1
|
Silva EGD, Ponce FDS, Souza SGHD. Technological advances and the use of IoT in monitoring Diaphorina citri in citrus cultivation. BRAZ J BIOL 2025; 85:e290263. [PMID: 40298757 DOI: 10.1590/1519-6984.290263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/01/2025] [Indexed: 04/30/2025] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is a pest of great relevance to the citrus industry, acting as a vector for the bacterium Candidatus Liberibacter asiaticus (CLas), responsible for the disease known as Huanglongbing (HLB) or citrus greening. The distribution of D. citri covers tropical and subtropical regions, representing a significant threat to global citrus production and causing economic losses. Transmission of CLas occurs when the psyllid feeds on the phloem of citrus plants, spreading the disease severely. Therefore, the management of D. citri is essential for the health of citrus groves, and understanding its habitat and dispersal patterns is crucial for adequate control. Internet of Things (IoT) technology is a promising tool in agriculture, enabling real-time monitoring and control systems that increase the efficiency and sustainability of agricultural practices. The integration of IoT facilitates the early detection of D. citri and the continuous monitoring of their populations, improving the response to pest outbreaks and optimizing the use of insecticides. Systems based on AIoT (Artificial Intelligence of Things) and computer vision have demonstrated high accuracy in identifying and occurring pests, allowing for fast and efficient management. These technological advances, combined with biological strategies and traditional methods such as insecticides and physical traps, create a multifaceted approach to D. citri management. Integrating data from satellite images, field sensors, and machine learning algorithms makes developing more comprehensive and predictive monitoring of agricultural conditions possible. This helps mitigate the impacts of HLB and promotes more innovative, resilient farming practices. Smart agriculture, supported by IoT and technologies, offers a promising path to meet the challenges of modern agricultural production, combining real-time monitoring, innovative biological strategies, and predictive analytics to create a more sustainable and efficient agricultural system, essential to meet future challenges.
Collapse
Affiliation(s)
- Eduardo Goiano da Silva
- Universidade Paranaense, Programa de Pós-graduação em Biotecnologia Aplicada à Agricultura, Umuarama, PR, Brasil
- Instituto Federal de Ciência e Tecnologia do Paraná, Departamento de Informática, Umuarama, PR, Brasil
| | - Franciely da Silva Ponce
- Universidade Paranaense, Programa de Pós-graduação em Biotecnologia Aplicada à Agricultura, Umuarama, PR, Brasil
| | | |
Collapse
|
2
|
Culver JN, Vallar M, Burchard E, Kamens S, Lair S, Qi Y, Collum TD, Dardick C, El-Mohtar CA, Rogers EE. Citrus phloem specific transcriptional profiling through the development of a citrus tristeza virus expressed translating ribosome affinity purification system. PLANT METHODS 2025; 21:49. [PMID: 40211356 PMCID: PMC11983876 DOI: 10.1186/s13007-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The analysis of translationally active mRNAs, or translatome, is a useful approach for monitoring cellular and plant physiological responses. One such method is the translating ribosome affinity purification (TRAP) system, which utilizes tagged ribosomal proteins to isolate ribosome-associated transcripts. This approach enables spatial and temporal gene expression analysis by driving the expression of tagged ribosomal proteins with tissue- or development-specific promoters. In plants, TRAP has enhanced our understanding of physiological responses to various biotic and abiotic factors. However, its utility is hampered by the necessity to generate transgenic plants expressing the tagged ribosomal protein, making this approach particularly challenging in perennial crops such as citrus. RESULTS This study involved the construction of a citrus tristeza virus (CTV) vector to express an immuno-tagged ribosome protein (CTV-hfRPL18). CTV, limited to the phloem, has been used for expressing marker and therapeutic sequences, making it suitable for analyzing citrus vascular tissue responses, including those related to huanglongbing disease. CTV-hfRPL18 successfully expressed a clementine-derived hfRPL18 peptide, and polysome purifications demonstrated enrichment for the hfRPL18 peptide. Subsequent translatome isolations from infected Nicotiana benthamiana and Citrus macrophylla showed enrichment for phloem-associated genes. CONCLUSION The CTV-hfRPL18 vector offers a transgene-free and rapid system for TRAP expression and translatome analysis of phloem tissues within citrus.
Collapse
Affiliation(s)
- James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Meinhart Vallar
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Erik Burchard
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Sophie Kamens
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Sebastien Lair
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Tamara D Collum
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Christopher Dardick
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Choaa A El-Mohtar
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Elizabeth E Rogers
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| |
Collapse
|
3
|
Cervantes-Santos JA, Villar-Luna H, Bojórquez-Orozco AM, Díaz-Navarro JE, Arce-Leal ÁP, Santos-Cervantes ME, Claros MG, Méndez-Lozano J, Rodríguez-Negrete EA, Leyva-López NE. Huanglongbing as a Persistent Threat to Citriculture in Latin America. BIOLOGY 2025; 14:335. [PMID: 40282200 PMCID: PMC12025139 DOI: 10.3390/biology14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025]
Abstract
Citrus commercial species are the most important fruit crops in the world; however, their cultivation is seriously threatened by the fast dispersion of emerging diseases, including Huanglongbing (HLB) citrus greening. HLB disease is vectored by psyllid vectors and associated with phloem-limited α-proteobacteria belonging to the Candidatus Liberibacter genus. Climatic change and trade globalization have led to the rapid spread of HLB from its origin center in Southeast Asia, causing a great economic impact in the main production areas, including East Asia (China), the Mediterranean basin, North America (the United States), and Latin America (Brazil and Mexico). Despite important advances to understand the HLB epidemiology, Candidatus Liberibacter genetics, psyllid vector control, the molecular citrus-Candidatus Liberibacter interaction, and the development of integral disease management strategies, the study areas have been mostly restricted to high-tech-producing countries. Thus, in this review, we provide an overview of the epidemiology, distribution, genetic diversity, management aspects, and omics analysis of HLB in Latin America, where this information to date is limited.
Collapse
Affiliation(s)
- Jael Arely Cervantes-Santos
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Hernán Villar-Luna
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ana Marlenne Bojórquez-Orozco
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - José Ernesto Díaz-Navarro
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ángela Paulina Arce-Leal
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - María Elena Santos-Cervantes
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBAMA-RARE, 29010 Malaga, Spain
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Edgar Antonio Rodríguez-Negrete
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Norma Elena Leyva-López
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| |
Collapse
|
4
|
Wang G, Guo JS, Huang HJ, Zhu ZR, Zhang CX. Three-dimensional interaction between Cinnamomum camphora and a sap-sucking psyllid insect (Trioza camphorae) revealed by nano-resolution volume electron microscopy. Commun Biol 2025; 8:441. [PMID: 40097659 PMCID: PMC11914603 DOI: 10.1038/s42003-025-07865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Phloem-feeding insects present significant economic threats worldwide and remain challenging to understand due to their specialized feeding strategies. Significant advances in genetics, genomics, and biochemistry have greatly enriched our comprehension of phloem-insect interactions. However, existing studies relying on two-dimensional discrete images have limited our understanding of visible morphological details. In this study, we leverage volume electron microscopy (vEM) technology to unveil a nanometer-resolution interaction mode between plant and the phloem-feeding insect, Camphor psyllid (Trioza camphorae, Hemiptera: Psyllidae). The stylets penetrate each cell on the way to the feeding site (sieve tube), and new cell walls will form around the salivary sheath, ultimately fusing with the original cell walls to form remarkably thickening cell walls. Our reconstruction findings on pit gall tissues suggest that a significant decrease in cell volume and a drastic increase in cell layers are the primary processes during pit gall formation. These unique findings will set the stage for a robust discussion on the plant cellular response induced by phloem-feeding insects.
Collapse
Affiliation(s)
- Guan Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Jian-Sheng Guo
- Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Jian Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Zeng-Rong Zhu
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China.
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Shahbaz M, Seelan JSS, Abasi F, Fatima N, Mehak A, Raza MU, Raja NI, Proćków J. Nanotechnology for controlling mango malformation: a promising approach. J Biomol Struct Dyn 2025; 43:2610-2630. [PMID: 38344816 DOI: 10.1080/07391102.2024.2312449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/30/2023] [Indexed: 04/05/2024]
Abstract
Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Fozia Abasi
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asma Mehak
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Umair Raza
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Martins EC, Teixeira DC, Coletti DAB, Wulff NA. Multiplex Quantitative PCR for the Detection of Bacteria Associated with Huanglongbing ' Candidatus Liberibacter asiaticus,' ' Ca. L. americanus,' and 16Sr IX Group Phytoplasma. PLANT DISEASE 2025; 109:623-632. [PMID: 39352504 DOI: 10.1094/pdis-05-24-0970-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The occurrence of 'Candidatus Liberibacter' spp. and 'Ca. Phytoplasma' spp. associated with blotchy mottle symptoms poses challenges to huanglongbing (HLB) diagnosis using molecular techniques. The ability to detect multiple targets simultaneously and specifically is a key aspect met by quantitative PCR (qPCR). A set of primers and hydrolysis probes useful in either single or multiplex reactions for the detection and quantification of HLB-associated bacteria were developed. Sequences from conserved genes of the ribosomal proteins for Liberibacter and phytoplasma circumvent the lack of specificity and cross-reactivity problems related to 16Sr DNA gene amplification, allowing precise and specific detection of HLB-associated bacteria in citrus and in the Liberibacter vector, Diaphorina citri. The triplex reaction exhibited high quality and precision as a robust tool for quantifying 'Ca. L. asiaticus' (CLas), 'Ca. L. americanus' (CLam), and 16Sr IX phytoplasma. Triplex qPCR showed consistent results and comparable sensitivity to the ribonuclease reductase test, although quantification cycle (Cq) values were higher when compared with 16SrDNA qPCR. Detection tests using field samples indicate that the qPCR triplex can identify HLB-associated bacteria in samples with varying levels of symptoms, ranging from typical to asymptomatic. Assessment of field samples from growers indicated more than 78.6% had Cq lower than 35.0, below the cutoff established for qPCR reactions used in this work. qPCR triplex is a safe, specific, and sufficiently sensitive technique for detecting CLas, CLam, and 16Sr IX phytoplasma simultaneously, in both citrus and D. citri samples. Its application is of importance in assisting growers in making decisions for HLB management.
Collapse
Affiliation(s)
- Elaine C Martins
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Araraquara, Brasil
| | - Diva C Teixeira
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
| | - Daniela A B Coletti
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
| | - Nelson A Wulff
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brasil
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Araraquara, Brasil
| |
Collapse
|
7
|
Guo X, Su J, Xue H, Sun Y, Lian M, Ma J, Lei T, He Y, Li Q, Chen S, Yao L. Genome-wide identification and expression analyses of ABSCISIC ACID-INSENSITIVE 5 (ABI5) genes in Citrus sinensis reveal CsABI5-5 confers dual resistance to Huanglongbing and citrus canker. Int J Biol Macromol 2025:141611. [PMID: 40024407 DOI: 10.1016/j.ijbiomac.2025.141611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Huanglongbing (HLB) and citrus canker are two major destructive bacterial diseases in the citrus industry caused by Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subsp. Citri (Xcc), respectively. ABI5 transcription factors are crucial for plant growth and development as well as for responses to various abiotic and biotic stresses, including viruses and fungi. This study aimed to identify and characterize ABI5 genes in the Citrus sinensis genome and investigate their functions in response to CLas and Xcc infections. We identified five putative CsABI5 genes on three citrus chromosomes, named CsABI5-1 to CsABI5-5, which share high identity with Arabidopsis ABI5 subfamily proteins and function in the nucleus. The expression of CsABI5s was differentially altered in citrus leaves under HLB and citrus canker stress, as well as in response to exogenous phytohormones. Notably, CsABI5-5 was upregulated by abscisic acid (ABA), salicylic acid (SA), and ethylene, whereas it was downregulated by methyl jasmonate, CLas, and Xcc. Overexpression of CsABI5-5 inhibited the propagation of CLas in citrus hairy roots and reduced leaf susceptibility to Xcc. This resistance was associated with increased levels of SA, jasmonaic acid, callose, and reactive oxygen species, along with decreased ABA, compared to non-transgenic samples. This study highlights the critical role of CsABI5-5 in regulating plant resistance to biotic stresses and demonstrates its potential utility as a powerful gene for biotechnology-assisted plant breeding aimed at improving citrus resistance to bacterial diseases.
Collapse
Affiliation(s)
- Xingru Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juan Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Hao Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengyao Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Tiangang Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Lixiao Yao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
8
|
Rao P, Huang S, Armstrong CM, Capobianco J, Duan Y, Shih WH, Shih WY. Rapid and accurate detection of huanglongbing in citrus by elasticity testing using a piezoelectric finger. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39973349 DOI: 10.1039/d4ay01952k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Rapid and sensitive detection of citrus huanglongbing (HLB) is critical for the control of this devastating disease. In this study, we have evaluated using a piezoelectric finger (PEF) with a 0.4 mm probe to measure the elastic modulus of a leaf to detect HLB in four different species of citrus including grapefruit (GFT), pumelo (PUM), lemon (LEM), and Valencia orange (VAL). Diseased citrus leaves were harvested from trees testing positive for the presence of Candidatus Liberibacter asiaticus (Las), the causal agent of HLB, and included both symptomatic leaves, which were blotchy mottle or yellowing and asymptomatic leaves, which did not display outward symptoms. Healthy leaves were harvested from trees testing negative for Las. The results indicated that the PEF elastic modulus test exhibited an overall 94% sensitivity and 90% specificity against the Las status of the trees for all four citrus types combined. Comparative quantitative real-time polymerase chain reaction (qPCR) tests on the same leaves showed an overall 89% sensitivity and 100% specificity against the Las status of the trees. While a Cohen-Kappa coefficient of 0.81 was obtained between the PEF and qPCR predictions, suggesting a "strong" agreement between the PEF and qPCR tests, a more detailed examination indicated that PEF was more sensitive overall in detecting the Las positive trees than qPCR, particularly from asymptomatic leaves for which PEF was 96% sensitive versus 78% sensitive by qPCR, indicating the potential of using PEF for early detection of HLB.
Collapse
Affiliation(s)
- Pawan Rao
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Shu Huang
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Cheryl M Armstrong
- Eastern Regional Research Center, USDA, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Joseph Capobianco
- Eastern Regional Research Center, USDA, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - YongPing Duan
- U. S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Wei-Heng Shih
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Wan Y Shih
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Hawley AJ, Bhandari S, Radulovic PW, Borisova N, Henry G, Holets T, Sabbagh C, Scearbo M, Suarez G, Merkler DJ. The identification of insect specific iAANAT inhibitors. Arch Biochem Biophys 2025; 764:110282. [PMID: 39734060 DOI: 10.1016/j.abb.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
An important aspect of food security is the development of innovative insecticides, particularly ones that specifically target insect pests and exhibit minimal toxicity to mammals. The insect arylalkylamine N-acyltransferases (iAANATs) could serve as targets for novel insecticides that satisfy these criteria. There exists a wealth of structural and biochemical information for the iAANATs and iAANAT knockdown experiments show that these enzymes are critical to insect health. Herein, we have expressed, purified, and characterized two new iAANATs, one from Apis mellifera (honey bee, AmNAT1) and another from Diaphorina citri (Asian citrus psyllid, DcNAT). We discovered that diminazene, a compound used to treat livestock for trypanosomiasis and babesiosis, inhibits AmNAT1, DcNAT, and D. melanogaster DmAgmNAT with modest affinity, Ki values ranging from 0.8 μM to 200 μM. We found a series of guanidines, amidines, and a hydroxamate, structurally related to diminazene, also inhibit the iAANATs, including camostat, gabexate, nafamostate, and panobinostat. Significantly, we found DmAgmNAT is far more susceptible to inhibition by four of these five of these compounds. In particular, camostat, nafamostat, and gabexate inhibit DmAgmNAT with Ki values of 0.2-30 μM, but no inhibition of AmNAT1 and DcNAT was observed at 500 μM for any of the three. These results show that a species-specific inhibitor targeted against an iAANAT is a real possibility. Also, we report that adipoyl-CoA is a substrate for AmNAT1 and DcNAT and that succinoyl-CoA is a substrate for DcNAT. These results contribute to a growing body of data suggesting that N-dicarboxyacyl-amines are metabolites in insects and other organisms.
Collapse
Affiliation(s)
- Aidan J Hawley
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Peter W Radulovic
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Natalia Borisova
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabrielle Henry
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Tyler Holets
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Christian Sabbagh
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Matthew Scearbo
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabriela Suarez
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
10
|
Dai W, Pan M, Peng L, Zhang D, Ma Y, Wang M, Wang N. Integrated Transcriptome and Metabolome Analysis Reveals Insights into Flavone and Flavonol Biosynthesis in Salicylic Acid-Induced Citrus Huanglongbing Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:919-937. [PMID: 39723904 DOI: 10.1021/acs.jafc.4c08160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Salicylic acid (SA) exhibits positive effects against Citrus Huanglongbing (HLB), but how SA affects citrus resistance to HLB is currently unknown. This study conducted integrated transcriptome and metabolome analyses on SA-treated Citrus sinensis (HLB-sensitive) and Poncirus trifoliata (HLB-tolerant). The results indicated that the syntheses of flavones and flavonols were induced by SA, while the expression levels of associated genes and the contents of corresponding metabolites varied significantly between the two species after SA treatment or HLB infection. These differences may underpin the enhanced HLB management through SA treatment and the inherent HLB tolerance of P. trifoliata. Furthermore, two insertions of miniature inverted-repeat transposable element (MITE) were identified within the promoter of PtrF3'H in P. trifoliata, whereas none were found in the promoter of CsF3'H in C. sinensis. These MITE insertions notably enhanced the promoter activity of PtrF3'H in an SA-dependent manner. Our findings deepen the understanding of the correlation between SA response and HLB tolerance in Citrus.
Collapse
Affiliation(s)
- Wenshan Dai
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou 341000, China
| | - Mengni Pan
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Liqin Peng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Di Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yue Ma
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Min Wang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou 341000, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, Florida 32611, United States
| |
Collapse
|
11
|
Wu K, Vu ED, Ghosh S, Mishra R, Bonning BC. Continuous cell lines derived from the Asian citrus psyllid, Diaphorina citri, harbor viruses and Wolbachia. Sci Rep 2025; 15:124. [PMID: 39747462 PMCID: PMC11696443 DOI: 10.1038/s41598-024-83671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of global citriculture. In the Americas and in Asia, D. citri vectors the phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), which causes the fatal citrus disease huanglongbing, or citrus greening. Cell lines derived from D. citri can provide insight into both the basic biology of this pest and D. citri-associated pathogens including CLas. We previously identified CLG#2 as the optimal medium for long-term growth of D. citri primary cell cultures. Here we report on the establishment and characterization of three continuous D. citri cell lines, Dici1, Dici3, and Dici5, that have been passaged for > 40 times. Based on morphological and transcriptomic data, the Dici1 and Dici3 cell lines include undifferentiated and neurogenic progenitor cells. Dici1 and Dici5 are infected with Wolbachia. Both Dici1 and Dici5 are infected with D. citri reovirus, and Dici5 is also infected with D. citri-associated C virus. Dici3 is free of both Wolbachia and virus infection. These cell lines provide an ideal platform for the study of inter-microbial relationships as well as microbe interaction with host insect cells.
Collapse
Affiliation(s)
- Ke Wu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Emily D Vu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
- University of Florida Genetics Institute, Gainesville, FL, USA.
| |
Collapse
|
12
|
You P, Zhou J, Muhammad Bilal A, Bao M, Yang J, Fang S, Li X, Yi L. Potential habitat suitability of Candidatus Liberibacter asiaticus and genetic diversity of its prophages across China. Microbiol Spectr 2024; 12:e0063324. [PMID: 39315790 PMCID: PMC11537051 DOI: 10.1128/spectrum.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Huanglongbing (HLB) is a severe citrus disease in China caused by Candidatus Liberibacter asiaticus (CLas). Since its initial identification, the pathogen has spread to 10 mainland provinces in China and caused devastating loss. Three distinct prophage types have been identified in CLas; however, their distribution and diversity in China remain inadequately understood. In this study, we collected 500 CLas samples from 10 provinces in China, employing three specific genomic loci to identify prophage types. Subsequently, Sanger sequencing was employed to analyze the genetic diversity of prophage within populations of CLas in China. In addition, the MaxEnt model optimized by the ENMeval software package, was used to predict the habitat suitability of populations of CLas and assess the potential impact of future climate change on its distribution in China. Our analysis revealed that type 2 prophage is the most prevalent, accounting for 55% in China. Among the 10 provinces tested, CLas populations in Yunnan and Sichuan demonstrated higher genetic diversity. Further analysis reveals that CLas populations harboring type 1 prophage remain relatively stable, whereas those carrying type 2 and type 3 prophages undergo population expansion. Furthermore, our predictive models indicate that the presently suitable habitat for CLas populations is concentrated in the southern and certain central regions of China, with an anticipated expansion under future climate change conditions. Presently, the center of populations of CLas characterized by favorable living conditions is situated in Zunyi City, Guizhou Province. Nevertheless, a projected trend indicates a shift toward the northeast, particularly targeting Tongren City in the foreseeable future. IMPORTANCE This study offers significant insights into the distribution and genetic diversity of three types of prophages associated with Candidatus Liberibacter asiaticus (CLas) in China. Our predictions underscore the implications of climate change on the future distribution of CLas. These findings contribute to a better understanding of Huanglongbing management strategies and can facilitate the development of effective measures to control the spread of this devastating disease within the citrus industry.
Collapse
Affiliation(s)
- Ping You
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jun Zhou
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Amir Muhammad Bilal
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Minli Bao
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Jin Yang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Shujie Fang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xiang Li
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Mubeen M, Ali A, Iftikhar Y, Shahbaz M, Ullah MI, Ali MA, Fatima N, Sathiya Seelan JS, Tan YS, Algopishi UB. Innovative strategies for characterizing and managing huanglongbing in citrus. World J Microbiol Biotechnol 2024; 40:342. [PMID: 39375239 DOI: 10.1007/s11274-024-04135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
Huanglongbing is a severe citrus disease that causes significant tree and crop losses worldwide. It is caused by three Candidatus liberibacter species and spread by psyllids and infected budwood. Various methods have been used to diagnose and understand HLB, including recent advances in molecular and biochemical assays that explore the pathogen's mode of action and its impact on the host plant. Characterization is essential for developing sustainable HLB management strategies. Nanotechnology, particularly nano sensors and metal nanoparticles, shows potential for precise disease diagnosis and control. Additionally, antibiotics, nanomaterials, and genetic engineering techniques like transgenesis offer promising avenues for mitigating HLB. These diverse approaches, from conventional to cutting-edge, contribute to developing integrated HLB management strategies for sustainable citrus cultivation. The review highlights the significant advancements in conventional and advanced molecular and biochemical characterization of HLB, aiding in early detection and understanding of the infection mechanism. It emphasizes the multidimensional efforts required to characterize disease and devise innovative management strategies. As the citrus industry faces unprecedented challenges, exploring new frontiers in HLB research provides hope for sustainable solutions and a resilient future for global citrus cultivation.
Collapse
Affiliation(s)
- Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Amjad Ali
- Department of Plant Protection, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia.
| | - Muhammad Irfan Ullah
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Md Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
14
|
Juárez ID, Kurouski D. Contemporary applications of vibrational spectroscopy in plant stresses and phenotyping. FRONTIERS IN PLANT SCIENCE 2024; 15:1411859. [PMID: 39345978 PMCID: PMC11427297 DOI: 10.3389/fpls.2024.1411859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Plant pathogens, including viruses, bacteria, and fungi, cause massive crop losses around the world. Abiotic stresses, such as drought, salinity and nutritional deficiencies are even more detrimental. Timely diagnostics of plant diseases and abiotic stresses can be used to provide site- and doze-specific treatment of plants. In addition to the direct economic impact, this "smart agriculture" can help minimizing the effect of farming on the environment. Mounting evidence demonstrates that vibrational spectroscopy, which includes Raman (RS) and infrared spectroscopies (IR), can be used to detect and identify biotic and abiotic stresses in plants. These findings indicate that RS and IR can be used for in-field surveillance of the plant health. Surface-enhanced RS (SERS) has also been used for direct detection of plant stressors, offering advantages over traditional spectroscopies. Finally, all three of these technologies have applications in phenotyping and studying composition of crops. Such non-invasive, non-destructive, and chemical-free diagnostics is set to revolutionize crop agriculture globally. This review critically discusses the most recent findings of RS-based sensing of biotic and abiotic stresses, as well as the use of RS for nutritional analysis of foods.
Collapse
Affiliation(s)
- Isaac D. Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University,
College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University,
College Station, TX, United States
| |
Collapse
|
15
|
A Aksenov A, Blacutt A, Ginnan N, Rolshausen PE, V Melnik A, Lotfi A, C Gentry E, Ramasamy M, Zuniga C, Zengler K, Mandadi KK, McCollum G, Dorrestein PC, Roper MC. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus. Sci Rep 2024; 14:20306. [PMID: 39218988 PMCID: PMC11366753 DOI: 10.1038/s41598-024-70499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA.
- Arome Science Inc., Farmington, CT, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| | - Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Arome Science Inc., Farmington, CT, USA
| | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Emily C Gentry
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Manikandan Ramasamy
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Cristal Zuniga
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Greg McCollum
- US Dept of Agriculture, Agricultural Research Service US Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
16
|
Núñez-Muñoz LA, Sánchez-García ME, Calderón-Pérez B, De la Torre-Almaraz R, Ruiz-Medrano R, Xoconostle-Cázares B. Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials. MICROBIAL ECOLOGY 2024; 87:93. [PMID: 39008123 PMCID: PMC11249458 DOI: 10.1007/s00248-024-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and β-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.
Collapse
Affiliation(s)
- Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Martín Eduardo Sánchez-García
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Rodolfo De la Torre-Almaraz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Mexico City, Estado de México, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
17
|
Turnipseed SB, Rafson JP, Casey CR. Determination and Identification of Antibiotic Residues in Fruits Using Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15366-15375. [PMID: 38932744 DOI: 10.1021/acs.jafc.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Antibiotic residues may be present in fruit products from trees that were treated to combat bacterial diseases such as citrus greening or blight. A liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was developed for the simultaneous determination and identification of streptomycin, kasugamycin, penicillin, and oxytetracycline residues in fruit. Samples were extracted with acidic methanol and separation was optimized for a hydrophilic interaction LC column. A Q-Exactive HRMS instrument was used to obtain product ion spectra for analyte identification. Quantitation was performed with matrix-extracted calibration curves and internal standard correction. The method was tested on many different types of fruit. In general, fortified samples demonstrated acceptable recoveries (82-116%) and reproducibility (<15% RSD). Method detection limits for these analytes were well below the established US EPA tolerance levels. It was also possible to analyze the fruit extracts prepared using this method for additional chemical contaminants using LC-HRMS.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- Animal Drugs Research Center, Denver Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Jessica P Rafson
- Animal Drugs Research Center, Denver Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| | - Christine R Casey
- Denver Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Denver, Colorado 80225, United States
| |
Collapse
|
18
|
Lonare S, Rode S, Verma P, Verma S, Kaur H, Alam MS, Wangmo P, Kumar P, Roy P, Sharma AK. Characterization of AICAR transformylase/IMP cyclohydrolase (ATIC) bifunctional enzyme from Candidatus Liberibacer asiaticus. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141015. [PMID: 38615986 DOI: 10.1016/j.bbapap.2024.141015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 μM and Vmax, 0.95 μmol/min/mg) and AICAR (Km, 34.81 μM and Vmax, 0.56 μmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 μM and Vmax, 2.87 μmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 μM and 34.2 μM, respectively) compared to AICAR (Kd, 83.4 μM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Preeti Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Padma Wangmo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
| |
Collapse
|
19
|
Dong R, Shiraiwa A, Pawasut A, Sreechun K, Hayashi T. Diagnosis of Citrus Greening Using Artificial Intelligence: A Faster Region-Based Convolutional Neural Network Approach with Convolution Block Attention Module-Integrated VGGNet and ResNet Models. PLANTS (BASEL, SWITZERLAND) 2024; 13:1631. [PMID: 38931063 PMCID: PMC11207255 DOI: 10.3390/plants13121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The vector-transmitted Citrus Greening (CG) disease, also called Huanglongbing, is one of the most destructive diseases of citrus. Since no measures for directly controlling this disease are available at present, current disease management integrates several measures, such as vector control, the use of disease-free trees, the removal of diseased trees, etc. The most essential issue in integrated management is how CG-infected trees can be detected efficiently. For CG detection, digital image analyses using deep learning algorithms have attracted much interest from both researchers and growers. Models using transfer learning with the Faster R-CNN architecture were constructed and compared with two pre-trained Convolutional Neural Network (CNN) models, VGGNet and ResNet. Their efficiency was examined by integrating their feature extraction capabilities into the Convolution Block Attention Module (CBAM) to create VGGNet+CBAM and ResNet+CBAM variants. ResNet models performed best. Moreover, the integration of CBAM notably improved CG disease detection precision and the overall performance of the models. Efficient models with transfer learning using Faster R-CNN were loaded on web applications to facilitate access for real-time diagnosis by farmers via the deployment of in-field images. The practical ability of the applications to detect CG disease is discussed.
Collapse
Affiliation(s)
- Ruihao Dong
- Faculty of Informatics, Kansai University, Takatsuki 569-1095, Osaka, Japan;
| | - Aya Shiraiwa
- Electrical Engineering and Computer Science, Tottori University, Tottori 680-8552, Tottori, Japan;
| | - Achara Pawasut
- Royal Project Foundation, 910 Moo 3, T. Maehia, Muang, Chiang Mai 50200, Thailand; (A.P.); (K.S.)
| | - Kesaraporn Sreechun
- Royal Project Foundation, 910 Moo 3, T. Maehia, Muang, Chiang Mai 50200, Thailand; (A.P.); (K.S.)
| | - Takefumi Hayashi
- Faculty of Informatics, Kansai University, Takatsuki 569-1095, Osaka, Japan;
| |
Collapse
|
20
|
Liu HQ, Li HJ, Pan Q, Xiang YZ. Endosymbionts of citrus leafminer Phyllocnistis citrella Stainton among different citrus orchards in China. Sci Data 2024; 11:519. [PMID: 38778070 PMCID: PMC11111750 DOI: 10.1038/s41597-024-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Endosymbionts regulate the behavior of pest species, which could provide insights into their control. The citrus leafminer (Phyllocnistis citrella Stainton) is a widely distributed pest associated with diseases of citrus, especially of young trees. Here, we determined the endosymbiont composition of P. citrella in citrus orchards across China. The resulting dataset comprised average 50,430 high-quality reads for bacterial 16S rRNA V3-V4 regions of endosymbionts from 36 P. citrella larvae sampled from 12 citrus orchards across China. The sequencing depth and sampling size of this dataset were sufficient to reveal most of the endosymbionts of P. citrella. In total, 2,875 bacterial amplicon sequence variants were obtained; taxonomic analysis revealed a total of 372 bacterial genera, most of which were Proteobacteria phylum with Undibacterium being the most abundant genus. This dataset provides the first evidence of P. citrella endosymbionts that could support the development of pest management approaches in citrus orchards.
Collapse
Affiliation(s)
- Hao-Qiang Liu
- Citrus Research Institute, Southwest University, Beipei District, Chongqing, 400715, P. R. China.
- National Engineering Research Center for Citrus, Chinese Academy of Agricultural Sciences, Beipei District, Chongqing, 400712, P. R. China.
| | - Hong-Jun Li
- Citrus Research Institute, Southwest University, Beipei District, Chongqing, 400715, P. R. China
- National Engineering Research Center for Citrus, Chinese Academy of Agricultural Sciences, Beipei District, Chongqing, 400712, P. R. China
| | - Qi Pan
- Citrus Research Institute, Southwest University, Beipei District, Chongqing, 400715, P. R. China
- National Engineering Research Center for Citrus, Chinese Academy of Agricultural Sciences, Beipei District, Chongqing, 400712, P. R. China
| | - Yao-Zong Xiang
- Citrus Research Institute, Southwest University, Beipei District, Chongqing, 400715, P. R. China
- National Engineering Research Center for Citrus, Chinese Academy of Agricultural Sciences, Beipei District, Chongqing, 400712, P. R. China
| |
Collapse
|
21
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
22
|
Liu L, Chen J, Jiang J, Liang J, Song Y, Chen Q, Yan F, Bai Z, Song Z, Liu J. Detection of Candidatus Liberibacter asiaticus and five viruses in individual Asian citrus psyllid in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1357163. [PMID: 38379950 PMCID: PMC10877018 DOI: 10.3389/fpls.2024.1357163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Introduction Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.
Collapse
Affiliation(s)
- Luqin Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jing Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Junyao Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jiamei Liang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Yaqin Song
- Guangxi Academy of Specialty Crops, Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guangxi, China
| | - Qi Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Fuling Yan
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Ziqin Bai
- Fruit Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jinxiang Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
23
|
McMillan HM. New receptors for common MAMPs: Can wild relatives save citrus from disease? PLANT PHYSIOLOGY 2023; 193:162-165. [PMID: 37221322 PMCID: PMC10469516 DOI: 10.1093/plphys/kiad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Hannah M McMillan
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Morán F, Herrero-Cervera M, Carvajal-Rojas S, Marco-Noales E. Real-time on-site detection of the three ' Candidatus Liberibacter' species associated with HLB disease: a rapid and validated method. FRONTIERS IN PLANT SCIENCE 2023; 14:1176513. [PMID: 37351204 PMCID: PMC10282772 DOI: 10.3389/fpls.2023.1176513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Huanglongbing (HLB) is a devastating disease that affects all commercial citrus species worldwide. The disease is associated with bacteria of three species of the genus 'Candidatus Liberibacter' transmitted by psyllid vectors. To date, HLB has no cure, so preventing its introduction into HLB-free areas is the best strategy to control its spread. For that, the use of accurate, sensitive, specific, and reliable detection methods is critical for good integrated management of this serious disease. This study presents a new real-time recombinase polymerase amplification (RPA) protocol able to detect the three 'Ca. Liberibacter' species associated with HLB in both plant and insect samples, validated according to European and Mediterranean Plant Protection Organization (EPPO) guidelines and tested on 365 samples from nine different geographic origins. This new protocol does not require nucleic acid purification or specialized equipment, making it ideal to be used under field conditions. It is based on specific primers and probe targeting a region of fusA gene, which shows a specificity of 94%-100%, both in silico and in vitro, for the 'Ca. Liberibacter' species associated with HLB. The analytical sensitivity of the new protocol is excellent, with a reliable detection limit in the order of 101 copies per microliter in HLB-infected plant and insect material. The repeatability and reproducibility of the new methods showed consistent results. Diagnostic parameters of the new RPA protocol were calculated and compared with the gold standard technique, a quantitative real-time PCR, in both crude extracts of citrus plants and insect vectors. The agreement between the two techniques was almost perfect according to the estimated Cohen's kappa index, with a diagnostic sensitivity and specificity of 83.89% and 100%, respectively, and a relative accuracy of 91.59%. Moreover, the results are obtained in less than 35 min. All these results indicate the potential of this new RPA protocol to be implemented as a reliable on-site detection kit for HLB due to its simplicity, speed, and portability.
Collapse
Affiliation(s)
- Félix Morán
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Bacteriología, Moncada, Valencia, Spain
| | - Mario Herrero-Cervera
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Bacteriología, Moncada, Valencia, Spain
| | - Sofía Carvajal-Rojas
- Universidad de Costa Rica (UCR), Centro de Investigación en Biología Celular y Molecular (CIBCM), Laboratorio de Fitopatógenos Obligados y sus Vectores (LaFOV), San José, Costa Rica
| | - Ester Marco-Noales
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Bacteriología, Moncada, Valencia, Spain
| |
Collapse
|
25
|
de Oliveira Dorta S, Attílio LB, Zanardi OZ, Lopes JRS, Machado MA, Freitas-Astúa J. Genetic transformation of 'Hamlin' and 'Valencia' sweet orange plants expressing the cry11A gene of Bacillus thuringiensis as another tool to the management of Diaphorina citri (Hemiptera: Liviidae). J Biotechnol 2023; 368:60-70. [PMID: 37088156 DOI: 10.1016/j.jbiotec.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter spp., the bacteria associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. HLB management has heavily counted on insecticide applications to control the ACP, although there are efforts towards more sustainable alternatives. In previous work, our group assessed the potential bioactivity of different strains of Bacillus thuringiensis (Eubacteriales: Bacillaceae) (Bt) containing cry/cyt genes as feasible tools to control ACP nymphs. Here, we report an attempt to use the cry11A gene from Bt to produce transgenic sweet orange plants using two promoters. For the genetic transformation, 'Hamlin' and 'Valencia' sweet orange seedlings were used as sources of explants. Transgenic plants were detected by polymerase chain reaction (PCR) with specific primers, and the transgene copy number was confirmed by Southern blot analyses. Transcript expression levels were determined by qPCR. Mortality assays of D. citri nymphs were carried out in a greenhouse, and the effect of the events tested ranged from 22 to 43% at the end of the five-day exposure period. To our knowledge, this is the first manuscript reporting the production of citrus plants expressing the Bt cry11A gene for the management of D. citri nymphs.
Collapse
Affiliation(s)
- Sílvia de Oliveira Dorta
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil; Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil.
| | - Lísia Borges Attílio
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil; Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Odimar Zanuzo Zanardi
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Santa Catarina (IFSC), 89.900-000, São Miguel do Oeste, Santa Catarina, Brasil
| | - João Roberto Spotti Lopes
- Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Embrapa Mandioca e Fruticultura, 44.380-000, Cruz das Almas, Bahia, Brazil; Unidade Laboratorial de Referência em Biologia Molecular Aplicada/Instituto Biológico (ULRBMA/IB), 04.014-900, São Paulo, São Paulo, Brazil.
| |
Collapse
|