1
|
Bai J, Lu Y, Dong P, Cao Y, Liu JW, Zhao CY. The impact of rhizosphere soil microorganisms on the medicinal active ingredients of Atractylodes chinensis from different regions. PLANT SIGNALING & BEHAVIOR 2025; 20:2473517. [PMID: 40105288 DOI: 10.1080/15592324.2025.2473517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025]
Abstract
AIMS Analyzing the rhizosphere microbial community structure of Atractylodes chinensis from different regions and its correlation with the accumulation of main medicinal active ingredients, this study aims to explore the impact of rhizosphere soil microorganisms on the effective components of A. chinensis, providing a scientific basis for the high-quality and high-yield cultivation of A. chinensis. METHODS AND RESULTS The rhizosphere soil of three-year-old A. chinensis was used as the research object. High-throughput sequencing technology was employed to analyze the rhizosphere bacterial and fungal community structures. High Performance Liquid Chromatography (HPLC) was used to detect the contents of atractylodin, atractylon, β-eudesmol, and atractylenolide III in the medicinal materials. Pearson correlation analysis was performed to explore the relationship between soil microbial communities and the active ingredients. α-diversity results showed that the Yaowangmiao village (YWM) microbial community had the highest richness and diversity, while Xingzhoucun (XZC) had the lowest, and Beiwushijiazi village (BWSJZ) had the lowest fungal community diversity and richness. PCoA analysis at the phylum level indicated that soil bacterial communities were more dispersed than fungal communities among different regions. The bacterial community in XZC significantly differed from other regions, while fungal communities in BWSJZ and Ximiaogong village (XMG) showed considerable differences from other regions. The content of active ingredients in different regions showed that Yuzhangzi village (YZZ) and BWSJZ had higher content and better quality of medicinal materials according to the content of atractylodesin specified in the Chinese Pharmacopoeia Commission. The dominant bacterial phylum in the rhizosphere soil of YZZ was Acidobacteriota, and the dominant genus was RB41. In BWSJZ, Acidobacteriota was the dominant bacterial phylum, with Arthrobacter and unclassified_f_Vicinamibacteraceae as dominant genera; the dominant fungal phylum was Basidiomycota, with Tausonia as the dominant genus. Different bacterial and fungal communities synergistically promoted or inhibited the synthesis of four active ingredients. CONCLUSION In short, this provides a theoretical basis for the distribution of soil rhizosphere microbial communities in the cultivation of A. chinensis and offers a reference for the cultivation of A. chinensis medicinal materials.
Collapse
Affiliation(s)
- Jia Bai
- Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yang Lu
- Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Ping Dong
- Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yu Cao
- Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Jian-Wei Liu
- Cardiothoracic Surgery Department, Chengde Central Hospital, Chengde, Hebei, China
| | - Chun-Ying Zhao
- Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
2
|
Pal P, Sehgal H, Joshi M, Arora G, Simek M, Lamba RP, Maurya S, Pal UN. Advances in using non-thermal plasmas for healthier crop production: toward pesticide and chemical fertilizer-free agriculture. PLANTA 2025; 261:109. [PMID: 40221954 DOI: 10.1007/s00425-025-04682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
MAIN CONCLUSION There is an urgent need for sustainable agriculture. Non-thermal plasma seed treatment offers a promising alternative by enhancing germination, nutrient uptake, and disease resistance, and reducing reliance on pesticides and fertilizers. There is an urgent need to transform agricultural practices to meet the challenges of sustainable food production amidst global population growth and environmental degradation. Traditional crop production methods heavily rely on pesticides and synthetic fertilizers, which pose significant risks to human health, disrupt ecosystems, and contribute to environmental pollution. Moreover, these methods are increasingly unsustainable due to rising costs and diminishing effectiveness, evolving pest resistance, and climate change impacts. Recently, non-thermal plasma (NTP) technology has emerged as a promising alternative for seed treatment in agriculture. NTP uses low-temperature plasma to modify seed surfaces, enhancing germination, vigor, and overall plant growth. Studies have demonstrated that NTP treatment improves nutrient uptake, increases disease resistance, and reduces the reliance on chemical inputs (pesticides and fertilizers), thereby promoting pesticide and chemical fertilizer-free agriculture. This paper explores recent research advancements in NTP seed treatment and its potential applications in sustainable agriculture. By exploring the mechanisms underlying the NTP effects on seed physiology, the paper provides a comprehensive understanding of how this technology can contribute to sustainable crop production. Furthermore, the paper discusses the strengths, weaknesses, opportunities, and challenges associated with the potential large-scale use of low-temperature plasmas in agriculture, aiming to accelerate the adoption of NTP and its commercialization in the agro-food industries. Overall, the goal of this paper is to highlight the transformative potential of NTP seed treatment in achieving healthier crop production that is environmentally friendly, economically viable, and capable of meeting the food demands of a growing global population.
Collapse
Affiliation(s)
- Priti Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Mukul Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Garima Arora
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 18200, Prague, Czech Republic
| | - Milan Simek
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 18200, Prague, Czech Republic
| | - Ram Prakash Lamba
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Shivendra Maurya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India
| | - Udit Narayan Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
3
|
Chen X, Ran Z, Wang Y, Chen T, Guo L, Fang L, Zhou J. Mechanism allowing biochar to aid in arbuscular mycorrhizal colonization in Panax quinquefolius L. roots and improve secondary metabolite production. MYCORRHIZA 2025; 35:23. [PMID: 40106050 DOI: 10.1007/s00572-025-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Panax quinquefolius L, a medicinal plant of the family Araliaceae, has been used in China for more than 300 years. The quality of its medicinal materials is a significant concern. Our previous studies have shown that arbuscular mycorrhizal fungi (AMF) promote the growth of P. quinquefolius and facilitate the accumulation of the active ingredient ginsenosides. However, these beneficial effects are limited by the low AMF colonization rate in production settings, requiring interventions to improve the colonization rate. Biochar is considered an effective soil amendment. Our preliminary experiments indicate that biochar can enhance the inter-root microecology of P. quinquefolius, as well as increase the AMF colonization rate, but the mechanism was not clear. Therefore, we propose using biochar to increase the AMF colonization rate. In this study, we explore the use of biochar to promote the AMF infestation rate of P. quinquefolius and its potential mechanisms. The mechanism was explored by setting up eight treatments. The colonization rate and intensity of AMF in P. quinquefolius roots were assessed using a Trypan Blue solution. Rhizosphere soil microorganisms were analyzed by 16S and ITS sequencing, and secondary metabolites were identified via non-targeted metabolomics. The results showed that the AMF and 2% biochar combined (AMF + BC2) treatment significantly increased both the colonization rate and colonization intensity of AMF, which were 53.58% and 195.95% higher than that of AMF, respectively. The colonization and rhizosphere AMF data indicate that the application of biochar promotes AMF colonization from outside to inside the root. In addition, biochar attracted potentially beneficial microorganisms such as Sphingobium, Sphingomonas, and Novosphingobium, which are positively correlated with AMF and promote AMF colonization. These microorganisms are closely linked with active secondary metabolites, such as Sphingobium, which is positively correlated with L-malic acid. In conclusion, biochar can improve the quality of P. quinquefolius by promoting the formation of mycorrhizae. This finding provides a theoretical basis for the observed effect of the co-application of biochar and AMF on the growth and active ingredient accumulation of P. quinquefolius.
Collapse
Affiliation(s)
- Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yue Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Tian Chen
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Lanping Guo
- State Key Laboratory for Quality Esurance and Sustainable Use of Dao-Di Herbs, Beijng, 100700, PR China.
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera Japonica, Linyi, 273399, China.
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- State Key Laboratory for Quality Esurance and Sustainable Use of Dao-Di Herbs, Beijng, 100700, PR China.
| |
Collapse
|
4
|
Zveushe OK, Nkoh JN, de Dios VR, Manjoro TT, Suanon F, Zhang H, Chen W, Lin L, Zhou L, Zhang W, Sesu F, Li J, Han Y, Dong F. Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136994. [PMID: 39740549 DOI: 10.1016/j.jhazmat.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings. The results revealed that (i) fungal treatments demonstrated an elevated tolerance and reduction ability for Cr(VI) compared to bacterial treatments; (ii) combined application of fungi and bacteria was more effective in degrading Cr(VI) in soil compared to the individual treatments; (iii) microbial encapsulation improved microbial response to Cr(VI) toxicity thereby increasing their lifespan and Cr(VI) degrading ability; (iv) microbial consortia significantly decreased soil pH, electrical conductivity, and redox potential while simultaneously increasing soil enzyme activities (urease, sucrase, phosphatase, catalase, and laccase); and (v) The improved tolerance in the inoculated treatment resulted in increased microbial diversity and a substantial variation in microbial community structures, with 10,753 bacterial and 2697 fungal amplicon sequence variants identified across the treatment groups. This study underscores the critical importance of microbial diversity in bioremediation, emphasizing that encapsulation with the right material could improve the effectiveness of environmental remediation strategies.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Víctor Resco de Dios
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Forest and Agricultural Sciences and Engineering, University of Lleida, Lleida 25198, Spain
| | - Tendai Terence Manjoro
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Fidèle Suanon
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengxing Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenfang Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Lin
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Frank Sesu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
5
|
Wang X, Alami MM, Gong S, Cheng Q, Chen C, Li X, Zhong S, He Z, Chen D, Feng S, Chen S, Shu S. Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata. Metabolites 2025; 15:189. [PMID: 40137154 PMCID: PMC11943613 DOI: 10.3390/metabo15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Pinellia ternata (Thunb.) Breit is a widely used medicinal herb in Traditional Chinese Medicine (TCM). Still, its sustainable cultivation is threatened by continuous cropping obstacles, which disrupt soil ecosystems, reduce yield, and degrade quality. Objectives: This study explores the potential of microbial inoculants to mitigate these challenges through integrated metabolomic and transcriptomic analyses. Methods: Soil samples from fields with and without continuous cropping issues were used to compare the effects of microbial inoculants on the secondary metabolism and gene expression of P. ternata. Results and Discussion: Metabolomic profiling identified 20,969 metabolites, with significant changes in lipid-like molecules (22.2%), organic acids (9.1%), and phenylpropanoids (7.0%) under microbial treatment. Notable increases in phenylalanine and caffeic acid levels were observed in microbial-inoculated plants. Correspondingly, transcriptomic analysis revealed the upregulation of phenylalanine ammonia-lyase (PAL) and other stress-related genes, confirming the metabolic shifts. Clustering and machine learning analyses highlighted the critical roles of metabolites and genes in enhancing plant resilience. Microbial inoculants improved secondary metabolite production. Implications: These findings provide valuable insights into the mechanisms of microbial-plant interactions and establish a sustainable approach for cultivating P. ternata, addressing the challenges of continuous cropping while improving crop productivity and quality.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Mohammad Murtaza Alami
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shuqi Gong
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Qinglin Cheng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Chaoqun Chen
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Xinghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shumei Zhong
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430070, China
| | - Zhigang He
- Hubei South Crown Chinese Herbs Science & Technology Co., Ltd., Qianjiang 433131, China
| | - Dilin Chen
- Planting Industry Management Office, Department of Agriculture and Rural Affairs in Hubei Province, Wuhan 430070, China
| | - Shengqiu Feng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| | - Shenghu Chen
- Fruit and Tea Industry Management Office, Department of Agriculture and Rural Affairs in Hubei Province, Wuhan 430070, China
| | - Shaohua Shu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.W.)
| |
Collapse
|
6
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
7
|
Hu D, Hu L, Xiao O, Chen J, Dai X, Sun Y, Kong Z. Bibliometric analysis of research trends and advancements in medicinal plant microbiome. FRONTIERS IN PLANT SCIENCE 2024; 15:1495198. [PMID: 39634064 PMCID: PMC11614653 DOI: 10.3389/fpls.2024.1495198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Medicinal plants and microorganisms are closely linked, with microorganisms boosting plant growth, offering pest control, and enhancing secondary compound production. However, there's a lack of systematic research, detailed molecular studies, and standardized methods for effectively using microorganisms in developing products from medicinal plants. To enhance understanding of the present research progress, emerging patterns, and key areas pertaining to microorganisms found in medicinal plants, CiteSpace bibliometric software was employed to visualize and analyze 1269 English publications sourced from the Science Net Core Collection database. Through the utilization of keyword co-occurrence analysis and cluster analysis methods, this study seeks to explore collaborative networks among countries, institutions, and scholars involved in the study of microorganisms in medicinal plants. This review highlights key research areas in microbiology, focusing on evaluating natural compounds for antibacterial properties and the impact of secondary metabolites on microbial communities, aiming to highlight significant research domains and primary focuses for researchers and professionals engaged in the field of microbiology concerning medicinal plants.
Collapse
Affiliation(s)
- Danling Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lizhe Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ouli Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongwei Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Gao L, Okoye CO, Wang C, Lou F, Jiang J. Enhanced Remediation of Phenanthrene and Naphthalene by Corn-Bacterial Consortium in Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2839. [PMID: 39458786 PMCID: PMC11511142 DOI: 10.3390/plants13202839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The persistent and hazardous nature of polycyclic aromatic hydrocarbons (PAHs) released into the soil has become a critical global concern, contributing to environmental pollution. In this study, the removal efficiency of phenanthrene and naphthalene degradation by complex flora or pure bacteria combined with corn and their effects on the growth of corn, pH, and the number of soil bacteria were investigated using a pot experiment. The results indicate that the corn remediation method (P) outperformed degrading bacteria remediation (B) for phenanthrene, yet the combination (PB) exhibited significantly higher removal efficiency. The degradation efficiency of PB methods increased over time, ranging from 58.40% to 75.13% after 30 days. Naphthalene removal showed a similar trend. Soil pH, influenced by remediation methods, experienced slight but non-significant increases. The number of degrading bacteria increased with combined methods, notably with PB-W1 and PB-W2 treatments. Corn accumulated phenanthrene and naphthalene, with higher concentrations in roots. Remediation by the combined corn and degrading bacteria slightly increased PAH accumulation, indicating potential root protection. Biomass yield analysis revealed the inhibitory effects of PAHs on corn growth, decreased by degrading bacteria. PB-W1 and PB-EF3 demonstrated the highest fresh weight and moisture content for stem and leaf biomass, while PB-F2-6 excelled in root biomass. Overall, combined remediation methods proved more effective, which underscores the potential of the corn and degrading bacteria consortium for efficient PAH remediation in contaminated soil.
Collapse
Affiliation(s)
- Lu Gao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Congsheng Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Feiyue Lou
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| | - Jianxiong Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (L.G.); (C.O.O.); (C.W.); (F.L.)
| |
Collapse
|
9
|
Gao D, Gao X, Wang Y, Huo H, Wu Y, Yang Z, Zhang H, Yang X, Li F, Li X. Effects of long-term continuous cultivation on the structure and function of soil bacterial and fungal communities of Fritillaria Cirrhosa on the Qinghai-Tibetan Plateau. Sci Rep 2024; 14:21291. [PMID: 39266574 PMCID: PMC11393089 DOI: 10.1038/s41598-024-70625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The Key Laboratory for Health Industry of Bijie, Bijie Medical College, Bijie, 551700, China.
| | - Xusheng Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Wang
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330000, China
| | - Huimin Huo
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyu Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Fengfu Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Yang Q, Yu H, Yang C, Zhao Z, Ju Z, Wang J, Bai Z. Enhanced phytoremediation of cadmium-contaminated soil using chelating agents and plant growth regulators: effect and mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240672. [PMID: 39323552 PMCID: PMC11421895 DOI: 10.1098/rsos.240672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The heavy metal cadmium (Cd) is a major threat to food safety and human health. Phytoremediation is the most widely used remediation technology, and how to improve the remediation efficiency of phytoremediation has become a key issue. In this study, we constructed an intensive phytoremediation technology for remediation of Cd-contaminated soil with biodegradable chelating agent and plant growth regulator combined with maize and investigated the mechanism of this technology. The results showed that the best remediation effect was achieved in the treatment with 10-6 mol l-1 gibberellic acid (GA3) and 6 mmol kg-1 aspartate diethoxysuccinic acid (AES) combined with maize. In this treatment, the total biomass and extraction efficiency of maize were 3.6 and 8.67 times higher than those of the control, respectively, and the antioxidant enzyme activities of maize were also increased. The soil was enriched with dominant bacterial genera that promote plant growth and metabolism and tolerance to heavy metal stress, which in turn promoted maize growth and Cd accumulation. Structural equation modelling results indicated a large effect of plant Cd concentration and plant antioxidant enzyme activity on plant Cd extraction. The enhanced phytoremediation technology showed good potential for safe use of Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiao Yang
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Hao Yu
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu030801, People’s Republic of China
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhengshan Ju
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| |
Collapse
|
11
|
Bao Y, Ma B, McLaughlin NB, Niu Y, Wang D, Liu H, Li M, Sun Z. The impact of salinization on soil bacterial diversity, yield and quality of Glycyrrhiza uralensis Fisch. Front Microbiol 2024; 15:1448301. [PMID: 39296296 PMCID: PMC11409002 DOI: 10.3389/fmicb.2024.1448301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
Soil salinization seriously affects soil microbial diversity, and crop yield and quality worldwide. Microorganisms play a vital role in the process of crop yield and quality. Traditional Chinese medicine Glycyrrhiza uralensis Fisch. (licorice) can grow tenaciously in the heavily salinized land. However, the relationship between licorice plants and soil microorganisms is not clear. A field experiment was carried out to explore the effects of three different degrees of salinized soils on (i) licorice crop performance indicators, (ii) soil physical and chemical properties, and (iii) the changes in soil bacterial community structure and functional diversity in a semi-arid area of northwest China. The results showed that with the aggravation of soil salinization, the licorice yield, soil nutrients, and the bacterial abundance of Gemmatimonadetes and Myxococcota showed a downward trend, while the concentration of glycyrrhizic acid and liquiritin, and the bacterial abundance of Actinobacteria and Firmicutes showed an upward trend. The change of licorice yield mainly depended on the soil physical and chemical properties (e.g., EC and alkaline hydrolysable nitrogen). The change of licorice quality was more closely related to the change of bacterial diversity. The effect of bacterial diversity on liquiritin was greater than that on glycyrrhizic acid. Among them, Gemmatimonadetes were significantly negatively correlated with liquiritin and glycyrrhizic acid. These findings suggest that the increased soil Actinobacteria and Firmicutes or reduced Gemmatimonadetes and Myxococcota may provide a healthy and suitable living condition for the sustainable development of medicinal plant crops in a salinized soil ecosystem.
Collapse
Affiliation(s)
- Yangmei Bao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Ma
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Neil B McLaughlin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Ying Niu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Dongqing Wang
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Hua Liu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Ming Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
13
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Ma G, Han J. Effect of CeO 2, TiO 2 and SiO 2 nanoparticles on the growth and quality of model medicinal plant Salvia miltiorrhiza by acting on soil microenvironment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116552. [PMID: 38850694 DOI: 10.1016/j.ecoenv.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
14
|
Sun Z, Wang C, Wang J, Wu G, Yuan M, Zou H, Sun Y. Impact of biological manure substitution on grain yield, nitrogen recovery efficiency, and soil biochemical properties. PeerJ 2024; 12:e17475. [PMID: 38827300 PMCID: PMC11141546 DOI: 10.7717/peerj.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.
Collapse
Affiliation(s)
- Zhili Sun
- College Resource & Environment, Anhui Science & Technology University, Chuzhou, Anhui, China
| | - Chengshun Wang
- College Resource & Environment, Anhui Science & Technology University, Chuzhou, Anhui, China
| | - Jiabao Wang
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Key Laboratory of Nutrient Cycling and Arable Land Conservation of An Hui Province, Hefei, Anhui, China
| | - Gang Wu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Key Laboratory of Nutrient Cycling and Arable Land Conservation of An Hui Province, Hefei, Anhui, China
| | - Manman Yuan
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Key Laboratory of Nutrient Cycling and Arable Land Conservation of An Hui Province, Hefei, Anhui, China
| | - Haiming Zou
- College Resource & Environment, Anhui Science & Technology University, Chuzhou, Anhui, China
| | - Yixiang Sun
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Key Laboratory of Nutrient Cycling and Arable Land Conservation of An Hui Province, Hefei, Anhui, China
| |
Collapse
|
15
|
Angon PB, Islam MS, KC S, Das A, Anjum N, Poudel A, Suchi SA. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024; 10:e28357. [PMID: 38590838 PMCID: PMC10999863 DOI: 10.1016/j.heliyon.2024.e28357] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shafiul Islam
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shreejana KC
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Arpan Das
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nafisa Anjum
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Amrit Poudel
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Shaharia Akter Suchi
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
16
|
Wang H, Chen Y, Guo F, Dong P, Liang W, Cheng J. Improvement in the quality and productivity of Codonopsis pilosula seedlings by dazomet soil fumigation. Sci Rep 2024; 14:5407. [PMID: 38443552 PMCID: PMC10915150 DOI: 10.1038/s41598-024-56093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Dazomet is a dry powder formulation that releases toxic gas containing methyl isothiocyanate, which controls soil-borne pests and weeds, improving crop yields when applied to moist soils. To explore the efficacy of dazomet fumigation in the cultivation of the perennial herb Codonopsis pilosula, four typical cultivars (G1, G2, W1 and TCK) in Gansu Province were selected for seedling cultivation after soil fumigation (F) by dazomet, and non-fumigated soil was used as a control (CK). The experiments took 2 years to complete. The functional diversity of the soil enzymes and microorganisms, seedling emergence and physiological characteristics, and the quality and yield of Codonopsis seedlings and Radix were assessed. The results showed that the seed emergence rate, seedling re-green rate and several antioxidant enzymatic activities improved in the treatments involving soil fumigation with dazomet, and membrane lipid peroxidation in the seedlings decreased. On average, compared with those of the respective controls, the root viability and yield of the seedlings of the tested cultivars also increased by 34.87% and 42.4%, respectively, and the incidence of root rot in the seedlings was reduced by 83.9%, compared with their respective controls. After harvest, the yield increased by 23.9%, the incidence of root rot decreased by 61.3%, increase in yield and a 61.3% reduction in incidence, and the medicinal materials were determined to be safe and residue-free. The effects of fumigation were cultivar-specific and were especially prominent in G2. Therefore, soil fumigation with dazomet could improve the quality and productivity of Codonopsis pilosula seedlings. Taken together, these findings suggest that when herbs are bred by seedling transplantation, especially cultivars of good quality but poor resistance or species with rare germplasm resources, soil fumigation provides a way to improve cultivation effectiveness and, more importantly, ensures the probability of successfully breeding the species.
Collapse
Affiliation(s)
- Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
17
|
Barcenilla BB, Kundel I, Hall E, Hilty N, Ulianich P, Cook J, Turley J, Yerram M, Min JH, Castillo-González C, Shippen DE. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant. FRONTIERS IN PLANT SCIENCE 2024; 15:1351613. [PMID: 38434436 PMCID: PMC10908177 DOI: 10.3389/fpls.2024.1351613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
19
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
20
|
Ma J, Xie Y, Sun J, Zou P, Ma S, Yuan Y, Ahmad S, Yang X, Jing C, Li Y. Co-application of chitooligosaccharides and arbuscular mycorrhiza fungi reduced greenhouse gas fluxes in saline soil by improving the rhizosphere microecology of soybean. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118836. [PMID: 37634403 DOI: 10.1016/j.jenvman.2023.118836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Soil salinization can affect the ecological environment of soil and alter greenhouse gas (GHG) emissions. Chitooligosaccharides and Arbuscular mycorrhizal fungi (AMF) reduced the GHG fluxes of salinized soil, and this reduction was attributed to an alteration in the rhizosphere microecology, including changes in the activities of β-glucosidase, acid phosphatase, N-acetyl-β-D-glucosidase, and Leucine aminopeptidase. Additionally, certain bacteria species such as paracoccus, ensifer, microvirga, and paracyclodium were highly correlated with GHG emissions. Another interesting finding is that foliar spraying of chitooligosaccharides could transport to the soybean root system, and improve soybean tolerance to salt stress. This is achieved by enhancing the activities of antioxidant enzymes, and the changes in amino acid metabolism, lipid metabolism, and membrane transport. Importantly, the Co-application of chitooligosaccharides and Arbuscular mycorrhiza fungi was found to have a greater effect compared to their application alone.
Collapse
Affiliation(s)
- Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yi Xie
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Jiali Sun
- Baoshan Branch, Yunnan Tobacco Company, Baoshan, 678000, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
21
|
Ren H, Zhang F, Zhu X, Lamlom SF, Zhao K, Zhang B, Wang J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Front Microbiol 2023; 14:1233351. [PMID: 37799597 PMCID: PMC10548211 DOI: 10.3389/fmicb.2023.1233351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Rhizosphere microorganisms can effectively promote the stress resistance of plants, and some beneficial rhizosphere microorganisms can significantly promote the growth of crops under salt stress, which has the potential to develop special microbial fertilizers for increasing the yield of saline-alkali land and provides a low-cost and environmentally friendly new strategy for improving the crop yield of saline-alkali cultivated land by using agricultural microbial technology. Methods In May 2022, a field study in a completely randomized block design was conducted at the Heilongjiang Academy of Agricultural Sciences to explore the correlation between plant rhizosphere microorganisms and soybean growth in saline-alkali soil. Two soybean cultivars (Hening 531, a salt-tolerant variety, and 20_1846, a salt-sensitive variety) were planted at two experimental sites [Daqing (normal condition) and Harbin (saline-alkali conditions)], aiming to investigate the performance of soybean in saline-alkali environments. Results Soybeans grown in saline-alkali soil showed substantial reductions in key traits: plant height (25%), pod number (26.6%), seed yield (33%), and 100 seed weight (13%). This underscores the unsuitability of this soil type for soybean cultivation. Additionally, microbial analysis revealed 43 depleted and 56 enriched operational taxonomic units (OTUs) in the saline-alkali soil compared to normal soil. Furthermore, an analysis of ion-associated microbes identified 85 mOTUs with significant correlations with various ions. A co-occurrence network analysis revealed strong relationships between specific mOTUs and ions, such as Proteobacteria with multiple ions. In addition, the study investigated the differences in rhizosphere species between salt-tolerant and salt-sensitive soybean varieties under saline-alkali soil conditions. Redundancy analysis (RDA) indicated that mOTUs in saline-alkali soil were associated with pH and ions, while mOTUs in normal soil were correlated with Ca2+ and K+. Comparative analyses identified significant differences in mOTUs between salt-tolerant and salt-sensitive varieties under both saline-alkali and normal soil conditions. Planctomycetes, Proteobacteria, and Actinobacteria were dominant in the bacterial community of saline-alkali soil, with significant enrichment compared to normal soil. The study explored the functioning of the soybean rhizosphere key microbiome by comparing metagenomic data to four databases related to the carbon, nitrogen, phosphorus, and sulfur cycles. A total of 141 KOs (KEGG orthologues) were identified, with 66 KOs related to the carbon cycle, 16 KOs related to the nitrogen cycle, 48 KOs associated with the phosphorus cycle, and 11 KOs linked to the sulfur cycle. Significant correlations were found between specific mOTUs, functional genes, and phenotypic traits, including per mu yield (PMY), grain weight, and effective pod number per plant. Conclusion Overall, this study provides comprehensive insights into the structure, function, and salt-related species of soil microorganisms in saline-alkali soil and their associations with salt tolerance and soybean phenotype. The identification of key microbial species and functional categories offers valuable information for understanding the mechanisms underlying plant-microbe interactions in challenging soil conditions.
Collapse
Affiliation(s)
- Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Fengyi Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Xiao Zhu
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Kezhen Zhao
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Bixian Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Jiajun Wang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| |
Collapse
|
22
|
Aleynova OA, Nityagovsky NN, Ananev AA, Suprun AR, Ogneva ZV, Dneprovskaya AA, Beresh AA, Tyunin AP, Dubrovina AS, Kiselev KV. The Endophytic Microbiome of Wild Grapevines Vitis amurensis Rupr. and Vitis coignetiae Pulliat Growing in the Russian Far East. PLANTS (BASEL, SWITZERLAND) 2023; 12:2952. [PMID: 37631163 PMCID: PMC10460016 DOI: 10.3390/plants12162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Many grape endophytic microorganisms exhibit high potential for suppressing the development of grape diseases and stimulating grapevine growth and fitness, as well as beneficial properties of the crop. The microbiome of wild grapevines is a promising source of biocontrol agents, which can be beneficial for domesticated grapevines. Using next-generation sequencing (NGS) and classical microbiology techniques, we performed an analysis of bacterial and fungal endophytic communities of wild grapevines Vitis amurensis Rupr. and Vitis coignetiae Pulliat growing in the Russian Far East. According to the NGS analysis, 24 and 18 bacterial taxa from the class level were present in V. amurensis and V. coignetiae grapevines, respectively. Gammaproteobacteria (35%) was the predominant class of endophytic bacteria in V. amurensis and Alphaproteobacteria (46%) in V. coignetiae. Three taxa, namely Sphingomonas, Methylobacterium, and Hymenobacter, were the most common bacterial genera for V. amurensis and V. coignetiae. Metagenomic analysis showed the presence of 23 and 22 fungi and fungus-like taxa of class level in V. amurensis and V. coignetiae, respectively. The predominant fungal classes were Dothideomycetes (61-65%) and Tremellomycetes (10-11%), while Cladosporium and Aureobasidium were the most common fungal genera in V. amurensis and V. coignetiae, respectively. A comparative analysis of the endophytic communities of V. amurensis and V. coignetiae with the previously reported endophytic communities of V. vinifera revealed that the bacterial biodiversity of V. amurensis and V. coignetiae was similar in alpha diversity to V. vinifera's bacterial biodiversity. The fungal alpha diversity of V. amurensis and V. coignetiae was statistically different from that of V. vinifera. The beta diversity analysis of bacterial and fungal endophytes showed that samples of V. vinifera formed separate clusters, while V. amurensis samples formed a separate cluster including V. coignetiae samples. The data revealed that the endophytic community of bacteria and fungi from wild V. amurensis was richer than that from V. coignetiae grapes and cultivated V. vinifera grapes. Therefore, the data obtained in this work could be of high value in the search for potentially useful microorganisms for viticulture.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alina A. Dneprovskaya
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- The School of Natural Sciences, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Alina A. Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- The School of Natural Sciences, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Alexey P. Tyunin
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East 27Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
23
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
24
|
Hou H, Liu H, Xiong J, Wang C, Zhang S, Ding Z. Comparison of Soil Bacterial Communities under Canopies of Pinus tabulaeformis and Populus euramericana in a Reclaimed Waste Dump. PLANTS (BASEL, SWITZERLAND) 2023; 12:974. [PMID: 36840322 PMCID: PMC9964797 DOI: 10.3390/plants12040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
To compare the effects of different remediation tree species on soil bacterial communities and provide a theoretical basis for the selection of ecosystem function promotion strategies after vegetation restoration, the characteristic changes in soil bacterial communities after Pinus tabulaeformis and Populus euramericana reclamation were explored using high-throughput sequencing and molecular ecological network methods. The results showed that: (1) With the increase in reclamation years, the reclaimed soil properties were close to the control group, and the soil properties of Pinus tabulaeformis were closer to the control group than those of P. euramericana. (2) The dominant bacteria under the canopies of P. tabulaeformis and P. euramericana was the same. Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Planctomycetes, Bacteroidetes, and Cyanobacteria were the dominant bacteria in the restored soil, accounting for more than 95% of the total abundance. The average values of the Shannon diversity index, Simpson diversity index, Chao 1 richness estimator, and abundance-based coverage estimator of the bacterial community in the P. euramericana reclaimed soil were higher than those in the P. tabulaeformis reclaimed soil. The influence of reclamation years on the bacterial community of samples is greater than that of species types. (3) The results of ecological network construction showed that the total number of nodes, total number of connections, and average connectivity of the soil bacterial network under P. euramericana reclamation were greater than those under P. tabulaeformis reclamation. The bacterial molecular ecological network under P. euramericana was more abundant. (4) Among the dominant bacteria, the relative abundance of Actinobacteria was negatively correlated with soil pH, soil total nitrogen content, and the activities of urease, invertase, and alkaline phosphatase, while the relative abundance of Proteobacteria and Bacteroidetes was positively correlated with these environmental factors. The relationship between the soil bacterial community of P. tabulaeformis and P. euramericana and the environmental factors is not completely the same, and even the interaction between some environmental factors and bacteria is opposite.
Collapse
Affiliation(s)
- Huping Hou
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Haiya Liu
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Jinting Xiong
- School of Environment Science & Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chen Wang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhongyi Ding
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|