1
|
Naaz S, Pande A, Laxmi A. Nitric oxide-mediated thermomemory: a new perspective on plant heat stress resilience. FRONTIERS IN PLANT SCIENCE 2025; 16:1525336. [PMID: 40093607 PMCID: PMC11906724 DOI: 10.3389/fpls.2025.1525336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
In the intricate world of plant responses to environmental stress, the concept of thermomemory has emerged as a fascinating and complex phenomenon. Plants, as sessile organisms, continually face the challenge of adapting to fluctuating climates, and the ability to "remember" prior heat stress encounters, a phenomenon known as thermomemory is a testament to their remarkable adaptability. Nitric oxide (NO), a versatile signaling molecule in plant physiology, has been implicated in a myriad of cellular processes crucial for stress adaptation. From its involvement in stomatal regulation to its influence on gene expression and antioxidant defense mechanisms, NO emerges as a central orchestrator in the plant's response to elevated temperatures. Exploration of NO-mediated pathways provides insights into how plants not only cope with immediate heat stress but also retain a memory of these encounters. Unraveling the molecular intricacies of NO's involvement in thermomemory enhances our understanding of the sophisticated strategies employed by plants to navigate a changing climate, offering potential avenues for innovative approaches to enhancing crop resilience and sustainable agriculture.
Collapse
Affiliation(s)
- Sheeba Naaz
- National Institute of Plant Genome Research, New Delhi, India
| | - Anjali Pande
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
2
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
3
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Thenveettil N, Bheemanahalli R, Reddy KN, Gao W, Reddy KR. Temperature and elevated CO 2 alter soybean seed yield and quality, exhibiting transgenerational effects on seedling emergence and vigor. FRONTIERS IN PLANT SCIENCE 2024; 15:1427086. [PMID: 39145187 PMCID: PMC11322351 DOI: 10.3389/fpls.2024.1427086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Introduction Environmental conditions play a prime role in the growth and development of plant species, exerting a significant influence on their reproductive capacity. Soybean is sensitive to high temperatures during flowering and seed developmental stages. Little is known about the combined environmental effect of temperature and CO2 on seed yield and quality and its future generation. Methods A study was conducted to examine the effect of temperature (22/14°C (low), 30/22°C (optimum), and 38/30°C (high)), and CO2 (420 ppm (ambient; aCO2) and 720 ppm (elevated; eCO2)) on seed yield, quality, and transgenerational seedling vigor traits of soybean cultivars (DS25-1 and DS31-243) using Soil-Plant-Atmospheric-Research facility. Results A significant temperature effect was recorded among yield and quality attributes. At high-temperature, the 100-seed weights of DS25-1 and DS31-243 declined by 40% and 24%, respectively, over the optimum temperature at aCO2. The harvest index of varieties reduced by 70% when exposed to high temperature under both aCO2 and eCO2, compared to the optimum temperature at aCO2. The seed oil (- 2%) and protein (8%) content altered when developed under high temperature under aCO2. Maximum sucrose (7.5%) and stachyose (3.8%) accumulation in seeds were observed when developed under low temperatures and eCO2. When the growing temperature increased from optimum to high, the seed oleic acids increased (63%), while linoleic and linolenic acids decreased (- 28% and - 43%, respectively). Significant temperature and CO2 effects were observed in progenies with the highest maximum seedling emergence (80%), lesser time to 50% emergence (5.5 days), and higher seedling vigor from parents grown at low-temperature treatment under eCO2. Discussion Exposure of plants to 38/30°C was detrimental to soybean seed yield, and eCO2 levels did not compensate for this yield loss. The high temperature during seed developmental stages altered the chemical composition of the seed, leading to an increased content of monounsaturated fatty acids. The findings suggest that parental stress can significantly impact the development of offspring, indicating that epigenetic regulation or memory repose may be at play.
Collapse
Affiliation(s)
- Naflath Thenveettil
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Krishna N. Reddy
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Crop Production Systems Research Unit, Stoneville, MS, United States
| | - Wei Gao
- United States Department of Agriculture - Ultraviolet B (USDA UVB) Monitoring and Research Program, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, United States
| | - K. Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
5
|
Xu WB, Cao F, Liu P, Yan K, Guo QH. The multifaceted role of RNA-based regulation in plant stress memory. FRONTIERS IN PLANT SCIENCE 2024; 15:1387575. [PMID: 38736453 PMCID: PMC11082352 DOI: 10.3389/fpls.2024.1387575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.
Collapse
Affiliation(s)
- Wei-Bo Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Qian-Huan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
6
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
7
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
8
|
Sihag P, Kumar U, Sagwal V, Kapoor P, Singh Y, Mehla S, Balyan P, Mir RR, Varshney RK, Singh KP, Dhankher OP. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). THE PLANT GENOME 2024; 17:e20307. [PMID: 36751876 DOI: 10.1002/tpg2.20307] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The grain-filling stage in Triticum aestivum (wheat) is highly vulnerable to increasing temperature as terminal heat stress diminishes grain quality and yield. To examine the mechanism of terminal heat tolerance, we performed the biochemical and gene expression analyses using two heat-tolerant (WH730 and WH1218) and two heat-sensitive (WH711 and WH157) wheat genotypes. We observed a significant increase in total soluble sugar (25%-47%), proline (7%-15%), and glycine betaine (GB) (22%-34%) contents in flag leaf, whereas a decrease in grain-filling duration, 1000-kernel weight (8%-25%), and grain yield per plant (11%-23%) was observed under the late-sown compared to the timely sown. The maximum content of osmolytes, including total soluble sugar, proline, and GB, was observed in heat-tolerant genotypes compared to heat-sensitive genotypes. The expression of 10 heat-responsive genes associated with heat shock proteins (sHsp-1, Hsp17, and HsfA4), flavonoid biosynthesis (F3'-1 and PAL), β-glucan synthesis (CslF6 and CslH), and xyloglucan metabolism (XTH1, XTH2, and XTH5) was studied in flag leaf exposed to different heat treatments (34, 36, 38, and 40°C) at 15 days after anthesis by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of these genes with increasing temperature indicated their involvement in providing heat-stress tolerance. The high differential expression of most of the genes in heat-tolerant genotype "WH730" followed by "WH1218" indicates the high adaptability of these genotypes to heat stress compared to heat-sensitive wheat genotypes. Based on the previous results, "WH730" performed better in terms of maximum osmolyte accumulation, grain yield, and gene expression under heat stress.
Collapse
Affiliation(s)
- Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Prexha Kapoor
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Sheetal Mehla
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri College, CCS University, Meerut, Uttar Pradesh, India
| | - Reazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, India
| | - Rajeev K Varshney
- Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Kambona CM, Koua PA, Léon J, Ballvora A. Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13951. [PMID: 37310785 DOI: 10.1111/ppl.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
The environments where the progenitors are grown have the potential to affect the expression of traits in their offspring. Currently, there are various hypotheses regarding the evolutionary and ecological importance of stress memory effects. There is uncertainty regarding its occurrence, persistence, predictability, and adaptive value. In this study, 15 winter wheat cultivars were grown under drought and well-watered (control) treatments for two seasons to produce seeds with all possible combinations of drought exposure histories. A comprehensive analysis to estimate transgenerational (grandparental effects), intergenerational (parental effects), and their combined memory effects on offspring traits under both control and drought moisture treatments, was performed. There were significant memory effects in most of the evaluated traits ranging from +787% to -39.0% changes in both seed quality and plant traits. The expression of stress memory was highly dependent on the generation and number of exposures, traits, and seasons. Under drought treatment, the combination of grandparental and parental stress memories was additive in all traits, but their strengths were variable when considered separately. Stress memory enhanced the performance of offspring under similar stressful conditions: increased plant height, above-ground biomass, number of grains per plant, grain weight per plant and water potential. This study offers valuable new insights into the occurrence of drought stress memory, the complexities of the effects, possible physiological and metabolic alterations explaining the detected differences, and impacts toward a clearer understanding of their generation and context-dependency.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
10
|
Zuluaga DL, Blanco E, Mangini G, Sonnante G, Curci PL. A Survey of the Transcriptomic Resources in Durum Wheat: Stress Responses, Data Integration and Exploitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1267. [PMID: 36986956 PMCID: PMC10056183 DOI: 10.3390/plants12061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.) is an allotetraploid cereal crop of worldwide importance, given its use for making pasta, couscous, and bulgur. Under climate change scenarios, abiotic (e.g., high and low temperatures, salinity, drought) and biotic (mainly exemplified by fungal pathogens) stresses represent a significant limit for durum cultivation because they can severely affect yield and grain quality. The advent of next-generation sequencing technologies has brought a huge development in transcriptomic resources with many relevant datasets now available for durum wheat, at various anatomical levels, also focusing on phenological phases and environmental conditions. In this review, we cover all the transcriptomic resources generated on durum wheat to date and focus on the corresponding scientific insights gained into abiotic and biotic stress responses. We describe relevant databases, tools and approaches, including connections with other "omics" that could assist data integration for candidate gene discovery for bio-agronomical traits. The biological knowledge summarized here will ultimately help in accelerating durum wheat breeding.
Collapse
Affiliation(s)
- Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
11
|
Kalamartzis I, Menexes G, Dordas C. Effect of Low Water Availability on Seed Yield and Seed Quality of Basil ( Ocimum basilicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:1094. [PMID: 36903953 PMCID: PMC10005375 DOI: 10.3390/plants12051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Basil (Ocimum basilicum L.) is an aromatic and medicinal plant with important properties and is used as an alternative crop in many countries of the world because of its medicinal, economic, industrial, and nutritional importance. The objective of the present study was to determine the effect of low water availability on seed production and seed quality of five cultivars of basil (Mrs Burns, Cinnamon, Sweet, Red Rubin, and Thai). Irrigation levels and cultivars affected seed yield and thousand seed weight. In addition, plants that were exposed to low water availability produced seeds that germinated in a greater percentage. Additionally, root length was increased as the PEG concentration was increased in the germination solution and was affected by the low water availability of the mother plants. The length of the shoot, the length of the root and the seed vigor could not be used as indicators of low water availability on the mother plants, but these characteristics and especially the seed vigor could be used as indicators of low water availability of the seed. Furthermore, the root length and the seed vigor indicated that there is a possibility of an epigenetic effect of water availability on the seed produced under low water availability, though more work is needed.
Collapse
Affiliation(s)
| | | | - Christos Dordas
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
13
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
14
|
Magar MM, Liu H, Yan G. Genome-Wide Analysis of AP2/ERF Superfamily Genes in Contrasting Wheat Genotypes Reveals Heat Stress-Related Candidate Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:853086. [PMID: 35498651 PMCID: PMC9044922 DOI: 10.3389/fpls.2022.853086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 06/09/2023]
Abstract
The AP2/ERF superfamily is one of the largest groups of transcription factors (TFs) in plants, which plays important roles in regulating plant growth and development under heat stress. A complete genome-wide identification, characterization, and expression analysis of AP2/ERF superfamily genes focusing on heat stress response were conducted in bread wheat. This study identified 630 putative AP2/ERF superfamily TF genes in wheat, with 517 genes containing well-defined AP2-protein domains. They were classified into five sub-families, according to domain content, conserved motif, and gene structure. The unique genes identified in this study were 112 TaERF genes, 77 TaDREB genes, four TaAP2 genes, and one TaRAV gene. The chromosomal distribution analysis showed the unequal distribution of TaAP2/ERF genes in 21 wheat chromosomes, with 127 pairs of segmental duplications and one pair of tandem duplication, highly concentrated in TaERF and TaDREB sub-families. The qRT-PCR validation of differentially expressed genes (DEGs) in contrasting wheat genotypes under heat stress conditions revealed that significant DEGs in tolerant and susceptible genotypes could unequivocally differentiate tolerant and susceptible wheat genotypes. This study provides useful information on TaAP2/ERF superfamily genes and reveals candidate genes in response to heat stress, which forms a foundation for heat tolerance breeding in wheat.
Collapse
|
15
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Deng Y, Bossdorf O, Scheepens JF. Transgenerational effects of temperature fluctuations in Arabidopsis thaliana. AOB PLANTS 2021; 13:plab064. [PMID: 34950444 PMCID: PMC8691168 DOI: 10.1093/aobpla/plab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Plant stress responses can extend into the following generations, a phenomenon called transgenerational effects. Heat stress, in particular, is known to affect plant offspring, but we do not know to what extent these effects depend on the temporal patterns of the stress, and whether transgenerational responses are adaptive and genetically variable within species. To address these questions, we carried out a two-generation experiment with nine Arabidopsis thaliana genotypes. We subjected the plants to heat stress regimes that varied in timing and frequency, but not in mean temperature, and we then grew the offspring of these plants under controlled conditions as well as under renewed heat stress. The stress treatments significantly carried over to the offspring generation, with timing having stronger effects on plant phenotypes than stress frequency. However, there was no evidence that transgenerational effects were adaptive. The magnitudes of transgenerational effects differed substantially among genotypes, and for some traits the strength of plant responses was significantly associated with the climatic variability at the sites of origin. In summary, timing of heat stress not only directly affects plants, but it can also cause transgenerational effects on offspring phenotypes. Genetic variation in transgenerational effects, as well as correlations between transgenerational effects and climatic variability, indicates that transgenerational effects can evolve, and have probably already done so in the past.
Collapse
Affiliation(s)
- Ying Deng
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Natural History Research Center, Shanghai Natural History Museum, Shanghai 200041, China
| | - Oliver Bossdorf
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
| | - J F Scheepens
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| |
Collapse
|
17
|
Jiang L, Wen Z, Zhang Y, Zhao Z, Tanveer M, Tian C, Wang L. Transgenerational Effects of Maternal Water Condition on the Growth, C:N Stoichiometry and Seed Characteristics of the Desert Annual Atriplex aucheri. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112362. [PMID: 34834724 PMCID: PMC8620486 DOI: 10.3390/plants10112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Water conditions directly affect plant growth and thus modify reproduction allocation. However, little is known about the transgenerational effects of water conditions on xerophytes. The desert annual Atriplex aucheri produces three types of seeds (A: dormant, ebracteate black seeds; B: dormant, bracteolate black seeds; C: non-dormant, bracteolate brown seeds) on a single plant. The aim of this study was to investigate the effects of low/high water treatment (thereafter progeny water treatment) on aboveground biomass, C:N stoichiometry, and offspring seed characteristics of A. aucheri grown from brown seeds whose mother plants were under low/high water treatment (thereafter maternal water treatment). Progeny water only affected shoot dry weight and seed allocation of type A. Under low progeny water treatment, plants from parents with low maternal water treatment had the lowest biomass. Maternal water did not significantly influence the C and N content, however high maternal water increased the C:N ratio. Maternal water treatment did not significantly affect seed number. However, plants under low maternal and progeny water treatments had the lowest weight for type B seeds. When progeny plants were under low water treatment, seed allocation of type A, type B, and total seed allocation of plants under high maternal water were significantly lower than those of plants under low maternal water. These results indicate that water conditions during the maternal generation can dramatically contribute to progeny seed variation, but the transgenerational effects depend on the water conditions of progeny plants.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (L.J.); (Z.W.); (Z.Z.); (C.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (L.J.); (Z.W.); (Z.Z.); (C.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunling Zhang
- General Grassland Station of Xinjiang, Urumqi 830049, China;
| | - Zhenyong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (L.J.); (Z.W.); (Z.Z.); (C.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (L.J.); (Z.W.); (Z.Z.); (C.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (L.J.); (Z.W.); (Z.Z.); (C.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Layton KKS, Bradbury IR. Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 2021; 91:1064-1072. [PMID: 34679193 DOI: 10.1111/1365-2656.13619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.
Collapse
Affiliation(s)
- Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ian R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Canada
| |
Collapse
|
19
|
Liu H, Able AJ, Able JA. Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat. Int J Mol Sci 2021; 22:ijms22115532. [PMID: 34073862 PMCID: PMC8197280 DOI: 10.3390/ijms22115532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Heat stress is a major limiting factor of grain yield and quality in crops. Abiotic stresses have a transgenerational impact and the mechanistic basis is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Leaf physiological traits, harvest components and grain quality traits were characterized under the impact of parental and progeny heat stress. The parental heat stress treatment had a positive influence on the offspring for traits including chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome and degradome provided the first description of the molecular networks mediating heat stress adaptation under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes characterized subject to the progeny treatment, parental treatment and tissue-type factors. Gene Ontology and KEGG pathway analysis of stress responsive microRNAs-mRNA modules provided further information on their functional roles in biological processes such as hormone homeostasis, signal transduction and protein stabilization. Our results provide new insights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermo-tolerance in breeding.
Collapse
|
20
|
Benincasa P, Bravi E, Marconi O, Lutts S, Tosti G, Falcinelli B. Transgenerational Effects of Salt Stress Imposed to Rapeseed ( Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050932. [PMID: 34066989 PMCID: PMC8151563 DOI: 10.3390/plants10050932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Previous research has demonstrated that rapeseed sprouts obtained under salinity demonstrate greater phenolic content and antioxidant activity compared to those sprouted with distilled water. This work aimed to test the hypothesis that these effects of salinity may persist into the next generation, so that offspring seeds of plants grown under salt stress may give edible sprouts with increased phenolic content and antioxidant activity. Plants of one rapeseed cultivar were grown in pots with 0, 100 and 200 mM NaCl, isolated from each other at flowering to prevent cross-pollination. Offspring seeds harvested from each salinity treatment were then sprouted with distilled water. We performed the extraction of free and bound phenolic fractions of sprouts and, in each fraction (methanolic extract), we determined the total polyphenols (P), flavonoids, (F), and tannins (T) with Folin-Ciocalteu reagent, the phenolic acids (PAs) by ultra-high-performance liquid chromatographs (UHPLC) analysis, and the antioxidant activity with three tests (2,2-diphenyl-1-picrylhydrazyl-hydrate, DPPH; ferric reducing antioxidant power, FRAP; 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt, ABTS). Individual seed weight was slightly decreased by salinity, whereas germination performance was improved, with a lower mean germination time for salted treatments. No significant differences were observed among treatments for P, F and T, except for bound P, while, in most cases, single PAs (as free, bound and total fractions) and antioxidant activity were significantly increased in salted treatments. Our results open new perspectives for the elicitation of secondary metabolites in the offspring seeds by growing parental plants under stressing conditions, imposed on purpose or naturally occurring.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (E.B.); (O.M.); (G.T.); (B.F.)
- Correspondence:
| | - Elisabetta Bravi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (E.B.); (O.M.); (G.T.); (B.F.)
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (E.B.); (O.M.); (G.T.); (B.F.)
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium;
| | - Giacomo Tosti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (E.B.); (O.M.); (G.T.); (B.F.)
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (E.B.); (O.M.); (G.T.); (B.F.)
| |
Collapse
|
21
|
Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. PLANTS 2021; 10:plants10050826. [PMID: 33919185 PMCID: PMC8143135 DOI: 10.3390/plants10050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.
Collapse
|
22
|
Liu H, Able AJ, Able JA. Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Sci Rep 2021; 11:3613. [PMID: 33574419 PMCID: PMC7878867 DOI: 10.1038/s41598-021-83074-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Water-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.
Collapse
Affiliation(s)
- Haipei Liu
- grid.1010.00000 0004 1936 7304School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064 Australia
| | - Amanda J. Able
- grid.1010.00000 0004 1936 7304School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064 Australia
| | - Jason A. Able
- grid.1010.00000 0004 1936 7304School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064 Australia
| |
Collapse
|
23
|
Nishad A, Nandi AK. Recent advances in plant thermomemory. PLANT CELL REPORTS 2021; 40:19-27. [PMID: 32975635 DOI: 10.1007/s00299-020-02604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/13/2020] [Indexed: 05/04/2023]
Abstract
This review summarizes the process of thermal acquired tolerance in plants and the knowledge gap compared to systemic acquired resistance that a plant shows after pathogen inoculation. Plants are continuously challenged by several biotic stresses such as pests and pathogens, or abiotic stresses like high light, UV radiation, drought, salt, and very high or low temperature. Interestingly, for most stresses, prior exposure makes plants more tolerant during the subsequent exposures, which is often referred to as acclimatization. Research of the last two decades reveals that the memory of most of the stresses is associated with epigenetic changes. Heat stress causes damage to membrane proteins, denaturation and inactivation of various enzymes, and accumulation of reactive oxygen species leading to cell injury and death. Plants are equipped with thermosensors that can recognize certain specific changes and activate protection machinery. Phytochrome and calcium signaling play critical roles in sensing sudden changes in temperature and activate cascades of signaling, leading to the production of heat shock proteins (HSPs) that keep protein-unfolding under control. Heat shock factors (HSFs) are the transcription factors that read the activation of thermosensors and induce the expression of HSPs. Epigenetic modifications of HSFs are likely to be the key component of thermal acquired tolerance (TAT). Despite the advances in understanding the process of thermomemory generation, it is not known whether plants are equipped with systemic activation thermal protection, as happens in the form of systemic acquired resistance (SAR) upon pathogen infection. This review describes the recent advances in the understanding of thermomemory development in plants and the knowledge gap in comparison with SAR.
Collapse
Affiliation(s)
- Anand Nishad
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
24
|
Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum-Regulatory Networks of Grain Development and Abiotic Stress Response. Int J Mol Sci 2020; 21:ijms21207772. [PMID: 33096606 PMCID: PMC7589925 DOI: 10.3390/ijms21207772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.
Collapse
|
25
|
Liu H, Able AJ, Able JA. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Int J Mol Sci 2020; 21:ijms21176017. [PMID: 32825615 PMCID: PMC7504575 DOI: 10.3390/ijms21176017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.
Collapse
|