic analyses of the C. sativa revealed 10 candidate DGAT genes that were classified into four families (DGAT1, DGAT2, DGAT3, WS/DGAT) based on the features of different isoforms. Members of the CsDGAT family were found to be associated with large numbers of cis-acting promoter elements, including plant response elements, plant hormone response elements, light response elements, and stress response elements, suggesting roles for these genes in key processes such as development, environmental adaptation, and abiotic stress responses. Profiling of these genes in various tissues and varieties revealed varying spatial patterns of CsDGAT expression dynamics and differences in expression among C. sativa varieties, suggesting that the members of this gene family likely play distinct functional regulatory functions CsDGAT genes were upregulated in response to cold stress, and significant differences in the mode of regulation were observed when comparing roots and leaves, indicating that CsDGAT genes may play positive roles as regulators of cold responses in hemp while also playing distinct roles in shaping the responses of different parts of hemp seedlings to cold exposure. These data provide a robust basis for further functional studies of this gene family, supporting future efforts to screen the significance of CsDGAT candidate genes to validate their functions to improve hempseed oil composition.
Collapse
Affiliation(s)
- Bowei Yan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin 150028, China
| | - Yingnan Gu
- Remote Sensing Technique Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Nan Zheng
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yuyan Fang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ming Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guijiang Wang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Correspondence: (G.W.); (L.Z.)
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Correspondence: (G.W.); (L.Z.)
| |
Collapse
|
16
|
In Vitro Digestibility, Biological Activity, and Physicochemical Characterization of Proteins Extracted from Conventionally and Organically Cultivated Hempseed ( Cannabis sativa L.). Molecules 2023; 28:molecules28030915. [PMID: 36770583 PMCID: PMC9921050 DOI: 10.3390/molecules28030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The proteins from two conventionally (CC1 and CC2) and one organically cultivated (OC) hempseed samples were extracted (by alkaline solubilization followed by isoelectric precipitation) and compared in terms of their physicochemical, digestibility and in vitro bioactivity properties. The OC hempseed had higher total protein and lower nonprotein nitrogen content. Protein extracts showed bimodal particle size distributions, with OC showing the smallest and CC1 the largest mean particle diameter (d(0.5)), i.e., 89.0 and 120.0 µm, respectively. Chromatographic analysis showed similar protein profiles for all three protein extracts. The protein extracts were subjected to in vitro simulated gastrointestinal digestion (SGID). Degree of hydrolysis (DH) measurement showed that the highest extent of digestion upon SGID was associated with CC1 (11.0 ± 1.5%), which also had the lowest in vitro antioxidant activity. Only the OC and OC digested samples had lipase inhibitory activity. The results indicate that the cultivation method impacted the composition, physicochemical, digestibility, and biofunctional properties of hempseed proteins.
Collapse
|
17
|
Go MK, Zhu T, Lim KJH, Hartono YD, Xue B, Fan H, Yew WS. Cannabinoid Biosynthesis Using Noncanonical Cannabinoid Synthases. Int J Mol Sci 2023; 24:ijms24021259. [PMID: 36674774 PMCID: PMC9862763 DOI: 10.3390/ijms24021259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/10/2023] Open
Abstract
We report enzymes from the berberine bridge enzyme (BBE) superfamily that catalyze the oxidative cyclization of the monoterpene moiety in cannabigerolic acid (CBGA) to form cannabielsoin (CBE). The enzymes are from a variety of organisms and are previously uncharacterized. Out of 232 homologues chosen from the enzyme superfamily, four orthologues were shown to accept CBGA as a substrate and catalyze the biosynthesis of CBE. The four enzymes discovered in this study were recombinantly expressed and purified in Pichia pastoris. These enzymes are the first report of heterologous expression of BBEs that did not originate from the Cannabis plant that catalyze the production of cannabinoids using CBGA as substrate. This study details a new avenue for discovering and producing natural and unnatural cannabinoids.
Collapse
Affiliation(s)
- Maybelle Kho Go
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Tingting Zhu
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Kevin Jie Han Lim
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Yossa Dwi Hartono
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
18
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
19
|
Krüger M, van Eeden T, Beswa D. Cannabis sativa Cannabinoids as Functional Ingredients in Snack Foods-Historical and Developmental Aspects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3330. [PMID: 36501366 PMCID: PMC9739163 DOI: 10.3390/plants11233330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 05/10/2023]
Abstract
The published health benefits of Cannabis sativa has caught the attention of health-conscious consumers and the food industry. Historically, seeds have long been utilized as a food source and currently there is an increasing number of edibles on the market that contain cannabis. Cannabinoids include the psychoactive constituent, delta-9-tetrahydrocannabinol (THC), and the non-psychoactive cannabidiol (CBD) that are both compounds of interest in Cannabis sativa. This paper looks at the distribution of nutrients and phytocannabinoids in low-THC Cannabis sativa, the historical uses of hemp, cannabis edibles, and the possible side-effects and concerns related to cannabis edibles. Several authors have pointed out that even though the use of cannabis edibles is considered safe, it is important to mention their possible side-effects and any concerns related to its consumption that negatively influence consumer acceptance of cannabis edibles. Such risks include unintentional overdose by adults and accidental ingestion by children and adolescents resulting in serious adverse effects. Therefore, cannabis edibles should be specifically packaged and labelled to differentiate them from known similar non-cannabis edibles so that, together with tamperproof packaging, these measures reduce the appeal of these products to children.
Collapse
Affiliation(s)
- Marlize Krüger
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
| | - Tertia van Eeden
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, 25 Louisa St, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
20
|
Kim AL, Yun YJ, Choi HW, Hong CH, Shim HJ, Lee JH, Kim YC. Profiling Cannabinoid Contents and Expression Levels of Corresponding Biosynthetic Genes in Commercial Cannabis ( Cannabis sativa L.) Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:3088. [PMID: 36432817 PMCID: PMC9697443 DOI: 10.3390/plants11223088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Cannabis (Cannabis sativa L.) is widely cultivated and studied for its psychoactive and medicinal properties. As the major cannabinoids are present in acidic forms in Cannabis plants, non-enzymatic processes, such as decarboxylation, are crucial for their conversion to neutral active cannabinoid forms. Herein, we detected the levels of cannabidivarin (CBDV), cannabidiol (CBD), cannabichromene (CBC), and Δ9-tetrahydrocannabinol (Δ9-THC) in the leaves and vegetative shoots of five commercial Cannabis cultivars using a combination of relatively simple extraction, decarboxylation, and high-performance liquid chromatography analyses. The CBDV, CBC, and Δ9-THC levels were 6.3-114.9, 34.4-187.2, and 57.6-407.4 μg/g, respectively, and the CBD levels were the highest, ranging between 1.2-8.9 μg/g in leaf and vegetative shoot tissues of Cannabis cultivars. Additionally, correlations were observed between cannabinoid accumulation and transcription levels of genes encoding key enzymes for cannabinoid biosynthesis, including CsCBGAS, CsCBDAS, CsCBCAS, and CsTHCAS. These data suggest that the high accumulation of cannabinoids, such as CBC, Δ9-THC, and CBD, might be derived from the transcriptional regulation of CsCBGAS and CsCBDAS in Cannabis plants.
Collapse
Affiliation(s)
- Ae Lim Kim
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
- School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
| | - Young Jae Yun
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, 1375 Gyeongdong-ro, Andong-si 39729, Gyeongsangbuk-do, Korea
| | - Chang-Hee Hong
- LED Agri-Bio Fusion Technology Research Center, Jeonbuk National University Specialized Campus, 79 Gobong-ro, Iksan 54596, Jeollabuk-do, Korea
| | - Hyun Joo Shim
- School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
| | - Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Korea
| |
Collapse
|
21
|
Král D, Šenkyřík JB, Ondřej V. Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212995. [PMID: 36365448 PMCID: PMC9657790 DOI: 10.3390/plants11212995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 05/14/2023]
Abstract
The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynamically during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical, textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C. sativa cultivars 'KC Dora' and 'USO 31' were analyzed. The RT-qPCR results indicated that for the development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos. In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led to the upsurge of expression of all studied genes.
Collapse
|
22
|
Maioli C, Mattoteia D, Amin HIM, Minassi A, Caprioglio D. Cannabinol: History, Syntheses, and Biological Profile of the Greatest "Minor" Cannabinoid. PLANTS (BASEL, SWITZERLAND) 2022; 11:2896. [PMID: 36365350 PMCID: PMC9658060 DOI: 10.3390/plants11212896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cannabis (Cannabis sativa L.) is an outstanding source of bioactive natural products, with more than 150 different phytocannabinoids isolated throughout the decades; however, studies of their bioactivity have historically concentrated on the so-called "big four" [∆9-THC (1a), CBD (2a), CBG (3a) and CBC (4a)]. Among the remaining products, which have traditionally been referred to as "minor cannabinoids", cannabinol (CBN, 5a) stands out for its important repercussions and implications on the global scientific landscape. Throughout this review, we will describe why CBN (5a) deserves a prominent place within the so-called "cannabinome", providing an overview on its history, the syntheses developed, and its bioactivity, highlighting its promising pharmacological potential and the significant impact that the study of its chemistry had on the development of new synthetic methodologies.
Collapse
Affiliation(s)
- Chiara Maioli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
| | - Daiana Mattoteia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Hawraz Ibrahim M. Amin
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
- PlantaChem SRLS, Via Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Guido Donegani 2/3, 28100 Novara, Italy
| |
Collapse
|