1
|
Wang R, Wu G, Zhang J, Hu W, Yao X, Jiang L, Zhu Y. Integration of GWAS and transcriptome analysis to identify temperature-dependent genes involved in germination of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1551317. [PMID: 40098645 PMCID: PMC11911475 DOI: 10.3389/fpls.2025.1551317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Low temperature germination (LTG) is one of crucial agronomic traits for field-grown rapeseed in the Yangtze River Basin, where delayed sowing frequently exposes germination to cold stress. Because of its importance, the genetic basis underlying rapeseed germination under different temperatures has been continuously focused. By long-term field observation, we screened out two cultivars with significantly different LTG performance (JY1621 and JY1605) in field and lab conditions, which therefore were further used for the transcriptome sequencings at three key timepoints under normal and low temperatures. Comparative analysis among multiple groups of differentially expressed genes (DEGs) revealed a set of either early or late temperature response germination (ETRG or LTRG) genes, as well as cold-tolerant (CDT) and temperature-insensitive (TPI) candidate regulators at different germination stages. Furthermore, we performed a genome-wide association study (GWAS) using germination index of 273 rapeseed accessions and identified 24 significant loci associated with germination potential under normal temperatures. Through integrated analysis of transcriptome sequencing and GWAS, we identified a series of candidate genes involved in temperature-dependent germination. Based on the comprehensive analysis, we hypothesized that BnaA3.CYP77A4 and BnaA3.NAC078 could be important candidate genes for LTG due to their expression patterns and haplotype distributions. This study performed the multi-omics analysis on temperature-dependent germination and provided potential genetic loci and candidate genes required for robust germination, which could be further considered for low-temperature germination breeding of rapeseed.
Collapse
Affiliation(s)
- Ruisen Wang
- Institute of Economic Crop Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Guangyu Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jingyi Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Weizhen Hu
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Xiangtan Yao
- Institute of Economic Crop Sciences, Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yang Zhu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Bocianowski J, Nowosad K, Kozak B, Martofel J. Identification of SNP markers associated with yield in winter oilseed rape (Brassica napus L.) hybrids. J Appl Genet 2025:10.1007/s13353-025-00953-9. [PMID: 39985735 DOI: 10.1007/s13353-025-00953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Winter oilseed rape (Brassica napus), a crucial crop in temperate regions, is a key contributor to global vegetable oil production and an essential component of crop rotations due to its ability to improve soil structure and fertility. Enhancing its yield is vital for meeting the increasing demand for sustainable oil production, supporting food security, and optimizing biofuel production, while also ensuring the economic viability of agricultural systems in colder climates. The aim of the research was to determine association between SNP molecular markers and rapeseed yield. The plant material for this study consisted of 276 oilseed rape hybrids. The experiment was conducted in four localities: Borowo, Kończewice, Małyszyn, and Strzelce. The mean yield values ranged from 0.07 kg (for hybrid EH_20212 in Małyszyn) to 9.10 kg (for hybrid EH_20410 in Kończewice). The genotype matrix for 276 hybrids was constructed using marker data from the parental genotypes of inbred individuals (maternal and paternal lines). The matrix was coded as {- 1, 0, 1}, assuming an additive effect of the alleles. A total of 13,116 SNP markers were identified. For association mapping, 12,581 polymorphic markers were used. The results of the observation of the yield and sequencing were used for association mapping, which ultimately resulted in the selection of twenty-six molecular markers important (LOD > 5.0) simultaneously in all four localities.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Kamila Nowosad
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363, Wrocław, Poland.
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Jakub Martofel
- Borowo Branch, Plant Breeding Strzelce Ltd. Co, IHAR Group, 64-020, Czempiń, Poland
| |
Collapse
|
3
|
Afshari S, Sarli R, Alchin AA, Aliabad OG, Moradi F, Saei M, Lomer ARB, Nasiri V. Trend analysis and interactions between surface temperature and vegetation condition: divergent responses across vegetation types. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:292. [PMID: 39948222 DOI: 10.1007/s10661-025-13729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
Land surface temperature (LST) trends, influenced by climate change, affect vegetation health and productivity, while vegetation, in turn, alters LST by regulating the surface energy balance. These interactions vary by region and vegetation type. In this study, we aimed to (1) examine long-term trends in vegetation conditions and LST over time, and (2) investigate the interactions between vegetation conditions and LST within distinct vegetation types across the Arasbaran Biosphere Reserve. Sentinel-2 spectral-temporal features and the Random Forest model were employed to classify different vegetation types. Time series data for the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and LST were generated using harmonized Landsat data from 1987 to 2023. Various spatial statistical analyses were applied to address the research questions. The results revealed significant spatial and temporal variations in NDVI, NDWI, and LST among vegetation types. The highest volatility in vegetation conditions occurred in dense and sparse forests, while grasslands exhibited the lowest levels of variability. This variability coincided with an overall increasing trend in NDVI, NDWI, and LST, which was most pronounced in dense forests. Furthermore, a strong negative correlation between NDVI, NDWI, and LST was observed, particularly in croplands. These findings collectively indicate a greening trend in the study area, with forests showing the most pronounced increases. The results also underscore the role of forests and dense vegetation in mitigating projected temperature increases. These insights can inform local land management strategies and decision-making.
Collapse
Affiliation(s)
- Samaneh Afshari
- Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, 1417643184, Iran
| | - Reza Sarli
- Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland.
| | - Ahmad Abbasnezhad Alchin
- Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, 1417643184, Iran
| | | | - Fardin Moradi
- Kermanshah Agricultural and Natural Resources Research and Education Center, Kermanshah, Iran
| | - Mousa Saei
- Department of Geomatics Engineering, University of Zanjan, Zanjan, Iran
| | | | - Vahid Nasiri
- Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Latif S, Qureshi R, Rauf A, NoshinIlyas, Hussain Q, Shah SSH, Rehman S, Khan AM, Khan N, Abdel-Maksoud MA, Malik A, Fatima S, Kiani BH. Influence of different priming treatments on germination potential and seedling establishment of four important hemp (Cannabis sativa L.) cultivars. Sci Rep 2025; 15:3073. [PMID: 39856131 PMCID: PMC11759709 DOI: 10.1038/s41598-025-86469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Medicinal hemp (Cannabis sativa L.) is gaining popularity due to its natural products with potential therapeutic properties, and its cultivation has recently been initiated in developing countries such as Turkey, Iran, India, and Pakistan. The crop is primarily grown using feminized seeds or popular varieties to achieve higher cannabidiol (CBD) yields, with seeds costing approximately $5-10 each. However, limited knowledge exists on hemp seed germination under different seed priming techniques and variations in seedling growth parameters such as root and shoot lengths, as well as the influence of in vitro germination and growth in soil and cocopeat media. This study hypothesizes that various seed priming methods could significantly enhance hemp seed germination and different growth media may distinctly impact seedling growth of the tested cultivars. To test this, the study evaluated four cultivars/chemovars (viz., Fedora-17, Finola, CBD Pink Kush, and a local variety, Gulistan) under five seed priming treatments: indole butyric acid (IBA), moringa leaf extract, KNO3, hydro-priming, and a control (no priming). A randomized complete block design (RCBD) was used, and experimental data (in triplicate) were analyzed through analysis of variance (ANOVA) using a time-to-event approach. The findings revealed that IBA significantly (p < 0.05) improved seed germination rates, with CBD Pink Kush achieving the highest germination response (83%) among the tested cultivars. Furthermore, cocopeat demonstrated superior performance as a seedling growth medium across all cultivars, indicating its potential for hemp cultivation practices. This pioneering study provides a baseline for understanding hemp seed germination and seedling growth under different priming and growth media conditions, offering valuable insights for future research aimed at industrial and medicinal hemp production.
Collapse
Affiliation(s)
- Saba Latif
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
| | - Abdul Rauf
- Department of Zoology, Faculty of Science, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - NoshinIlyas
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Qaiser Hussain
- Department of Environmental and Soil Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Syed Sabir Hussain Shah
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Sabith Rehman
- Department of Botany, Hazara University Mansehra, Mansehra, KPK, Pakistan
| | - Arshad Mahmood Khan
- Department of Botany, Government Hashmat Ali Islamia Associate College Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Nasrullah Khan
- Department of Botany, University of Malakand, Chakdara, P.O. Box 18800, Dir Lower, KPK, Pakistan
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- artment of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
5
|
Lay JJ, Huang YT, Han CL, Zhong WZ. Functional microbiome and phytoremediation enhance soil diesel degradation via enzyme activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123604. [PMID: 39644546 DOI: 10.1016/j.jenvman.2024.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the enhancement of diesel degradation in contaminated soil through the synergistic effects of functional microbiomes and phytoremediation, emphasizing increased enzyme activity. The approach integrates a hydrogen-producing microbiome (HMb) with phytoremediation techniques. Observations revealed changes in soil conditions, including increases in moisture levels from 12.5% to 20% and a shift in pH from 6.9 to an alkaline range of 8.0-8.5 due to the treatment. Organic matter content also improved, supporting microbial activity. These modifications were closely monitored to evaluate their impact on microbial growth and enzyme activity. The findings showed that total petroleum hydrocarbons (TPH) in diesel-contaminated soil decreased by 78.1% using the combined HMb and phytoremediation method. This decrease was markedly higher than the 30.4% achieved through water drenching and the 30.9% with HMb alone. Central to this success were Clostridium sp. and Sporolactobacillus sp., which played essential roles in hydrocarbon degradation. Improved soil conditions supported an increase in microbial populations, with bacterial counts peaking at 6.0 x 1011 by day 4, enhancing degradation. Additionally, Bermuda grass survival rates increased to 35% by day 35. In the HMb and planting combination, amylase activity peaked at 100% by day 10, significantly aiding degradation, although it later decreased to 1% by day 35. This research presents a robust strategy for diesel-contaminated soil remediation, highlighting significant advancements in microbial growth and degradation efficiency.
Collapse
Affiliation(s)
- Jiunn-Jyi Lay
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, 1, University Rd., Yanchau, Kaohsiung, 811, Taiwan, ROC.
| | - Yu-Tzu Huang
- Department of Chemical Engineering, Chung-Yuan Christian University, 200 Chung Pei Road, Jhong-Li, 32023, Taiwan, ROC.
| | - Chang-Lung Han
- Carbon Neutral & Energy Research Center, National Kaohsiung University of Science and Technology, 1, University Rd., Yanchau, Kaohsiung, 811, Taiwan, ROC.
| | - Wei-Zhen Zhong
- Carbon Neutral & Energy Research Center, National Kaohsiung University of Science and Technology, 1, University Rd., Yanchau, Kaohsiung, 811, Taiwan, ROC.
| |
Collapse
|
6
|
Alem S, Karas L, Habrová H. Effects of Seed Colour and Regulated Temperature on the Germination of Boswellia pirottae Chiov.: An Endemic Gum- and Resin-Bearing Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3581. [PMID: 39771279 PMCID: PMC11678691 DOI: 10.3390/plants13243581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
(1) Background: According to the IUCN, Boswellia pirottae is classified as a vulnerable species. However, knowledge of its seed characteristics and germination behaviour is lacking. (2) Methods: The aim of this research was to characterise the seeds and evaluate the effects of seed colour and controlled temperatures on seed germination. The seeds were segregated into the following colour categories: light brown (LB), brown (B), and dark brown (DB). The seeds were evaluated under controlled constant temperatures (23 °C) and at room (fluctuating) temperature independently. One-way ANOVA, t-test, and germination indexes were used for analyses. (3) Results: The results showed significant differences in the mean seed masses of LB, B, and DB seeds. Similarly, the differently coloured seeds varied in their water imbibition rates. The result showed significant differences in the mean germination of the seeds in both the controlled temperature (23 °C) and room-temperature chambers among the LB, B, and DB seeds. However, the t-test revealed no significant differences in the mean germination of the seeds of similar colours between controlled temperature and room temperature conditions. (4) Conclusions: The seed's colour significantly influenced the seed mass, water imbibition capacity, and germination rate relative to the temperature treatment. Dark brown seeds are recommended for seed collection aimed at seedling propagation.
Collapse
Affiliation(s)
| | | | - Hana Habrová
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (S.A.); (L.K.)
| |
Collapse
|
7
|
Kende Z, Piroska P, Szemők GE, Khaeim H, Sghaier AH, Gyuricza C, Tarnawa Á. Optimizing Water, Temperature, and Density Conditions for In Vitro Pea ( Pisum sativum L.) Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:2776. [PMID: 39409646 PMCID: PMC11478928 DOI: 10.3390/plants13192776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
This study aimed to determine the optimal water, temperature, and density conditions, alongside antifungal treatments, for pea (Pisum sativum L.) germination in a laboratory setting, with implications for research, breeding, and microgreen production. Germination and early seedling growth were assessed across various temperatures (5 °C to 40 °C), water levels (0-14 mL per Petri dish), seed densities (5, 7, 9, and 11 seeds per Petri dish), and antifungal treatments (Hypo and Bordeaux mixture). The results indicated that optimal germination occurred between 15 °C and 25 °C, with peak performance at 25 °C. Water levels between 7 and 11 mL per 9 cm diameter Petri dish supported robust root and shoot development, while minimal water levels initiated germination but did not sustain growth. Five seeds per Petri dish was optimal for healthy development, whereas higher densities led to increased competition and variable outcomes. Antifungal treatments showed slight improvements in germination and growth, though differences were not statistically significant compared to controls. The study's novelty lies in its holistic approach to evaluating multiple factors affecting pea germination, offering practical guidelines for enhancing germination rates and seedling vigor. These findings support efficient and resilient crop production systems adaptable to varying environmental conditions, contributing to sustainable agriculture and food security. Future research should explore these factors in field settings and across different pea cultivars to validate and refine the recommendations.
Collapse
Affiliation(s)
- Zoltán Kende
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| | - Petra Piroska
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| | - Gabriella Erzsébet Szemők
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| | - Hussein Khaeim
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
- Field Crops Department, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq
| | - Asma Haj Sghaier
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| | - Csaba Gyuricza
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| | - Ákos Tarnawa
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Pest, Hungary
| |
Collapse
|
8
|
Tamindžić G, Miljaković D, Ignjatov M, Miladinović J, Đorđević V, Milošević D, Jovičić D, Vlajić S, Budakov D, Grahovac M. Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:2557. [PMID: 39339532 PMCID: PMC11434937 DOI: 10.3390/plants13182557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for sustainable agriculture. On the other hand, there is a lack of information about the effect of comprehensive nutrient priming and biopriming techniques on soybean seed quality and viability and seed health. This study was performed to assess the benefits of nutrient priming with Zn, biopriming with Bacillus megaterium and Bradyrhizobium japonicum (single and co-inoculation), and combination of nutrient priming and biopriming on the seed quality and viability, as well as seed infection caused by Alternaria spp. and Fusarium spp. Three different laboratory tests were employed: germination test, accelerated aging test, and seed health test. The results revealed that all tested priming treatments have a beneficial effect on seed germination, initial plant growth, and reduction of seed infection in normal and aged seeds. Additionally, comprehensive priming with Zn, Bacillus megaterium, and Bradyrhizobium japonicum reduced the occurrence of Alternaria spp. (-84% and -75%) and Fusarium spp. (-91% and -88%) on soybean seeds in the germination and accelerated aging tests, respectively, as compared to the control, which proved to be the most effective treatment in both optimal and stressful conditions.
Collapse
Affiliation(s)
- Gordana Tamindžić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Miljaković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Jegor Miladinović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Vuk Đorđević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Milošević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dušica Jovičić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Slobodan Vlajić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Pereira de Moura VG, Salviato Vieira JPU, Schedenffeldt BF, Silva Hirata AC, Monquero PA. Effect of temperature, light, seeding depth and mulch on germination of Commelina benghalensis and Richardia brasiliensis. BRAZ J BIOL 2024; 84:e281402. [PMID: 38922196 DOI: 10.1590/1519-6984.281402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
One of the major limitations to proper weed management is the lack of knowledge about the biology of the species. The aim of this study was to understand the influence of temperature and light on the germination and emergence of Commelina benghalensis and Richardia brasiliensis, as well as the influence of burial depth in the soil and the presence of mulch. The experiment regarding the influence of light and temperature on germination was conducted using a 2x4 factorial design, with two light conditions (presence for 12 hours and absence for 24 hours) and four temperature alternations every 12 hours (20-25 ºC, 20-30 ºC, 20-35 ºC, and 15-35 ºC), with four replications. The second experiment was conducted in a completely randomized design with four replications, testing seven sowing depths (0.0; 0.5; 1.0; 2.0; 4.0; 6.0; 10.0 cm) in clay-textured soil. In the third experiment, millet, black oat, and sun hemp straw were placed on the surface of the pot where the weeds were sown. R. brasiliensis showed high germination rates at 15°-35°C and in the presence of light, indicating positive photoblastism, as the germination percentage was 63.50% in the presence of light and 1% without light. C. benghalensis showed higher germination rates at 20-35ºC, with a germination percentage of 46.5% under light treatment and 44% in the absence of light. R. brasiliensis exhibited the highest germination percentage at a depth of 0.5 cm, with 72.50%. C. benghalensis showed better germination at depths of 1 and 4 cm, with 48.33% and 49.16%, respectively. Both crotalaria and millet caused significant inhibition of germination in both weed species. R. brasiliensis and C. benghalensis exhibit higher seed germination under alternating temperatures, with R. brasiliensis displaying positive photoblastism and C. benghalensis being neutral. Greater seeding depths negatively influence germination, and cover crops such as crotalaria and millet can be used to suppress these weeds.
Collapse
Affiliation(s)
- V G Pereira de Moura
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Agrárias, Araras, SP, Brasil
| | - J P U Salviato Vieira
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Agrárias, Araras, SP, Brasil
| | - B F Schedenffeldt
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Agrárias, Araras, SP, Brasil
| | - A C Silva Hirata
- Agência Paulista de Agronegócio, Presidente Prudente, SP, Brasil
| | - P A Monquero
- Universidade Federal de São Carlos - UFSCar, Centro de Ciências Agrárias, Araras, SP, Brasil
| |
Collapse
|
10
|
Laurençon M, Legrix J, Wagner MH, Demilly D, Baron C, Rolland S, Ducournau S, Laperche A, Nesi N. Genomic and phenomic predictions help capture low-effect alleles promoting seed germination in oilseed rape in addition to QTL analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:156. [PMID: 38858297 PMCID: PMC11164772 DOI: 10.1007/s00122-024-04659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.
Collapse
Affiliation(s)
- Marianne Laurençon
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Julie Legrix
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Marie-Hélène Wagner
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Didier Demilly
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Cécile Baron
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sophie Rolland
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sylvie Ducournau
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Anne Laperche
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France.
| | - Nathalie Nesi
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| |
Collapse
|
11
|
Bagarinao NC, King J, Leong SY, Agyei D, Sutton K, Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods 2024; 13:1598. [PMID: 38890827 PMCID: PMC11172214 DOI: 10.3390/foods13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Plant-based foods are being increasingly favored to feed the ever-growing population, but these need to exhibit improved nutritional value in terms of protein quality and digestibility to be considered a useful alternative to animal-based foods. Germination is essential for plant growth and represents a viable method through which the protein quality of plants can be further improved. However, it will be a challenge to maintain efficient rates of germination in a changing climate when seeds are sown. In the context of the indoor germination of seeds for food, consumption, or processing purposes, a more efficient and sustainable process is desired. Therefore, novel techniques to facilitate seed germination are required. Pulsed electric fields (PEF) treatment of seeds results in the permeabilization of the cell membrane, allowing water to be taken up more quickly and triggering biochemical changes to the macromolecules in the seed during germination. Therefore, PEF could be a chemical-free approach to induce a stress response in seeds, leading to the production of secondary metabolites known to exert beneficial effects on human health. However, this application of PEF, though promising, requires further research to optimize its impact on the protein and bioactive compounds in germinating seeds.
Collapse
Affiliation(s)
- Norma Cecille Bagarinao
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Jessie King
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Sze Ying Leong
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Dominic Agyei
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
| | - Kevin Sutton
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| |
Collapse
|
12
|
Tőzsér D, Idehen DO, Osazuwa JD, Sule JE, Ragyák ÁZ, Sajtos Z, Magura T. Early-stage growth and elemental composition patterns of Brassica napus L. in response to Cd-Zn contamination. CHEMOSPHERE 2024; 351:141235. [PMID: 38237783 DOI: 10.1016/j.chemosphere.2024.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Soil contamination caused by the presence of Cd and the excess amount of Zn is a widespread concern in agricultural areas, posing significant risks to the growth and development of crops. In this paper, the early-stage development and metal (Cd and Zn) accumulation potential of rapeseed (Brassica napus L.) grown under different metal application schemes were assessed by determining radicle and hypocotyl length and the micro- and macro elemental composition of plantlets after 24, 72, and 120 h. The results indicated that the single and co-application of Cd and Zn significantly reduced the radicle and hypocotyl lengths. Accumulation intensity for Cd and Zn was affected by Cd and the combination of Cd and Zn in the solution, respectively. In addition, both metals significantly influenced the tissue Mn and had a minor effect on Cu and Fe concentrations. Both Cd and Zn significantly affected macro element concentrations by decreasing tissue Ca and influencing K and Mg concentrations in a dose- and exposure time-dependent manner. These findings specify the short-term and support the long-term use of rapeseed in remediation processes. However, interactions of metals are crucial in determining the concentration patterns in tissues, which deserves more attention in future investigations.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, H-2100, Gödöllő, Hungary
| | | | | | - John Elias Sule
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Ágota Zsófia Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Tibor Magura
- Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
13
|
Plustea L, Dossa S, Dragomir C, Cocan I, Negrea M, Obistioiu D, Poiana MA, Voica D, Berbecea A, Alexa E. Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout. Foods 2024; 13:656. [PMID: 38472769 DOI: 10.3390/foods13050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
This study aimed to compare the nutritional, phytochemical, and sensory characteristics of wheat flour (WF) cookies enriched with different proportions of lupin sprout flour (LSF) and those with different proportions of lupin green sprout (LGS). To achieve this, a control cookie (CC); three cookies with 10%, 20%, and 30% of LSF, respectively, CLSF1, CLSF2, and CLSF3; and three other cookies (CLGS1, CLGS2, and CLGS3) with 10%, 20%, and 30%, respectively, were produced. The proximate composition of each cookie was analyzed using AOAC methods. Also, the measurements of the total polyphenol content, antioxidant activity, individual polyphenols, glycemic index, and a sensory analysis were carried out using recent and accurate methods. The contribution of the main nutrients from 100 g of product to the required daily dose was also calculated. Data analysis revealed that cookies with LSF were richer than cookies with LGS in protein, fat, and energy values. CLGS3 was 35.12%, 1.45%, and 5.0% lower in protein, fat, and energy content than CLSF3, respectively. On the other hand, CLSF3 was lower than CLGS3, with 48.2% and 12.4% in moisture and mineral substances, respectively. Both cookies were lower in carbohydrates than the CC (65.20 g/100 g). Still on the subject of micro- and macronutrients, cookies with LSF were richer than those with LGS in all the minerals analyzed. The study also revealed improvements in phytochemical properties, such as total and individual polyphenols and antioxidant activity with the percentage of lupin sprout flour addition. The sensory analysis revealed that, for LSF and LGS cookies, the 10% samples were the most appreciated by consumers, irrespective of the sensory attributes studied. The glycemic index of the CLSF2 product was lower compared to the CC. This study shows that the LSF cookies have better nutritional, phytochemical, and sensory values than the LGS cookies. LSF is, therefore, better suited than LGS to the enrichment of bakery products in general and cookies in particular. The paper provides significant information to estimate the contribution of the consumption of functional products based on lupin sprouts to the required daily dose of food nutrients and the impact on the glycemic index of fortified products.
Collapse
Affiliation(s)
- Loredana Plustea
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Sylvestre Dossa
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Christine Dragomir
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Mariana-Atena Poiana
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Daniela Voica
- Romanian Association of Milling and Bakery (ROMPAN), Calea Plevnei nr. 145, București, Sector 6, 060012 Bucharest, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| |
Collapse
|
14
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Tarnawa Á, Kende Z, Sghaier AH, Kovács GP, Gyuricza C, Khaeim H. Effect of Abiotic Stresses from Drought, Temperature, and Density on Germination and Seedling Growth of Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091792. [PMID: 37176849 PMCID: PMC10181215 DOI: 10.3390/plants12091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Seed germination and seedling growth are highly sensitive to deficit moisture and temperature stress. This study was designed to investigate barley (Hordeum vulgare L.) seeds' germination and seedling growth under conditions of abiotic stresses. Constant temperature levels of 5, 10, 15, 20, 25, 30, and 35 °C were used for the germination test. Drought and waterlogging stresses using 30 different water levels were examined using two methods: either based at 1 milliliter intervals or, on the other hand, as percentages of thousand kernel weight (TKW). Seedling density in a petri dish and antifungal application techniques were also investigated. Temperature significantly impacted germination time and seedling development with an ideal range of 15-20 °C, with a more comprehensive range to 10 °C. Higher temperatures reversely affected germination percentage, and the lower ones affected the germination and seedling growth rate. Germination commenced at 130% water of the TKW, and the ideal water range for seedling development was greater and more extensive than the range for germination, which means there is a difference between the starting point for germination and the seedling development. Seed size define germination water requirements and provides an objective and more precise basis suggesting an optimal range supply of 720% and 1080% of TKW for barley seedling development. A total of 10 seeds per 9 cm petri dish may be preferable over greater densities. The techniques of priming seeds with an antifungal solution (Bordóilé or Hypo) or antifungal application at even 5 ppm in the media significantly prevented fungal growth. This study is novel regarding the levels and types of abiotic stresses, the crop, the experimental and measurement techniques, and in comparison to the previous studies.
Collapse
Affiliation(s)
- Ákos Tarnawa
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Zoltán Kende
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Asma Haj Sghaier
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Gergő Péter Kovács
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Csaba Gyuricza
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
| | - Hussein Khaeim
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u.1, Gödöllő, 2100 Budapest, Hungary
- Field Crop Department, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq
| |
Collapse
|