1
|
Habibi N, Aryan S, Sediqui N, Terada N, Sanada A, Kamata A, Koshio K. Enhancing Salt Tolerance in Tomato Plants Through PEG6000 Seed Priming: Inducing Antioxidant Activity and Mitigating Oxidative Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1296. [PMID: 40364325 DOI: 10.3390/plants14091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum 'Micro-Tom' under salt stress. Seeds primed with -1.2 MPa PEG6000 were grown in Rockwool and treated with 0, 50, 100, 150, and 200 mM NaCl. Primed plants showed a 32% increase in leaf potassium (K+) and a 28% decrease in sodium (Na+) accumulation compared to non-primed plants under 150 mM NaCl. Glucose, fructose, and sucrose contents increased by 25%, 22%, and 19%, respectively, in primed fruits, while citric acid decreased by 15%. Malondialdehyde (MDA) and electrolyte leakage were reduced by 35% and 29%, respectively, in primed plants under moderate salinity. Antioxidant enzyme activities-SOD, POD, CAT, and APX were enhanced by 30-45% in primed plants under 100 and 150 mM NaCl, compared to non-primed controls. Abscisic acid (ABA) levels increased by 40% in primed roots under salt stress. Activities of polyamine-related enzymes (DAO, PAO, and ADC) also rose significantly. Priming improved protein content by 20% and relative water content by 18%. These results suggest that PEG6000 seed priming enhances salt tolerance by boosting antioxidant defense, regulating osmotic balance, and improving ion homeostasis, offering a viable strategy for sustaining tomato productivity under salinity.
Collapse
Affiliation(s)
- Nasratullah Habibi
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Faculty of Agriculture, Balkh University, Mazar-e-Sharif 1701, Balkh, Afghanistan
| | - Shafiqullah Aryan
- Faculty of Agriculture, Nangarhar University, Jalalabad 2601, Nangarhar, Afghanistan
| | - Naveedullah Sediqui
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Naoki Terada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Sanada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kamata
- Faculty of Agriculture, Tokyo University of Agriculture, Isehara Farm, 1499-1 Maehata, Sannomiya, Kanagawa, Isehara 259-1103, Japan
| | - Kaihei Koshio
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
2
|
Xu Z, Zhang T, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Research Progress and Prospects of Nanozymes in Alleviating Abiotic Stress of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8694-8714. [PMID: 39936319 DOI: 10.1021/acs.jafc.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The continuous destruction of the global ecological environment has led to increased natural disasters and adverse weather, severely affecting crop yields and quality, particularly due to abiotic stress. Nanase, a novel artificial enzyme, simulates various enzyme activities, is renewable, and shows significant potential in promoting crop growth and mitigating abiotic stress. This study reviews the classification of nanoenzymes into carbon-based, metal-based, metal oxide-based, and others based on synthesis materials. The catalytic mechanisms of these nanoenzymes are discussed, encompassing activities, such as oxidases, peroxidases, catalases, and superoxide dismutases. The catalytic mechanisms of nanoenzymes in alleviating salt, drought, high-temperature, low-temperature, heavy metal, and other abiotic stresses in crops are also highlighted. Furthermore, the challenges faced by nanoenzymes are discussed, especially in sustainable agricultural development. This review provides insights into applying nanoenzymes in sustainable agriculture and offers theoretical guidance for mitigating abiotic stress in crops.
Collapse
Affiliation(s)
- Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
Hernández-Vega JD, Parola-Contreras I, Tovar-Pérez EG, Guevara-González RG, Aguirre-Becerra H, Feregrino-Pérez AA, Contreras-Medina LM, Guzmán-Cruz R. Evaluation of Phenolic Compounds and Antioxidant Activity in Three Black Cherry Tomato Varieties Grown Under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:1173. [PMID: 40284061 PMCID: PMC12030121 DOI: 10.3390/plants14081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
Given the importance of phenolic compounds and antioxidant capacity in plant defense and human health, this study aimed to evaluate black cherry tomatoes' polyphenol, flavonoid, anthocyanin, and carotenoid content and enzymatic activity under greenhouse conditions. Black cherry tomato varieties-Indigo Cherry Drops, Indigo Rose, and Kumato-were cultivated from seed to the third harvest. Total polyphenols, flavonoids, anthocyanins, β-carotenoids, antioxidant capacity 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and enzymatic activities, including superoxide dismutase (SOD), catalase (CAT), proline (PRO), and superoxide dismutase (PAL), were measured and compared. The Kumato variety exhibited significantly higher total polyphenols, flavonoids, and carotenoids, along with enhanced antioxidant activity (DPPH, ABTS) and enzymatic activity (CAT, PAL) compared to Indigo Rose and Indigo Cherry Drops, with free radical inhibition of 87.0% (DPPH) and 74.72% (ABTS). SOD activity was highest in Indigo Rose (0.21 U/mg protein), while proline levels were significantly higher in Kumato and Indigo Cherry Drops (6.40 and 6.63 U/mg protein). These findings highlight the antioxidant potential of black cherry tomatoes and their high potential nutritional value for consumers. Future research should explore how environmental factors influence their biochemical composition and potential applications in functional food.
Collapse
Affiliation(s)
- Josué Daniel Hernández-Vega
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Ixchel Parola-Contreras
- TecNM/Tecnológico de Estudios Superiores de Chimalhuacán, Ingeniería Industrial, Ingeniería de Procesos Sustentables ITESCHIM-CA-02, Chimalhuacán 56335, Estado de México, Mexico;
| | - Erik Gustavo Tovar-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amealco, Camacho Guzmán, Fracc. Rinconada de Bonfil, Amealco 76850, Querétaro, Mexico;
| | - Ramón Gerardo Guevara-González
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Humberto Aguirre-Becerra
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Ana Angélica Feregrino-Pérez
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Luis Miguel Contreras-Medina
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Rosario Guzmán-Cruz
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| |
Collapse
|
4
|
Rivera-Solís LL, Ortega-Ortiz H, Benavides-Mendoza A, Flores-López ML, Robledo-Olivo A, González-Morales S. Tomato Biostimulation with Nanochitosan-Iodine Complexes: Enhancing Antioxidant Metabolism. PLANTS (BASEL, SWITZERLAND) 2025; 14:801. [PMID: 40094822 PMCID: PMC11902028 DOI: 10.3390/plants14050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Biostimulants are currently essential for agriculture as they increase crop productivity and quality sustainably. The aim of this work was to evaluate the effects of biostimulation on the application of nanochitosan-iodine complexes (nCS-I) on tomato plants. Leaf samples were taken for analysis of total protein content, photosynthetic pigments, antioxidant enzymatic activity, mineral and iodine contents, gene expression, and shelf life in tomato fruit. The catalase (CAT), glutathione peroxidase (GPX), ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities increased significantly with the application of nanochitosan (nCS) and nanochitosan-potassium iodate (nCS-KIO3) and nanochitosan-potassium iodide (nCS-KI) complexes and the iodine salts potassium iodate (KIO3) and potassium iodide (KI). The total protein content and photosynthetic pigments also increased significantly with the application of the treatments. The mineral and iodine contents did not change with the application of the treatments. Similarly, overexpression of the SOD, GPX, and CAT genes was observed. Finally, in the shelf life test, an increase in the total phenols and antioxidant capacity was observed with the application of the treatments. This study shows that the use of nCS-I complexes can modulate different transcriptional and post-translational processes with possible synergistic effects on the antioxidant metabolism of tomato plants.
Collapse
Affiliation(s)
- Luz Leticia Rivera-Solís
- Program in Protected Agriculture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico;
| | - Hortensia Ortega-Ortiz
- Department of Advanced Materials, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico;
| | | | - María Liliana Flores-López
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Avenida 3 y 16, Colonia Lourdes, Saltillo 25070, Mexico;
| | - Armando Robledo-Olivo
- Department of Food Science and Technology, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico;
| | - Susana González-Morales
- Secretariat of Science, Humanities, Technology and Innovation, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| |
Collapse
|
5
|
Perfileva AI, Sukhov BG, Kon'kova TV, Strekalovskaya EI, Krutovsky KV. Diversity of copper-containing nanoparticles and their influence on plant growth and development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109575. [PMID: 39893945 DOI: 10.1016/j.plaphy.2025.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Copper (Cu) is an important microelement for plants, but in high concentrations it can be toxic. Cu-containing nanoparticles (Cu NPs) are less toxic, their use for plants is safer, more effective and economical than the use of Cu salts. This review presents detailed information on the chemical diversity of Cu NPs and various methods of their synthesis. The mechanisms of the effect of Cu NPs on plants are described in detail, and examples of research in this area are given. The main effects of Cu NPs on plants are reviewed including on their growth and development (organogenesis, mitosis, accumulation of biomass), biochemical processes (intensity of photosynthesis, antioxidant status and intensity of lipid peroxidation processes), gene expression, plant resistance to abiotic and biotic stress factors. The prospects of using Cu NPs as mineral fertilizers are shown by describing their stimulation effects on seed germination, plant growth and development, and on increase of plant resistance to stress factors. The protective effect of Cu NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of Cu NPs on plant growth, development and the intensity of photosynthesis, depending on their concentration. Cu NPs have a pronounced antibacterial effect on bacterial phytopathogens of cultivated plants, as well as on a number of phytopathogenic fungi and nematodes. Thus, Cu NPs are promising agents for agriculture, while their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid a toxic effect.
Collapse
Affiliation(s)
- A I Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia.
| | - B G Sukhov
- Laboratory of Nanoparticles, V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - T V Kon'kova
- Laboratory of Nanoparticles, V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - E I Strekalovskaya
- Laboratory of Environmental Biotechnology, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia.
| | - K V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany; Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333, Moscow, Russia; Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia; Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394036, Voronezh, Russia.
| |
Collapse
|
6
|
Peshkova A, Zinicovscaia I, Rudi L, Chiriac T, Yushin N, Cepoi L. Effects of Foliar Application of Copper and Gold Nanoparticles on Petroselinum crispum (Mill.). NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:280. [PMID: 39997843 PMCID: PMC11858691 DOI: 10.3390/nano15040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
The unintentional release of nanoparticles in the atmosphere and their targeted application to improve plant productivity requires detailed study. The translocation features of copper and gold nanoparticles applied by spraying in the concentration range of 1-100 mg/L in Petroselinum crispum (Mill.) tissues during a 10-day experiment were investigated. Atomic absorption spectrometry and inductively coupled plasma atomic emission spectroscopy showed that copper and gold nanoparticles applied to the leaves' surface could accumulate in plant organs. A dose-dependent increase in the content of copper and gold in the aerial parts of parsley was revealed. The content of copper in leaves treated with nanoparticles was 1-2.3 times higher than the control, while the content of gold exceeded control values 2-116 times. The effect of nanoparticles on plants' biochemical composition was assessed. The antioxidant tests showed an ambiguous response at exposure to metal nanoparticles. Copper nanoparticles at the applied concentration consistently reduced both chlorophyll and carotenoid content. Gold nanoparticles enhanced the chlorophyll and carotenoid level at low concentrations (1 mg/L) and significantly inhibited it at higher concentrations. The parsley exposed to nano-copper remained safe for human consumption, but parsley containing more than 14.9 mg/kg of gold may adversely affect human health.
Collapse
Affiliation(s)
- Alexandra Peshkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia;
- Doctoral School of Natural Sciences, Moldova State University, M. Kogalniceanu Str., 75A, MD-2009 Chisinau, Moldova
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia;
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Măgurele, Romania
| | - Ludmila Rudi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova; (L.R.); (T.C.); (L.C.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova; (L.R.); (T.C.); (L.C.)
| | - Nikita Yushin
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia;
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, 1 Academiei Str., MD-2028 Chisinau, Moldova; (L.R.); (T.C.); (L.C.)
| |
Collapse
|
7
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
8
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Gupta A, Bharati R, Kubes J, Popelkova D, Praus L, Yang X, Severova L, Skalicky M, Brestic M. Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L. FRONTIERS IN PLANT SCIENCE 2024; 15:1432258. [PMID: 39297008 PMCID: PMC11408239 DOI: 10.3389/fpls.2024.1432258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Salt stress poses a significant challenge to global agriculture, adversely affecting crop yield and food production. The current study investigates the potential of Zinc Oxide (ZnO) nanoparticles (NPs) in mitigating salt stress in common beans. Salt-stressed bean plants were treated with varying concentrations of NPs (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L) using three different application methods: foliar application, nano priming, and soil application. Results indicated a pronounced impact of salinity stress on bean plants, evidenced by a reduction in fresh weight (24%), relative water content (27%), plant height (33%), chlorophyll content (37%), increased proline (over 100%), sodium accumulation, and antioxidant enzyme activity. Application of ZnO NPs reduced salt stress by promoting physiological growth parameters. The NPs facilitated enhanced plant growth and reduced reactive oxygen species (ROS) generation by regulating plant nutrient homeostasis and chlorophyll fluorescence activity. All the tested application methods effectively mitigate salt stress, with nano-priming emerging as the most effective approach, yielding results comparable to control plants for the tested parameters. This study provides the first evidence that ZnO NPs can effectively mitigate salt stress in bean plants, highlighting their potential to address salinity-induced growth inhibition in crops.
Collapse
Affiliation(s)
- Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Rohit Bharati
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Daniela Popelkova
- Materials Chemistry Department, Institute of Inorganic Chemistry AS CR v.v.i., Husinec-Řež, Czechia
| | - Lukas Praus
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Xinghong Yang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Lucie Severova
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| |
Collapse
|
10
|
Abdelsattar M, Abdeldaym EA, Alsayied NF, Ahmed E, Abd El-Maksoud RM. Overlapping of copper-nanoparticles with microRNA reveals crippling of heat stress pathway in Solanum lycopersicum: Tomato case study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108791. [PMID: 38861818 DOI: 10.1016/j.plaphy.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Despite the tangible benefits of copper nanoparticles (CuNPs) for plants, the increasing use of CuNPs poses a threat to plants and the environment. Although miRNAs have been shown to mediate heat shock and CuNPs by altering gene expression, no study has investigated how CuNPs in combination with heat shock (HS) affect the miRNA expression profile. Here, we exposed tomato plants to 0.01 CuONPs at 42 °C for 1 h after exposure. It was found that the expression levels of miR156a, miR159a and miR172a and their targets SPL3, MYB33 and AP2a were altered under CuNPs and HS + CuNPs. This alteration accelerated the change of vegetative phase and the process of leaf senescence. The overexpression of miR393 under CuNPs and HS + CuNPs could also be an indicator of the attenuation of leaf morphology. Interestingly, the down-regulation of Cu/ZnSOD1 and Cu/ZnSOD2 as target genes of miR398a, which showed strong abnormal expression, was replaced by FeSOD (FSD1), indicating the influence of CuNPs. In addition, CuNPs triggered the expression of some important genes of heat shock response, including HsFA2, HSP70-9 and HSP90-3, which showed lower expression compared to HS. Thus, CuNPs play an important role in altering the gene expression pathway during heat stress.
Collapse
Affiliation(s)
- Mohamed Abdelsattar
- Plant Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| | - Emad A Abdeldaym
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nouf F Alsayied
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makka, Saudi Arabia
| | - Esraa Ahmed
- Plant Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Reem M Abd El-Maksoud
- Nucleic Acid and Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
11
|
Francis DV, Abdalla AK, Mahakham W, Sarmah AK, Ahmed ZFR. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. ENVIRONMENT INTERNATIONAL 2024; 190:108859. [PMID: 38970982 DOI: 10.1016/j.envint.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.
Collapse
Affiliation(s)
- Dali V Francis
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abdelmoneim K Abdalla
- Food Science and Technology Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Wuttipong Mahakham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zienab F R Ahmed
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
12
|
Singh R, Širić I, Alhag SK, Al-Shuraym LA, Al-Shahari EA, Alsudays IM, Bachheti A, Goala M, Abou Fayssal S, Kumar P, Eid EM. Impact of titanium dioxide (TiO 2) nanoparticle and liquid leachate of mushroom compost on agronomic and biochemical response of marigold (Tagetes erecta L.) under saline stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43731-43742. [PMID: 38907815 DOI: 10.1007/s11356-024-33999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The cultivation of ornamental horticultural crops under salinity stress has been a challenge for growers all over the world. In this study, an attempt was made for pot cultivation of Marigold (Tagetes erecta L. var. Pusa Basanti Gainda) in salt-stressed (SS) soil (150 mM) with the combined use of mushroom compost leachate (CL) and foliar application of titanium dioxide nanoparticles (TiO2-NPs). For this purpose, a total of six pot treatments, i.e., borewell water (BW; control), T1 (BW with SS), T2 (BW with SS and TiO2-NPs), T3 (CL supplemented), T4 (CL with SS), and T5 (CL with SS and TiO2-NPs) were conducted in triplicate. The results of this study showed that CL supplementation significantly (p < 0.05) improved the physicochemical i.e., pH (14.5%), electrical conductivity (32.9%), total nitrogen (27.4%), total phosphorus (247.6%)), and nutrient (organic matter: 119.6%) profiles of soil which later helped in higher growth (30-35%) and yield (5.4-40.7%) of T. erecta. In CL-based treatments, the biochemical constituents were significantly (p < 0.05) higher than those in BW-irrigated ones. Also, the levels of selected stress defense enzymes were significantly increased under SS treatment but reduced under TiO2-NP application. Overall, it was observed that the combined application of CL and TiO2-NPs (T5 treatment) was the most helpful treatment for enhanced germination, growth, yield, biochemical parameters, and better plant enzymatic activities to cope with saline stress. This study provides a mechanistic understanding of T. erecta plants under saline stress which is crucial for the development of targeted interventions aimed at improving plant tolerance to saline conditions.
Collapse
Affiliation(s)
- Rattan Singh
- Department of Food Technology, Uttaranchal University, 248007, Dehradun, India
| | - Ivan Širić
- Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, 61913, Muhayl Asser, Saudi Arabia
| | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Eman A Al-Shahari
- Biology Department, College of Science and Arts, King Khalid University, 61321, Abha, Saudi Arabia
| | - Ibtisam M Alsudays
- Biology Department, College of Science, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Madhumita Goala
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, Sofia, 1797, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, 1302, Lebanon
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India.
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
13
|
Khanchi S, Hashemi Khabir SH, Hashemi Khabir SH, Golmoghani Asl R, Rahimzadeh S. The role of magnesium oxide foliar sprays in enhancing mint (Mentha crispa L.) tolerance to cadmium stress. Sci Rep 2024; 14:14823. [PMID: 38937645 PMCID: PMC11211327 DOI: 10.1038/s41598-024-65853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigates using magnesium foliar spray to enhance mint plants' growth and physiological performance under cadmium toxicity. It examines the effects of foliar application of magnesium oxide (40 mg L-1), in both nano and bulk forms, on mint plants exposed to cadmium stress (60 mg kg-1 soil). Cadmium stress reduced root growth and activity, plant biomass (32%), leaf hydration (19%), chlorophyll levels (27%), magnesium content (51%), and essential oil yield (35%), while increasing oxidative and osmotic stress in leaf tissues. Foliar application of magnesium increased root growth (32%), plant biomass, essential oil production (17%), leaf area (24%), chlorophyll content (10%), soluble sugar synthesis (33%), and antioxidant enzyme activity, and reduced lipid peroxidation and osmotic stress. Although the nano form of magnesium enhanced magnesium absorption, its impact on growth and physiological performance was not significantly different from the bulk form. Therefore, foliar application of both forms improves plants' ability to withstand cadmium toxicity. However, the study is limited by its focus on a single plant species and specific environmental conditions, which may affect the generalizability of the results. The long-term sustainability of such treatments could provide a more comprehensive understanding of magnesium's role in mitigating heavy metal stress in plants.
Collapse
Affiliation(s)
- Soheil Khanchi
- Department of Agronomy, Islamic Azad University of Sanandaj, Sanandaj, Iran
| | | | | | - Reza Golmoghani Asl
- Department of Agronomy and Plant Breeding, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
14
|
Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, Al-Hashimi A. Biosynthesis of copper nanoparticles using Solenostemma argel and their effect on enhancing salt tolerance in barley plants. Sci Rep 2024; 14:12701. [PMID: 38831069 PMCID: PMC11148141 DOI: 10.1038/s41598-024-63641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.
Collapse
Affiliation(s)
- Hassan O Shaikhaldein
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdalrhaman M Salih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
16
|
Singh A, Rajput VD, Lalotra S, Agrawal S, Ghazaryan K, Singh J, Minkina T, Rajput P, Mandzhieva S, Alexiou A. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:148. [PMID: 38578547 DOI: 10.1007/s10653-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Shivani Lalotra
- School of Agriculture, Lovely Professional University, Jalandhar, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
17
|
Farooq A, Khan I, Shehzad J, Hasan M, Mustafa G. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18313-18339. [PMID: 38347361 DOI: 10.1007/s11356-024-32121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Collapse
Affiliation(s)
- Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
19
|
Ekim R, Arikan B, Alp-Turgut FN, Koyukan B, Ozfidan-Konakci C, Yildiztugay E. Polyvinylpyrrolidone-coated copper nanoparticles dose-dependently conferred tolerance to wheat under salinity and/or drought stress by improving photochemical activity and antioxidant system. ENVIRONMENTAL RESEARCH 2024; 241:117681. [PMID: 37984786 DOI: 10.1016/j.envres.2023.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Copper (Cu) is one of the essential micronutrients for plants and has been used extensively in agricultural applications from the past to the present. However, excess copper causes toxic effects such as inhibiting photosynthesis, and disrupting biochemical processes in plants. Nanotechnology applications have offered a critical method for minimizing adverse effects and improving the effectiveness of copper nanoparticles. For this purpose, this study investigated the physiological and biochemical effects of polyvinylpyrrolidone (PVP)-coated Cu nanoparticles (PVP-Cu NP, N1, 100 mg L-1; N2, 400 mg L-1) in Triticum aestivum under alone or combined with salt (S, 150 mM NaCl) and/or drought (D, %10 PEG-6000) stress. Salinity and water deprivation caused 51% and 22% growth retardation in wheat seedlings. The combined stress condition (S + D) resulted in an approximately 3-fold reduction in the osmotic potential of the leaves. PVP-Cu NP treatments to plants under stress, especially N1 dose, were effective in restoring growth rate and regulating water relations. All stress treatments limited gas exchange in stomata and suppressed the maximal quantum yield of PSII (Fv/Fm). More than 50% improvement was observed in stomatal permeability and carbon assimilation rate under S + N1 and S + N2 applications. Examination of OJIP transient parameters revealed that N1 treatments protected photochemical reactions by reducing the dissipated energy flux (DIo/RC) in drought and S + D conditions. Exposure to S and/or D stress caused high hydrogen peroxide (H2O2) accumulation and lipid peroxidation in wheat leaves. The results indicated that S + N1 and S + N2 treatments reduced oxidative damage by stimulating the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Although similar effects were observed at D and S + D conditions with 100 mg L-1 PVP-Cu NP treatments (N1), the curative effect of the N2 dose was not observed. In D + N1 and S + D + N1 groups, AsA regeneration and GSH redox status were maintained by triggering APX, GR, and other enzyme activities belonging to the AsA-GSH cycle. In these groups, N2 treatment did not contribute to the availability of enzymatic and non-enzymatic antioxidants. As a result, this study revealed that N1 dose PVP-Cu NP application was successful in providing stress tolerance and limiting copper-induced adverse effects under all stress conditions.
Collapse
Affiliation(s)
- Rumeysa Ekim
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Buket Koyukan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
20
|
Gautam A, Rusli LS, Yaacob JS, Kumar V, Guleria P. Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2024. [DOI: 10.1007/s10098-023-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2025]
|
21
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Mahawar L, Živčák M, Barboricova M, Kovár M, Filaček A, Ferencova J, Vysoká DM, Brestič M. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108281. [PMID: 38157834 DOI: 10.1016/j.plaphy.2023.108281] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The study evaluates the impact of two metal oxide nanoparticles: copper oxide (CuO) and zinc oxide (ZnO) on the growth and physiology of Raphanus sativus L. (radish) under salinity stress. Fifteen days old seedlings of R. sativus were subjected to different concentrations of salt stress (0 mM, 150 mM, and 300 mM NaCl) alone and in interaction with 100 mgL-1 metal oxide nanoparticle treatments (CuO and ZnO NPs via foliar spray) for 15 days. The results confirmed the severe effects of salinity stress on the growth and physiology of radish plants by decreasing nutrient uptake, leaf area, and photosystems photochemistry and by increasing proline accumulation, anthocyanin, flavonoids content, and antioxidant enzyme activities which is directly linked to increased oxidative stress. The foliar application of CuO and ZnO NPs alleviated the adverse effects of salt stress on radish plants, as indicated by improving these attributes. Foliar spray of ZnO NPs was found efficient in improving the leaf area, photosynthetic electron transport rate, the PSII quantum yield, proton conductance and mineral content in radish plants under NaCl stress. Besides, ZnO NPs decreased the NaCl-induced oxidative stress by declining proline, anthocyanin, and flavonoids contents and enzymatic activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GOPX). Thus, our study revealed that ZnO NPs are more effective and have beneficial effects over CuO NPs in promoting growth and reducing the adverse effects of NaCl stress in radish plants.
Collapse
Affiliation(s)
- Lovely Mahawar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia; Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden.
| | - Marek Živčák
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Maria Barboricova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Andrej Filaček
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Jana Ferencova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Dominika Mlynáriková Vysoká
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marián Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia.
| |
Collapse
|
23
|
Deng C, Protter CR, Wang Y, Borgatta J, Zhou J, Wang P, Goyal V, Brown HJ, Rodriguez-Otero K, Dimkpa CO, Hernandez R, Hamers RJ, White JC, Elmer WH. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167799. [PMID: 37838047 DOI: 10.1016/j.scitotenv.2023.167799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Connor R Protter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jingyi Zhou
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Peiying Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Hannah J Brown
- Agronomy Department, University of Florida, Gainesville, FL 32603, United States
| | | | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| |
Collapse
|
24
|
Zhao M, Li J, Shi X, Sanaullah Malik M, Quan Y, Guo D, Wang L, Wang S. Effects of exogenous plant regulators on growth and development of "Kyoho" grape under salt alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1274684. [PMID: 38162314 PMCID: PMC10756669 DOI: 10.3389/fpls.2023.1274684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Salinity is one of the major abiotic stresses besides drought and cold stress. The application of plant growth regulators (PGRs) is an effective method to mitigate yield losses caused by salinity. However, we investigated the effects of exogenous regulatory substances (γ-aminobutyric acid (GABA), salicylic acid (SA), and brassinolide (BR) on the growth and development of "Kyoho" grapevine under salt stress. The results showed that exogenous regulators GABA, SA, and BR alleviated the inhibition of grape growth by saline stress and regulated the effects of salinity stress on grape fruit development and quality. All three regulators significantly increased fruit set, cross-sectional diameter, weight per unit, and anthocyanin content. In conclusion, this study provides a theoretical basis for grape production practices by using exogenous aminobutyric acid (GABA), salicylic acid (SA), and brassinolide (BR) to mitigate the hazards of salinity stress.
Collapse
Affiliation(s)
- Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangneng Shi
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Sinochem Agriculture Holdings, Beijing, China
| | - M. Sanaullah Malik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Quan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dinghan Guo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent Trends in Foliar Nanofertilizers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2906. [PMID: 37947750 PMCID: PMC10650792 DOI: 10.3390/nano13212906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
It is estimated that 40-70%, 80-90% and 50-90% of the conventional macronutrients N, P and K applied to the soil are lost, respectively, resulting in considerable loss of resources. Compared to conventional fertilizers, nanofertilizers have the advantages of controlled release, high nutrient utilization, low cost and relatively low environmental pollution due to their small size (1-100 nm) and high specific surface area. The application of nanofertilizers is an up-and-coming field of agricultural research and is an attractive and economical substitute for common fertilizers which can boost global food productivity sustainably. Foliar fertilization is a popular way to satisfy the needs of higher plants. Because of its small application dose, faster nutrient uptake than soil application and relatively less environmental pollution, foliar fertilization is more popular among plants. It can be seen that nanofertilizers and foliar fertilization are the hotspots of attention at present and that current research on the foliar application of nanofertilizers is not as extensive as that on soil application. Based on this background, this paper provides an overview of various applications of foliar spraying of nanofertilizers in agriculture, including applications in improving crop yield and quality as well as mitigating heavy metal stress, salt stress and drought stress.
Collapse
Affiliation(s)
- Yanru Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Weichen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Guikai Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Quanlong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| |
Collapse
|
26
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
27
|
Sánchez P, Castro-Cegrí A, Sierra S, Garrido D, Llamas I, Sampedro I, Palma F. The synergy of halotolerant PGPB and mauran mitigates salt stress in tomato (Solanum lycopersicum) via osmoprotectants accumulation. PHYSIOLOGIA PLANTARUM 2023; 175:e14111. [PMID: 38148230 DOI: 10.1111/ppl.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Salinity stress is one of the major abiotic factors limiting sustainable agriculture. Halotolerant plant growth-promoting bacteria (PGPB) increased salt stress tolerance in plants, but the mechanisms underlying the tolerance are poorly understood. This study investigated the PGP activity of four halotolerant bacteria under salinity stress and the tomato salt-tolerance mechanisms induced by the synergy of these bacteria with the exopolysaccharide (EPS) mauran. All PGPB tested in this study were able to offer a significant improvement of tomato plant biomass under salinity stress; Peribacillus castrilensis N3 being the most efficient one. Tomato plants treated with N3 and the EPS mauran showed greater tolerance to NaCl than the treatment in the absence of EPS and PGPB. The synergy of N3 with mauran confers salt stress tolerance in tomato plants by increasing sodium transporter genes' expression and osmoprotectant content, including soluble sugars, polyols, proline, GABA, phenols and the polyamine putrescine. These osmolytes together with the induction of sodium transporter genes increase the osmotic adjustment capacity to resist water loss and maintain ionic homeostasis. These findings suggest that the synergy of the halotolerant bacterium N3 and the EPS mauran could enhance tomato plant growth by mitigating salt stress and could have great potential as an inductor of salinity tolerance in the agriculture sector.
Collapse
Affiliation(s)
- Patricia Sánchez
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
| | | | - Sandra Sierra
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
28
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
30
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
31
|
Boukari N, Jelali N, Abdelly C, Hannoufa A. Priming seeds with salicylic acid modulates membrane integrity, antioxidant defense, and gene expression in Medicago sativa grown under iron deficiency and salinity. PHYSIOLOGIA PLANTARUM 2023; 175:e14026. [PMID: 37882313 DOI: 10.1111/ppl.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023]
Abstract
Exposure of plants to adverse environmental conditions reduces their growth and productivity. Currently, seed priming with phytohormones is considered one of the most reliable and cost-effective approaches that can help alleviate the toxic effects of environmental stress. In this context, the present study aims to investigate the effect of priming alfalfa seeds with salicylic acid (SA) on oxidative stress markers, including malonyldialdehyde, protein content, activities of antioxidant enzymes, and expression of genes encoding these enzymes in leaves and roots of alfalfa (Gabes ecotype) grown under saline stress, iron deficiency, or both. Our results showed that the application of salt stress and iron deficiency separately or simultaneously induces changes in the activities of antioxidant enzymes, but these are organ- and stress-dependent. The Gabes ecotype was able to increase the activities of these enzymes under salt stress to alleviate oxidative damage. Indeed, priming seeds with 100 μM SA significantly increases the enzymatic activities of APX, GPX, CAT, and SOD. Therefore, this concentration can be considered optimal for the induction of iron deficiency tolerance. Our results showed not only that Gabes ecotype was able to tolerate salt stress by maintaining high expression of the Fe-SOD isoform, but also that the pretreatment of seeds with 100 μM SA improved the tolerance of this ecotype to iron deficiency by stimulating Fe-SOD expression and inhibiting CAT and APXc.
Collapse
Affiliation(s)
- Nadia Boukari
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Nahida Jelali
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | | |
Collapse
|
32
|
Pramanik B, Sar P, Bharti R, Gupta RK, Purkayastha S, Sinha S, Chattaraj S, Mitra D. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107831. [PMID: 37418817 DOI: 10.1016/j.plaphy.2023.107831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In the era of dire environmental fluctuations, plants undergo several stressors during their life span, which severely impact their development and overall growth in negative aspects. Abiotic stress factors, especially moisture stress i.e shortage (drought) or excess (flooding), salinity, temperature divergence (i.e. heat and cold stress), heavy metal toxicity, etc. create osmotic and ionic imbalance inside the plant cells, which ultimately lead to devastating crop yield, sometimes crop failure. Apart from the array of abiotic stresses, various biotic stress caused by pathogens, insects, and nematodes also affect production. Therefore, to combat these major challenges in order to increase production, several novel strategies have been adapted, among which the use of nanoparticles (NPs) i.e. nanotechnology is becoming an emerging tool in various facets of the current agriculture system, nowadays. This present review will elaborately depict the deployment and mechanisms of different NPs to withstand these biotic and abiotic stresses, along with a brief overview and indication of the future research works to be oriented based on the steps provided for future research in advance NPs application through the sustainable way.
Collapse
Affiliation(s)
- Biswajit Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Puranjoy Sar
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India.
| | - Ruchi Bharti
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Rahul Kumar Gupta
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding and Seed Science and Technology, Centurion University of Technology and Management, Paralekhamundi, 761211, Odisha, India
| | - Somya Sinha
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Sourav Chattaraj
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India.
| |
Collapse
|
33
|
Dey S, Nath S, Alam Ansari T, Biswas A, Barman F, Mukherjee S, Gopal G, Bhattacharyya A, Mukherjee A, Kundu R, Paul S. Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107837. [PMID: 37331074 DOI: 10.1016/j.plaphy.2023.107837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.
Collapse
Affiliation(s)
- Swarnali Dey
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Shreya Nath
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Tauhid Alam Ansari
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India
| | - Ankita Biswas
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Falguni Barman
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Saikat Mukherjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Arindam Bhattacharyya
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhabrata Paul
- Institute of Health Sciences, Presidency University (2nd Campus), Action Area-ID, New Town, Kolkata, 700156, India.
| |
Collapse
|
34
|
Włodarczyk K, Smolińska B, Majak I. The Antioxidant Potential of Tomato Plants ( Solanum lycopersicum L.) under Nano-ZnO Treatment. Int J Mol Sci 2023; 24:11833. [PMID: 37511592 PMCID: PMC10380518 DOI: 10.3390/ijms241411833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most valuable horticulture crops, consumed in both its raw and processed forms. To increase yield and efficiency, conventional and organic fertilizers are utilized in modern agriculture. Traditional fertilizers increase crop yield but are harmful to the environment. These circumstances motivate the pursuit of an alternate solution. The purpose of this research was to investigate how the application of nanoparticles (nano-ZnO) combined with conventional fertilizer influence tomato plants' development, including the antioxidant potential of cultivated plants. Three factors such as different types of cultivars, dosage of applied nano-ZnO solution and the method of nanoparticles application were implemented. Multiple analysis of selected antioxidants content and their activities such as malondialdehyde (MDA), flavonoids, polyphenols, ascorbic acid, peroxidase (POX), superoxide dismutase (SOD) or catalase (CAT) were analyzed. The obtained data exhibited that all examined parameters were strongly dependent on three implemented factors: concentration of nano-ZnO suspension, the type of cultivated tomato and the method of nanoparticles application. For instance, the accumulation of MDA in cultivated plants was different among plants under nanoparticles treatment, but in one specific case (Malinowy Bossman cultivar treated with 50 mg/L nano-ZnO suspension) the content of this marker was decreased by 34% in comparison to the corresponding control. Nevertheless, the results presented in this study showed that the usage of certain doses of nano-ZnO suspension may increase the antioxidant potential of tomato plants.
Collapse
Affiliation(s)
- Katarzyna Włodarczyk
- Institute of Natural Products and Cosmetics, Department of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Beata Smolińska
- Institute of Natural Products and Cosmetics, Department of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Iwona Majak
- Institute of Food Technology and Analysis, Department of Biotechnology and Food Sciences, Lodz University of Technology, ul. Stefanowskiego 2/22, 90-537 Lodz, Poland
| |
Collapse
|
35
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
36
|
Khan S, Al-Qurainy F, Al-hashimi A, Nadeem M, Tarroum M, Shaikhaldein HO, Salih AM. Effect of Green Synthesized ZnO-NPs on Growth, Antioxidant System Response and Bioactive Compound Accumulation in Echinops macrochaetus, a Potential Medicinal Plant, and Assessment of Genome Size (2C DNA Content). PLANTS (BASEL, SWITZERLAND) 2023; 12:1669. [PMID: 37111892 PMCID: PMC10141689 DOI: 10.3390/plants12081669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected from the wild and identified using the internal transcribed spacer sequence of nrDNA (ITS-nrDNA), which showed the closeness to its related genus in a phylogenetic tree. The effect of synthesized biogenic ZnO-NPs was studied on E. macrochaetus in a growth chamber for growth, bioactive compound enhancement and antioxidant system response. The irrigation of plants at a low concentration of ZnO-NPs (T1 = 10 mg/L) induced more growth in terms of biomass, chlorophyll content (273.11 µg/g FW) and carotenoid content (135.61 µg/g FW) than the control and other treatments (T2-20 mg/L and T3-40 mg/L). However, the application of a high concentration of ZnO-NPs (20 and 40 mg/L) increased the level of antioxidant enzymes (SOD, APX and GR), total crude and soluble protein, proline and TBARS contents. The accumulations of the compounds quercetin-3-β-D-glucoside, luteolin 7-rutinoside and p-coumaric acid were greater in the leaf compared to the shoot and root. A minor variation was observed in genome size in treated plants as compared to the control group. Overall, this study revealed the stimulatory effect of phytomediated ZnO-NPs, which act as bio-stimulants/nano-fertilizers as revealed by more biomass and the higher production of phytochemical compounds in different parts of the E. macrochaetus.
Collapse
|
37
|
Bionanotechnology in Agriculture: A One Health Approach. Life (Basel) 2023; 13:life13020509. [PMID: 36836866 PMCID: PMC9964896 DOI: 10.3390/life13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Healthy eating habits are one of the requirements for the health of society. In particular, in natura foods are increasingly encouraged, since they have a high concentration of nutrients. However, these foods are often grown in the presence of agrochemicals, such as fertilizers and pesticides. To increase crop productivity and achieve high vigor standards in less time, farmers make excessive use of agrochemicals that generate various economic, environmental, and clinical problems. In this way, bionanotechnology appears as an ally in developing technologies to improve planting conditions, ranging from the health of farmers and consumers to the production of new foods and functional foods. All these improvements are based on the better use of land use in synergy with the lowest generation of environmental impacts and the health of living beings, with a view to the study and production of technologies that take into account the concept of One Health in its processes and products. In this review article, we will address how caring for agriculture can directly influence the quality of the most desired foods in contemporary society, and how new alternatives based on nanotechnology can point to efficient and safe solutions for living beings on our planet.
Collapse
|
38
|
Kimera F, Mugwanya M, Dawood M, Sewilam H. Growth response of kale (Brassica oleracea) and Nile tilapia (Oreochromis niloticus) under saline aqua-sandponics-vegeculture system. Sci Rep 2023; 13:2427. [PMID: 36765067 PMCID: PMC9913015 DOI: 10.1038/s41598-023-29509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Salinity and freshwater scarcity are significant challenges affecting agriculture production worldwide. Sustaining food production in arid and semi-arid regions requires innovative, efficient, and low-cost technologies. Integrated aqua-vegeculture systems (IAVS) are promising technologies for cultivating vegetable crops and rearing fish and in a closed-loop system. The system utilizes fish effluents as crop fertilizers and recycles water for increased productivity. Hence, the current study aimed to investigate the response and productivity of kale (Brassica oleracea L.) grown at different brackish water salinities in an IAVS. The greenhouse experiment followed a completely randomized design with three salinity variants (i.e., 3000, 6000, and 9000 ppm) and control (freshwater, 400 ppm) with four replicates per treatment. The study results indicated that kale grown in a greenhouse could tolerate salinity levels of up to 6000 ppm without significantly compromising the plants' growth, yield, and nutritional composition of leaves. Likewise, rearing Oreochromis niloticus at high water salinities did not negatively impact the water quality and the growth performance, survival, and feed utilization of fish. Overall, cultivating kale and rearing O. niloticus in IAVS in water salinities reaching up to 6000 ppm could be a sustainable agricultural strategy to increase food production in regions affected by freshwater scarcity.
Collapse
Affiliation(s)
- Fahad Kimera
- School of Science and Engineering, Center for Applied Research on the Environment and Sustainability (CARES), The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Muziri Mugwanya
- School of Science and Engineering, Center for Applied Research on the Environment and Sustainability (CARES), The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Mahmoud Dawood
- School of Science and Engineering, Center for Applied Research on the Environment and Sustainability (CARES), The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hani Sewilam
- UNESCO Chair in Hydrological Changes and Water Resources Management, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
39
|
Silva S, Dias MC, Pinto DCGA, Silva AMS. Metabolomics as a Tool to Understand Nano-Plant Interactions: The Case Study of Metal-Based Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2023; 12:491. [PMID: 36771576 PMCID: PMC9921902 DOI: 10.3390/plants12030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms against stressors, the biochemical changes and signals during plant development, and the role of specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve and revolutionize the agri-food sector and modernize agriculture. They can drive precision and sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high applicability, an in-depth understanding of NPs' impact on plants and their mechanistic action is crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review gathers the information available concerning the metabolomic tools used in studies focused on NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite reconfiguration, and the reprogramming of metabolic pathways.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
40
|
Rafiq H, Aftab ZEH, Anjum T, Ali B, Akram W, Bashir U, Mirza FS, Aftab M, Ali MD, Li G. Bio-fabrication of Zinc Oxide nanoparticles to rescue Mung Bean against Cercospora leaf spot disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1052984. [PMID: 36523618 PMCID: PMC9745094 DOI: 10.3389/fpls.2022.1052984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Plant disease management using nanotechnology is evolving continuously across the world. The purpose of this study was to determine the effect of different concentrations of green synthesized zinc oxide nanoparticles (ZnO NPs) using Trachyspermum ammi seed extract on Cercospora leaf spot disease in mung bean plants under in-vitro and in-planta conditions. Additionally, the effects on mung bean agronomic and physiological parameters were also assessed. The green synthesized ZnO NPs were characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Green synthesized NPs were tested for their ability to inhibit fungal growth at five different concentrations under in-vitro experiment. After 7 days of inoculation, ZnO NPs (1200 ppm) inhibited mycelial growth substantially (89.86% ± 0.70). The in-planta experiment showed statistically significant result of disease control (30% ± 11.54) in response to 1200 ppm ZnO NPs. The same treatment showed statistically significant improvements in shoot length, root length, number of leaves, number of pods, shoot fresh weight (28.62%), shoot dry weight (85.18%), root fresh weight (38.88%), and root dry weight (38.88%) compared to the control. Our findings show that green synthesized ZnO NPs can control Cercospora canescens in mung bean, pointing to their use in plant disease control and growth enhancement.
Collapse
Affiliation(s)
- Hamza Rafiq
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Uzma Bashir
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Shafiq Mirza
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muzammil Aftab
- Department of Physics, Government College University, Lahore, Pakistan
| | - Muhammad Danish Ali
- Department of Science and Humanities, National University of Computer and Emerging Sciences- FAST, Lahore, Pakistan
- Department of Physics, University of the Punjab, Lahore, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
41
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
42
|
Guo M, Wang XS, Guo HD, Bai SY, Khan A, Wang XM, Gao YM, Li JS. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:949541. [PMID: 36186008 PMCID: PMC9515470 DOI: 10.3389/fpls.2022.949541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
One of the most significant environmental factors affecting plant growth, development and productivity is salt stress. The damage caused by salt to plants mainly includes ionic, osmotic and secondary stresses, while the plants adapt to salt stress through multiple biochemical and molecular pathways. Tomato (Solanum lycopersicum L.) is one of the most widely cultivated vegetable crops and a model dicot plant. It is moderately sensitive to salinity throughout the period of growth and development. Biotechnological efforts to improve tomato salt tolerance hinge on a synthesized understanding of the mechanisms underlying salinity tolerance. This review provides a comprehensive review of major advances on the mechanisms controlling salt tolerance of tomato in terms of sensing and signaling, adaptive responses, and epigenetic regulation. Additionally, we discussed the potential application of these mechanisms in improving salt tolerance of tomato, including genetic engineering, marker-assisted selection, and eco-sustainable approaches.
Collapse
Affiliation(s)
- Meng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Xin-Sheng Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Hui-Dan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng-Yi Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Xiao-Min Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Yan-Ming Gao
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Jian-She Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
43
|
Zulfiqar F, Nafees M, Chen J, Darras A, Ferrante A, Hancock JT, Ashraf M, Zaid A, Latif N, Corpas FJ, Altaf MA, Siddique KHM. Chemical priming enhances plant tolerance to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:946922. [PMID: 36160964 PMCID: PMC9490053 DOI: 10.3389/fpls.2022.946922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 05/10/2023]
Abstract
Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (H2S), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (H2O2), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Antonio Ferrante
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milano, Italy
| | - John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Nadeem Latif
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
44
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
45
|
Ahmad Z, Tahseen S, Wasi A, Ganie IB, Shahzad A, Emamverdian A, Ramakrishnan M, Ding Y. Nanotechnological Interventions in Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2667. [PMID: 35957097 PMCID: PMC9370753 DOI: 10.3390/nano12152667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Agriculture is an important sector that plays an important role in providing food to both humans and animals. In addition, this sector plays an important role in the world economy. Changes in climatic conditions and biotic and abiotic stresses cause significant damage to agricultural production around the world. Therefore, the development of sustainable agricultural techniques is becoming increasingly important keeping in view the growing population and its demands. Nanotechnology provides important tools to different industrial sectors, and nowadays, the use of nanotechnology is focused on achieving a sustainable agricultural system. Great attention has been given to the development and optimization of nanomaterials and their application in the agriculture sector to improve plant growth and development, plant health and protection and overall performance in terms of morphological and physiological activities. The present communication provides up-to-date information on nanotechnological interventions in the agriculture sector. The present review deals with nanoparticles, their types and the role of nanotechnology in plant growth, development, pathogen detection and crop protection, its role in the delivery of genetic material, plant growth regulators and agrochemicals and its role in genetic engineering. Moreover, the role of nanotechnology in stress management is also discussed. Our aim in this review is to aid researchers to learn quickly how to use plant nanotechnology for improving agricultural production.
Collapse
Affiliation(s)
- Zishan Ahmad
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Sabaha Tahseen
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Adla Wasi
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Irfan Bashir Ganie
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Abolghassem Emamverdian
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
46
|
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int J Mol Sci 2022; 23:8519. [PMID: 35955651 PMCID: PMC9368943 DOI: 10.3390/ijms23158519] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Vishwavidyala, Mohanpur 741251, India;
| | - Vivek Chandra Verma
- Department of Biochemistry, College of Basic Science and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263145, India;
| | - Suvana Sukumaran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Malamal Alickal Sarath Chandran
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Kodigal A. Gopinath
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Govindarajan Venkatesh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Sushil Kumar Yadav
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad 500059, India; (V.V.K.); (S.S.); (M.A.S.C.); (G.V.); (S.K.Y.)
| | | |
Collapse
|
47
|
Seed Priming with Carbon Nanomaterials Improves the Bioactive Compounds of Tomato Plants under Saline Stress. PLANTS 2022; 11:plants11151984. [PMID: 35956461 PMCID: PMC9370608 DOI: 10.3390/plants11151984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity of this crop. Recent studies have shown that seed priming can mitigate or alleviate the negative effects caused by this type of stress. However, the use of carbon nanomaterials (CNMs) in this technique has not been tested for this purpose. In the present study, the effects of tomato seed priming with carbon nanotubes (CNTs) and graphene (GP) (50, 250, and 500 mg L−1) and two controls (not sonicated and sonicated) were evaluated based on the content of photosynthetic pigments in the leaves; the physicochemical parameters of the fruits; and the presence of enzymatic and non-enzymatic antioxidant compounds, carotenoids, and stress biomarkers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves and fruits of tomato plants without saline stress and with saline stress (50 mM NaCl). The results show that saline stress in combination with CNTs and GP increased the content of chlorophylls (9.1–21.7%), ascorbic acid (19.5%), glutathione (≈13%), proteins (9.9–11.9%), and phenols (14.2%) on the leaves. The addition of CNTs and GP increased the activity of enzymes (CAT, APX, GPX, and PAL). Likewise, there was also a slight increase in the content of H2O2 (by 20.5%) and MDA (3.7%) in the leaves. Salinity affected the quality of tomato fruits. The physico-chemical parameters and bioactive compounds in both the stressed and non-stressed tomato plants were modified with the addition of CNTs and GP. Higher contents of total soluble solids (25.9%), phenols (up to 144.85%), flavonoids (up to 37.63%), ascorbic acid (≈28%), and lycopene (12.4–36.2%) were observed. The addition of carbon nanomaterials by seed priming in tomato plants subjected to saline stress modifies the content of bioactive compounds in tomato fruits and improves the antioxidant defense system, suggesting possible protection of the plant from the negative impacts of stress by salinity. However, analysis of the mechanism of action of CNMs through seed priming, in greater depth is suggested, perhaps with the use of omics sciences.
Collapse
|
48
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
49
|
Gelaw TA, Sanan-Mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:791-818. [PMID: 35592477 PMCID: PMC9110591 DOI: 10.1007/s12298-022-01163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development is influenced by their continuous interaction with the environment. Their cellular machinery is geared to make rapid changes for adjusting the morphology and physiology to withstand the stressful changes in their surroundings. The present scenario of climate change has however intensified the occurrence and duration of stress and this is getting reflected in terms of yield loss. A number of breeding and molecular strategies are being adopted to enhance the performance of plants under abiotic stress conditions. In this context, the use of nanomaterials is gaining momentum. Nanotechnology is a versatile field and its application has been demonstrated in almost all the existing fields of science. In the agriculture sector, the use of nanoparticles is still limited, even though it has been found to increase germination and growth, enhance physiological and biochemical activities and impact gene expression. In this review, we have summarized the use and role of nanomaterial and small non-coding RNAs in crop improvement while highlighting the potential of nanomaterial assisted eco-friendly delivery of small non-coding RNAs as an innovative strategy for mitigating the effect of abiotic stress.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, 445, Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
50
|
Gaucin-Delgado JM, Ortiz-Campos A, Hernandez-Montiel LG, Fortis-Hernandez M, Reyes-Pérez JJ, Gonzáles-Fuentes JA, Preciado-Rangel P. CuO-NPs Improve Biosynthesis of Bioactive Compounds in Lettuce. PLANTS (BASEL, SWITZERLAND) 2022; 11:912. [PMID: 35406891 PMCID: PMC9002383 DOI: 10.3390/plants11070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL-1) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds.
Collapse
Affiliation(s)
- Jazmín M. Gaucin-Delgado
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Adriel Ortiz-Campos
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo Santa Rita, La Paz 23090, Mexico
| | - Manuel Fortis-Hernandez
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador;
| | - José A. Gonzáles-Fuentes
- Horticulture Department, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| |
Collapse
|